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ABSTRACT 

A Field Programmable Gate Array (FPGA) is proposed to build an Adaptive Neuro Fuzzy Inference System 

(ANFIS) for controlling a full vehicle nonlinear active suspension system. A Very High speed integrated 

circuit Hardware Description Language (VHDL) has been used to implement the proposed controller. An 

optimal Fraction Order PI
λ
D

µ
 (FOPID) controller is designed for a full vehicle nonlinear active 

suspension system. Evolutionary Algorithm (EA) has been applied to modify the five parameters of the 

FOPID controller (i.e. proportional constant Kp, integral constant Ki, derivative constant Kd, integral 

order λ and derivative order µ). The data obtained from the FOPID controller are used as a reference to 

design the ANFIS model as a controller for the controlled system. A hybrid approach is introduced to train 

the ANFIS. A Matlab Program has been used to design and simulate the proposed controller. The ANFIS 

control parameters obtained from the Matlab program are used to write the VHDL codes. Hardware 

implementation of the FPGA is dependent on the configuration file obtained from the VHDL program. The 

experimental results have proved the efficiency and robustness of the hardware implementation for the 

proposed controller. It provides a novel technique to be used to design NF controller for full vehicle 

nonlinear active suspension systems with hydraulic actuators. 

KEYWORDS 
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1. INTRODUCTION 

The conventional controller like the PID controller requires an exact mathematical model of the 

controlled system to meet as much control objectives as possible. If it is difficult to establish 

the mathematical model for a system, the fuzzy logic controller is a good option to achieve a 

robust controller. Fuzzy logic systems, which can reason with imprecise information, are good 

at explaining their decisions but they cannot automatically acquire the rules used to make those 

decisions. On the other hand, artificial neural networks are good at recognizing patterns, and 

have ability to train the parameters of a control system, but they are not good at explaining how 

they reach their decisions. These limitations in both systems have brought about driving force 

behind the creation of intelligent hybrid systems (like Neuro-fuzzy system) where the two 

techniques are combined in a manner that the limitations of the individual techniques have been 

overcome. The neuro-adaptive learning techniques provide a method for the fuzzy modelling 

procedure to acquire information about a data set.  This technique gives the fuzzy logic 

capability to compute the membership function parameters that effectively allow the associated 

fuzzy inference system to track the given input and output data. In order to process a fuzzy rule 
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by neural networks, it is necessary to modify the standard neural network structure accordingly. 

In the last two decades, many researchers focused on the development of a hardware 

implementation for both fuzzy logic controller and neural controller. [1], [2] and [3] used an 

analogue circuit to implement each part of fuzzy system (including: Fuzzification, Fuzzy 

Inference and Defuzzification). The structure of fuzzy system is complex, so that the analogue 

circuit has to be very complicated to implement the logic system. Therefore, many researchers 

proposed digital rather than analogue circuits to implement the fuzzy logic system. 

Microprocessors or microcontrollers are popular in being used to implement fuzzy logic system 

or neural network. Microprocessor based controllers are economical and flexible, but often face 

difficulties in dealing with control systems. Therefore, higher density programmable logic 

devices such as Programmable Logic Device (PLD) and Field Programmable Gate Array 

(FPGA) have been developed to overcome the problems of microprocessors. The FPGA is 

suitable for fast implementation and hardware verification. The control systems based on it are 

flexible and can be reprogrammed with unlimited number of times.  Many papers have reported 

this technology to design Fuzzy Logic Controller (FLC) and Neural Controller (NC) for 

different applications. Reference [4] developed software for synthesizing fuzzy controllers into 

Boolean equations. Also, a hardware implementation of a fuzzy controller on the FPGA has 

been described. The developed software together with the FPGA development system provides 

a complete automation design tool for fuzzy controllers. Reference [5] presented an analysis 

and performance evaluation of the proportional-derivative (PD) fuzzy logic controller designs 

using Matlab and field programmable gate array. An embedded run-time reconfigurable 

architecture for the design of a fuzzy logic PID controller is proposed in [6], [7] and [8]. 

Reference [9] presented and implemented a fuzzy controller on an FPGA using VHDL for a 

motor unit. A Fuzzy controller has been implemented on the FPGA board to control a shunt 

motor used for controlling the speed of electrical vehicle [10]. In Reference [11] simulation and 

implementation of a fuzzy logic controller for a diesel driven stand-alone synchronous 

generator have been designed. The controller was developed using VHDL and implemented in 

FPGA. Reference [12] depicted a fuzzy logic model style based on two strategies: behavioral 

modelling using VHDL and structural VHDL based on specific architecture of a fuzzy 

processor. Reference [13] described the hardware implementation of fuzzy systems, a neural 

networks and fuzzy neural networks using Xilinx FPGA.  

The neuro-adaptive learning techniques provide a method for a fuzzy modelling procedure to 

learn information about data sets.  This technique gives the fuzzy logic capability to compute 

the membership function parameters that best allow the associated fuzzy inference system to 

track the given input and output data.  

In this paper, an Adaptive Neuro-Fuzzy Inference System (ANFIS) based intelligent control for 

full vehicle nonlinear active suspension system will be designed. The FOPID sub-controller 

will be used to control the master controlled system. An Evolutionary Algorithm is proposed to 

modify the control parameters of FOPID. The data obtained from the FOPID controller will be 

used as a reference to train the parameters of the Neuro-fuzzy controller. The Simulink tool 

boxes in Matlab will be used to simulate the controlled system (full vehicle nonlinear active 

suspension system) with the proposed controller. The VHDL has been used to describe the 

implementation of Neuro-fuzzy controller. In the FPGA based design, Xilinx ISE Project 

Navigator Version 10.1 is used to obtain the compilation and timing test results as well as the 

synthesized design. For the simulation results, ModelSim XE III 6.4b simulation program will 

be used with the FPGA-based design. In order to compare the responses of the FPGA design 

with the Simulink design, an M-file (Matlab-file) will be used to plot the data collected from 

the ModelSim program and the other data collected form the Simulink design. These 

comparisons will show that the responses of the FPGA design are similar to the responses of 

the Simulink design. 
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2. MATHEMATICAL MODEL OF THE CONTROLLED SYSTEM 

The main purposes of active suspension controller are to increase both riding comfort and 

handling quality. The riding comfort can be measured by evaluating the acceleration and 

displacement of sprung mass. The handling quality can be achieved by controlling the 

rotational motions of the vehicle body such as rolling and pitch movements during cornering 

and braking. Figure 1 illustrates the full vehicle nonlinear active suspension with hydraulic 

actuators. In this model the tyres are modeled as linear spring in parallel with linