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ABSTRACT

Autonomous planetary vehicles, also known as rovers, are small autonomous vehicles equipped with a
variety of sensors used to perform exploration and experiments on a planet’s surface. Rovers work in a
partially unknown environment, with narrow energy/time/movement constraints and, typically, small
computational resources that limit the complexity of on-line planning and scheduling, thus they represent
a great challenge in the field of autonomous vehicles. Indeed, formal models for such vehicles usually
involve hybrid systems with nonlinear dynamics, which are difficult to handle by most of the current
planning algorithms and tools. Therefore, when offline planning of the vehicle activities is required, for
example for rovers that operate without a continuous Earth supervision, such planning is often performed
on simplified models that are not completely realistic. In this paper we show how the UPMurphi model
checking based planning tool can be used to generate resource-optimal plans to control the engine of an
autonomous planetary vehicle, working directly on its hybrid model and taking into account several
safety constraints, thus achieving very accurate results.
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1. INTRODUCTION

Autonomous planetary vehicles, or rovers, are a great challenge in the field of autonomous
vehicles, since they have often to take actions on a hazardous ground with narrow time and
energy consumption constraints. Rovers operating on distant planets may receive commands
from Earth operators only once per day, and during the remaining time they have to perform a
specific mission, which may include moving to a specific place, position some instruments, take
measures, etc [1], [2].

Usually, rover activities are organised on the ground into a detailed plan that, once generated
and uploaded to the vehicle, drives it for the rest of the mission. Typically, in this situation, if
the rover encounters an unexpected (i.e., not contained in the mission plan) situation, it stops
and waits for further Earth instructions, possibly wasting a lot of time. Therefore, planning for
this kind of autonomous vehicles should be very precise and take into consideration many
factors [3].

As noted, many rover activities begin with a movement that places it in a specified location.
Thus, independently from the nature of the rover’s mission, reaching the activity location is the
first goal to achieve, and it must satisfy two main constraints: energy and time consumption.
Indeed, at the end of the journey, rover batteries must still contain enough charge to perform the
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activity, or at least to begin it, assuming that the vehicle is equipped with solar panels and in
sunlight, so it can recharge its battery when needed. Moreover, the rover has to complete its task
as soon as possible, since environmental conditions may quickly change, and in general a
shorter task duration means that the rover will be able to perform more activities during the
mission time.

Unfortunately, also in this simplified setting, the rover still represents a hybrid system (i.e.,
described by both discrete and continuous variables), and the equations describing values such
as energy consumption are usually nonlinear. Many efforts have been made to improve planning
algorithms so as to cope with hybrid systems [4], however nonlinearity continues to be a
relevant problem for many well-known planners such as TM-LPSAT [5], UPPAAL-TIGA [6]
or MIPS [7]. Therefore, while a precise planning of the rover activities is important,
automatically generating an optimal plan w.r.t. time and energy for the rover movements may
be a hard task.

1.1. Contribution

In this paper, which is an extended version of [8], we show how an explicit model checking-
based planner, namely UPMurphi [9], developed by the same authors, can be used to generate
optimal plans to control a rover’s engine, in order to move it for a specific distance in the least
possible time, while satisfying a set of technical constraints and trying to save energy.

Indeed, thanks to the model checking algorithms, UPMurphi is able to cope with systems
showing high complexity and a behaviour that is difficult to predict, as hybrid nonlinear systems
usually are.

In the presented case study, the rover dynamics and behaviour, including some common
technical constraints, have been modelled through general equations, that may apply to a wide
range of vehicles. Plans have been optimised to minimise energy and time requirements, and the
given minimal battery charge is always preserved. Therefore, the results are quite realistic.

To the best of our knowledge, this is the first successful attempt to automatically generate time
and resource-optimal plans for a rover model of such complexity.

The paper is organised as follows. Section 2 shows some related work about planning
algorithms and tools for hybrid and nonlinear systems. Section 3 describes the model checking
approach to the planning problem and introduces the UPMurphi planner. Section 4 defines our
case study and comments the planning results. Finally, Section 5 contains some closing
remarks.

2. RELATED WORK

The planning problem presented in this paper can be generally defined as planning with
resource consumption [10], [11], [12].

Different techniques have been developed by the JPL [13] and applied to such kind of activity
planning for NASA rovers. In particular, the mixed initiative planning [14], supported by the
MAPGEN (Mixed-initiative Activity Plan GENerator) tool [15], [16] has been used for the
Deep Space 1 mission. With this approach, humans and machines collaborate in the
development and the management of plans: in particular, the user provides MAPGEN with a
qualitative evaluation of the generated plan.

The ASPEN [17], [18] framework has been used to perform activity planning for the Rocky 7
rover. In this framework, a first automatically generated plan is iteratively refined using
different heuristics to finally fulfil the resource constraints.

Finally, other approaches perform planning with uncertainty, mainly using probabilistic
methods [12], which however cannot handle problems with high complexity.

16



International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.3, July 2010

It is worth noting that none of the above approaches is able to find optimal plans, i.e., plans that
minimise the resource consumption. Other well known automatic planners indeed address this
issue. In particular, the TM-LPSAT tool [5] works only on linear domains. This is also the case
of the UPPAAL/TIGA tool [6], [19] that, being built on top of UPPAAL, allows one to use real
variables only as clocks (i.e., real variables can be modelled only if their first derivative is 1),
thus excluding systems with nonlinear dynamics. Finally, the MIPS planner [7], being based on
symbolic model checking, does not perform well on hybrid nonlinear systems.

Therefore, automatic optimal planning with resource consumption on hybrid, nonlinear systems
such as rovers is still an open issue.

3. PLANNING THROUGH EXpPLICIT MODEL CHECKING

Model checking algorithms are typically divided in two categories: symbolic algorithms (e.g.,
[20]) and explicit algorithms (e.g., [21]). Symbolic algorithms have been successfully applied to
classical planning [7,22], however they do not work well on hybrid systems with nonlinear
dynamics, due to the complexity of the state transition function [23]. Therefore, explicit model
checking performs better with the kind of systems we intend to approach. Also these algorithms
are subject to the well-known state explosion problem: however, the ability to build the system
transition graph on demand and generate only the reachable states of the system (through the
reachability analysis), together with many space saving techniques (see, e.g., [24]), help to
mitigate it.

Generally speaking, given a set E of error states and a set I of initial states for a system, an
explicit model checker incrementally generates all the valid system states (reachable states),
starting from the ones in I and repeatedly applying the transition function that describes the
system dynamics. If a state e € E is encountered, the model checker outputs the sequence of
states (error trace) that leads to e.

If we look at error states as goal states, we can use a model checker as a planner. This very
simple fact allows one to use the model checking technology to automatically synthesise
optimal plans for complex systems.

3.1. Planning of Finite State Systems

A hybrid system [25] is a system whose state description involves continuous as well as discrete
variables. In order to apply model checking algorithms and exploit the reachability analysis, the
system should have a finite number of states. To this aim, we approximate the system by
discretising the continuous components of the state (which we assume to be bounded) and their
dynamic behaviour. For lack of space, we cannot describe here the approximation process,
however the reader can see how our approach works by looking at the case study in Section 4.
In the following we first give a formal definition of the approximated model, the finite state
system, and then describe how the planning problem can be solved for such kind of system.

Definition 1 (Finite State System) A Finite State System (FSS) § is a 4-tuple (S,sq, 4, F),
where: S is a finite set of states, sy € S is the initial state, A is a finite set of actions and
F:Sx AXxS — {0,1} is the transition function, i.e. F(s,a,s") = 1 iff the system from state s
can reach state s’ via action a.

By abuse of language, we denote with F (s, a) the successor state of s through action a, i.e. the
state s’ so that F(s,a,s’) = 1.

In order to define the planning problem for such a system, we assume that a set of goal states
G € S has been specified. Moreover, to have a finite state system, we fix a finite temporal
horizon T and we require a plan to reach the goal in at most T actions. Note that, in most
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practical applications, we always have a maximum time allowed to complete the execution of a
plan, thus this restriction, although theoretically quite relevant, has a limited practical impact.

Now we are in position to state the planning problem for finite state systems.

Definition 2 (Planning Problem on FSS) Let S = (S, sy, 4, F) be an FSS. Then, a planning
problem is a quadruple P = (5,G,C,T) where G € S is the set of the goal states, C:S X A —
R* is the cost function and T is the finite temporal horizon.

Intuitively, a solution to a planning problem is the minimal cost path in the system transition
graph, starting from the initial state and ending in a goal state. More formally, we have the
following

Definition 3 (Trajectory) A trajectory in the FSS § = (S, 5,4, F) is a finite sequence ™ =
S0ApS1a1S20y ... Ay_1S, Where s; €S is a state, a; €A is an action and Vi € [0,n—
1] F(s;, a4, Si41) = 1. If 7 is a trajectory, we write 74(k) (resp. m,(k)) to denote the state s
(resp. the action ay). Finally, we denote with |r| the length of 7, given by the number of actions
in the trajectory, and C(w) = Zlizlo_l C(s;,a;). the cost of m.

Definition 4 (Reachable States) Let S = (S, s, 4, F) be an FSS. Then, we say that s € S is
reachable from s, iff there exists a trajectory m in S such that m,(0) = s, and mz(k) = s for
some k = 0. We denote with Reach(s) the set of states reachable from sg.

Definition 5 (Admissible Solution) Let § = (S,s,,4,F) be an FSS and let P = (§,G,C,T) be
a planning problem. Then an admissible solution for P is a trajectory m* in § s.t.: || =k,
k<T,m5(0) =sgand w5(k) €G.

Definition 6 (Optimal Solution) An optimal solution is an admissible solution 7* s.t. for all
other admissible solutions 7', C (1) < C(1").

In the next section, we present a tool which takes as input a planning problem and outputs an
optimal solution for it.

3.2. The UPMurphi Tool

The UPMurphi tool [9] is an optimal universal planner built on top of the CMurphi [26] model
checker. Obviously, UPMurphi can be used as an optimal planner, too.

UPMurphi can be fed with a description of the system to be verified, defined through the
UPMurphi description language (as a finite state automaton) as well as through PDDL+ [27],
which is a standard language for planning problems. This allows one to model the planning
domain using the formalism that best suits the original system specifications and simplifies its
description. Similarly, plans computed by UPMurphi can be output as binary or textually-
encoded state-action tables or as PDDL+ plans.

The case study of this paper, being developed from scratch, has been directly modelled through
the CMurphi description language, a high-level programming language for finite state
asynchronous concurrent systems which allows greater flexibility and optimisation of the
model.

In particular, the system state is defined in the UPMurphi through a set of state variables, which
are suitably declared at the beginning of the model description. To this aim, the user can exploit
the built-in data types provided by the tool or declare new user-defined types using data
definition primitives such as arrays, structures and ranges.

The behavioural part of an UPMurphi model is a collection of transition rules, i.e., guarded
commands which consist of a condition and an action. It is also possible to specify a duration
and a weight (e.g., a cost) in each rule: these properties can be later used by the planner to
measure the total duration of a plan and optimise it w.r.t. its total weight. Indeed, plans
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generated by UPMurphi are actually represented by a timed sequence of rules chosen by the
planner to reach a goal state starting from the initial state. It is also possible to write support
functions and procedures and call them in the condition, action, duration or weight expressions
to further modularise the specification.

Error conditions can be defined by means of the invariant construct, which allows one to
describe the constraints that must be fulfilled by every system state and, as a consequence, the
states that represent system errors.

The system initial state is declared through the startstate construct, which requires the user to
suitably initialise all the model state variables. Finally, to support planning problems, the
CMurphi input language has been extended in UPMurphi to include the goal construct, used to
define the properties that a planning goal state must satisfy.

Moreover, UPMurphi provides two important features to ease the hybrid systems modelling
activity: the type real(m,n) of real numbers (with m digits for the mantissa and »n digits for the
exponent), and the use of externally defined C/C++ functions in the modelling language. In this
way, for example, one can use the C/C++ language constructs and library functions to model
complex dynamics involving calculations on real values.

Finally, UPMurphi can exploit several techniques that help to mitigate the well-known state
explosion problem due to the memory requirements of explicit state space exploration
algorithms. However, it is worth noting that memory-related problems are common to all the
current planning algorithms, when the system dynamics involves real values and complex
mathematical operations.

In particular, the tool supports bit compression [28] and hash compaction [29], [30] to reduce
the memory size of the system state representation, and a symmetry reduction algorithm to
decrease the state space size by detecting equivalent states.

Shortly, bit compression saves memory by using every bit of the state descriptor, the memory
structure maintaining the state variables, instead of aligning them on byte boundaries, whereas
hash compaction stores compressed values (also called state signatures) instead of full state
descriptors. Together, these two techniques can dramatically reduce the memory needed to
explore huge state spaces.

4. CASE STUDY: THE AUTONOMOUS PLANETARY VEHICLE

This section presents a motivating case study where planning is applied to automatically control
the engine of an autonomous vehicle during a planetary exploration mission.

As described in the introduction, the rover model as well as the environmental conditions have
been defined to be as general as possible, to achieve realistic results, and the generated plan will
be optimised for the shortest time and the lowest energy consumption, as a real mission would
require.

4.1. Rover Specifications

The rover can be naturally modelled as a hybrid system, with several nonlinear characteristics.
Thus, we have a dynamics very hard to compute, which makes planning quite difficult. The
rover model used in our case study is based on the Mars exploration rover described in [31].

In general, an exploration rover moves on the planet surface to observe different phenomena
and/or try some experiments. The rover can recharge its batteries through a solar panel, but
recharge cannot take place continuously, and the energy from the panels is not enough to
directly power the rover. Therefore, it must minimise the energy consumption in order to have
always enough battery charge for the next activity.
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Moreover, the rover has limited communication and computation resources, so it must be
programmed with a detailed plan of activity and then left operating, without any chance to
recover from an error or recompute its mission. If something wrong or unexpected happens, the
best that the rover can do is to stop, reset and wait for the next Earth connection to get new
instructions.

The plan we want to generate does not address the actual route of the rover, but controls the
vehicle engine and instruments during the route itself. Routing is a different problem, so just we
assume that a (possibly straight) route of length df;,4; has been separately planned and will be
used to control the steering of the rover wheels.

When moving, the rover is subject to friction and drift due to the - often unpredictable - ground
characteristics. Thus, every d,,,, meters, it has to stop for t. seconds to look at its actual
position and conditions, before starting again to move. These frequent stops may also be useful
to ensure a proper cooling of the rover wheels and instruments, if moving in a hot environment.
For sake of generality, in the following we shall call these stops “cooling tasks”. However, we
assume that the route duration be less or equal to t,,,, seconds, since the overall rover mission
should not exceed a reasonable limit. The rover has a base energy consumption g5 Joule/second,
used to power its CPU.

The energy (expressed in Joule/second) required to move the rover with speed v and
acceleration ¥ can be evaluated by applying the general function f of Equation 1, where m is
the vehicle mass and fa is its frontal area (see [31] for details).

f(v,f;):(%-p-vz~Cd~fa+m~g~(Crr+g))~v (1)

In the equation, constants , g indicate the planet air density and its gravitational constant,
respectively, whereas Cd and Crr are the drag and rolling coefficients of the rover. Finally, the
cooling tasks require a constant energy of g. Joule/second.

The rover dynamics (i.e., the covered distance d, the speed v and the acceleration v ) is given
by Equation 2.

v
w=al)—pu-g
9t
9d 2)

E = v(t)

where a(t) is the acceleration given by the rover motor at time t and u is the kinetic friction
coefficient for the rover wheels.

We assume that, in each communication session, the Earth control sends to the rover a plan to
drive it to the next place, and the commands needed to start the corresponding activity. Such
plan consists of a sequence of actions, to be performed at 1 second intervals, chosen from the set
A = {accelerate, decelerate, continue (moving at constant speed), perform a cooling task}.

The plan must obey the following constraints:
e the rover must not exceed the speed of v,,,4, cm/s;
e the rover must stop every d meters to perform a cooling task;

e the rover must stop after dg;,q; meters (to start the activity) with a residual battery charge
not lower than ¢ ,,;;,, coulomb;

e the rover route must not require more than t,,,, seconds.
In particular, we must ensure that, after moving to the given location, the rover has still enough

battery charge available for its activity.
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4.2. Rover Modelling

The dynamics and constraints given above can be compactly and precisely illustrated through
the hybrid automaton shown in Figure 1.

start engineExplode
d:=0 a=0 V> Viyax
STOPPED V=0 ¢'=c RUNNING
T=0 Tg=0 .
© d=v 4=0
v =a-jg
¢ = -(f{v,a)*gs)
T=1 T¢=0
engineExplode
decelerate V> Vigax
a=a-15
maxDistance
restart d=d energyEnd
Te= accelerate Max C < Cmin
a:=a+15
COOLING BRAKING NO ENERGY
120 oigru) | teag =0 &=0
f=1 1. = 1 b arrest &= f(v,a)+g;) energyEnd g C-ZE]
v=0 =t =0 C < Crin T=0 Te=
Te=0
energyEnd
c=0

Figure 1. Hybrid automaton for the Autonomous Planetary Vehicle case study.

The state of the automaton is s = (x,q) € §, where q € {stopped, running, braking, cooling,
engine blown, no energy} and x = (d, a,v, T, T,).

The rover is initially in a stopped state, where the only energy consumption is given by gs.
When started, the rover enters the running state and moves as described by Equation 2 while its
energy consumption is increased by the value given by Equation 1. The vehicle can accelerate
and decelerate with steps of 1.5 cm/sz. After d meters, the vehicle starts braking and, once
stopped, it begins the cooling phase, with the corresponding energy consumption. After 6
seconds of cooling (T, in the automaton), the vehicle restarts and continues in the running state.

The automaton also shows two possible failure conditions: if the rover moves faster than the
max allowed speed v,4, , its engine blows up (engine blown state): in this case, the entire
mission could fail. On the other hand, if the consumed energy exceeds the limit ¢,;,, , the rover
stops (no energy state), using the residual energy to wait for Earth instructions.

We fixed the model constants to the values given in Table 1, most of which are obtained from
rover specifications like [2] and [1]. Note that we assume that the rover operates on the Mars
surface.
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Table 1. Constant values for the rover model

p Air density 0.1Kg/m3
g Gravitational acceleration 3.8m/s?
m Vehicle mass 71.73 Kg
u Kinetic friction coefficient 0.8
Crmax Initial battery charge 18,000C
Crin Min final battery charge 17,000C
Vmax Max speed 1.0 cm/s
Gmax | Max acceleration 5 cm/s?
Js CPU energy requirements 25]/s
te Cooling duration 6s
Ainax Distance between coolings 1.30m
e Cooling energy requirements 10]/s
dfing: | Final distance 2m
tnax Max plan duration 60s

Finally, according to Definition 3, we evaluate the cost of the generated plan through the
function C(s;, a;) defined as follows:
2

—% 4 Co(a) if i = stopped

tnax — 1
+ 2

M + Co(ay) if qi = cooling

C( ) tnax —
s ap) = ] no energy,

0 if i€ {engine biown)
+ f (v, 9;))?

M + C,(a;) otherwise
Unax — L

where s € S, a € A. Here, C, = 0 since all the actions are instantaneous and do not require
energy. This definition of C allows one to perform optimisation on both energy and time, as
required, still giving more importance to the energy component. Indeed, usually the mission
could be accomplished even if it requires some seconds more than the planned limits, whereas
running out of battery charge could lead to dangerous failures.

4.3. UPMurphi Model

The resulting model has been translated to a FSS, encoded in the UPMurphi description
language, with the same state variables and transition function of the hybrid automaton in
Figure 1.

In this phase, the continuous state variables have been suitably discretised. It is worth noting
that this discretisation is indeed realistic, since also the real rover instruments, being built on a
limited hardware (e.g., sensors, actuators), would implicitly work on approximations of the real
continuous values. However, we must be aware of approximations that may lead to unexpected
violations of safety constraints.

Indeed, in the UPMurphi rover model, we applied an approximation of 0.1 to all the variables,
and introduced the Vs, femax < Vmax constant as the actual maximum speed. This gives us a
chance to set a further safety threshold on the speed, to prevent an engine blow (see Section 4.2)
due to approximation errors. On the other hand, the journey time will be measured in seconds,
since it is a reasonable update interval for the rover engine status. It is worth noting that, with
the given discretisation, the total number of different states of the FSS is 2.2 - 1013, Figure 2
shows the resulting UPMurphi code, where for sake of simplicity we omit the declaration of
constants and state variables.
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Model rules Support procedures
startstate " stopped " procedure running_status_update();
BEGIN BEGIN

a 0.0; d :=0.0; d := update_d(d,v,a);

v := 0.0; ¢ := c_max; v := update_v (v,a);

T_c := 0.0; c := update_c(rho,v,m,g,a,h,f);

cooling := false;

braking := false; -— maxDistance

running := false; IF ((d = d_max) & (T_C = 0)) THEN
END; braking := true;

running := false;
rule f start " ENDIF;
duration: 0; END;
weight: 0;
(!running & !cooling & !braking ) ==> procedure braking_status_update();
BEGIN BEGIN
running :=true; a :=a - 1.5;
END; d := update_d (d,v,a);
rule " accelerate " v := update_v (v,a);
duration: 0; c := update_c (rho,v,m,g,a,h,f);
weight: 0;
(running & !cooling & !braking ) ==> -— arrest
BEGIN IF (v=0 & a=0) THEN
a :=a + 1.5; braking:= false;
END; cooling:= true;
T c := 03
rule " decelerate " ENDIF;
duration: 0; END;
weight: 0;
(running & !cooling & !braking) ==> procedure cooling_status_update();
BEGIN BEGIN
a :=a - 1.5; T _c := T_c +1;
END;
. -- cooling

rule f running " IF (T_c <= 6) THEN
du;atlon: 1i ) c := update_c_cooling(c,g,v,m);
weight: cost_moving(); ELSE
(running & !cooling & !braking ) ==> __ restart
BEGIN cooling := false;
running_status_update(); running := true;
END; ENDIF;
rule " braking " END;
duration: 1;
weight: cost_moving();
(!running & !cooling & braking ) ==>
BEGIN
braking_status_update () ;
END;
rule " cooling "
duration: 1;
weight: cost_cooling();
(!running & cooling & !braking) ==>
BEGIN
cooling_status_update();
END;

invariant " engineExplode "
(! (running & v > v_safemax))

invariant " energyEnd " (!(c < c_min))

goal " success " (v =0 & d = d_final)

Figure 2. UPMurphi code for the Autonomous Planetary Vehicle case study.
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The start state of the model, stopped, describes the corresponding initial state of the hybrid
automaton, i.e., fixes the initial conditions of the rover. Then, the start rule initiates the rover
movement by setting the running variable to true.

The other five model rules, namely accelerate, decelerate, running, braking and cooling, model
the main transitions and states of the automaton. In particular, accelerate and decelerate update
the acceleration variable as described by the corresponding automaton transitions. These rules
have a null duration and weight, according to the hybrid automaton semantics, since they
represent instantaneous updates.

On the other hand, the running, braking and cooling rules have duration 1, since they model the
changes in the rover state (i.e., speed, distance and battery charge) during a time step of one
second. Such wupdates are actually performed by the running_status_update,
braking_status_update and cooling_status_update procedures, respectively, which concentrate
the update logic found in the entire automaton, i.e., the updates specified on the maxDistance,
arrest and restart transitions and the ones contained in the running and cooling states. The
status update procedures, in turn, compute some values through external C functions (e.g.,
update_c_cooling) that are used to evaluate the complex expressions described in Section 4.1.
Moreover, the external functions cost_moving and cost_cooling are used to dynamically
calculate the weight of each rule, as defined by the cost function shown in Section 4.2.

The invariants engineExplode and energyEnd model the homonymous transitions that lead, in
the automaton, to error states (engineBlown and noenergy, respectively). These states are not
modelled here, since the planner automatically detects as errors all the states that violate an
invariant.

Finally, the goal construct is used to declare the success condition of the model, i.e., when the
rover completes successfully its journey.

4.4. Planning

To build the optimal plan, the model was given in input to UPMurphi. Initially, we set
Vsafemax = Vmax> 10 see if we can devise a safe plan without imposing more restrictive
constraints on the rover speed. The exploration of the model dynamics lead to 939,477
reachable states, which is considerably smaller than the theoretical system state space of
2.2 - 1013 states. Thanks to such state space pruning, due to the reachability analysis performed
by the model checking algorithms of UPMurphi, finding an optimal (w.r.t. the cost function)
plan required a relatively small amount of resources, with a peak memory allocation of 500 MB,
and 2,257 seconds of processing.

The resulting plan is described in Table 2. The table reports, for each second (which is the plan
sampling time, as discussed earlier) the model rule (with respect to the code in Figure 2) chosen
by UPMurphi. Thus, the rover starts its journey when Start is selected, moves when Running is
selected, brakes when Braking is selected, increases or decreases its speed when Accelerate or
Decelerate are selected, respectively, and performs a Cooling when the homonymous rule is
chosen. Note that we may have more than one rule executed in a single time step, since some of
them (namely, Start, Accelerate and Decelerate) have duration zero.

Table 3 summarises the plan statistics. It is worth noting that the plan optimisation allowed us to
save 922.7 C with respect to the required minimal battery charge, and 17 seconds with respect
to the maximum allowed plan duration.
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Table 2. Optimal plan

T (sec) Rule T (sec) Rule T (sec) Rule
Start
0 Accelerate 15 Running 30 Cooling
Running
Accelerate . .
1 Running 16 Running 31 Cooling
2 Running 17 Running 32 Cooling
Decelerate . .
3 Running 18 Running 33 Cooling
Decelerate . .
4 Running 19 Running 34 Cooling
5 Decelgrate 20 Running 35 Accele.rate
Running Running
6 Running 21 Running 36 Accele.rate
Running
7 Running 22 Accele.rate 37 Running
Running
3 Accele.rate 23 Running 38 Decele.rate
Running Running
9 Running 24 Running 39 Decelgrate
Running
10 Running 25 Braking 40 Decele.rate
Running
11 Running 26 Braking 41 Decele.rate
Running
12 Running 27 Braking 42 Decele.rate
Running
13 Running 28 Braking
14 Running 29 Cooling

Table 3. Optimal plan statistics
Course length 43s
Energy consumption 77.3C
Residual battery charge 17,922.7C
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Figure 3. Optimal plan evolution: battery charge, speed and acceleration.

Finally, the generated plan has been further validated by simulating its execution on the rover
model. The graphs in Figure 3 show the evolution of some important rover state variables
during the simulation, which ends correctly after df;nq; = 2 m. In particular, we can compare
the battery discharge graph with the rover speed and acceleration during the entire course. It is
worth noting that, in the highlighted cooling phase, the battery discharge rate is higher even if
the vehicle is stopped, due to the instruments activation. Moreover, the peak speed of the rover
is low enough to not exceed v, 4, even in the presence of approximation errors up to 0.1, which
is our discretisation threshold. Therefore, this is a completely safe plan.
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Figure 4. Optimal plan evolution: engine energy requirements and cost function.

Another interesting plan analysis is given in Figure 4, where we plot the rover engine energy
requirements, i.e., the value of fin Equation 1, and the value of the cost function C(7r) during
the plan evolution. The graph clearly shows that, as required, the plan cost is very tightly related
to the energy consumption, since the battery charge is a critical resource, whereas the time has a
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considerably lower impact (for example, look at the small increment of the cost when the
required energy is constant, between T = 8 and T = 22).

5. CONCLUSIONS

In this paper we have shown how model checking based planning, and in particular the
UPMurphi universal planner, can be profitably exploited to generate time and resource-optimal
plans to control the engine of an autonomous planetary vehicle during an exploration mission.

The general characteristics of this kind of vehicle, together with the environmental conditions
and the mission constraints, often lead to hybrid models with nonlinear dynamics, which are
difficult to manipulate for most of the other planning tools. Therefore, planning in this context is
often performed using only semi-automatic or even manual techniques on simplified models,
whose results need to be checked for correctness and safety through simulation. Obviously,
calculating a resource-optimal plan is even harder.

The UPMurphi optimal planner simplifies this process by automatically handling the system in
its full complexity. Thus, the application of UPMurphi can be helpful to plan the activities of
complex, realistic models of autonomous vehicles.

Indeed, we are working to further enhance the tool capabilities in order to handle more complex
dynamics equations, in particular the ones involving differential equations, and to implement
advanced state space pruning heuristics. On the other hand, we are studying how to use the
UPMurphi in simulation mode to automatically validate the generated plans, thus providing a
meaningful plan analysis to the user, which may include, e.g., some of the plots shown in this

paper.
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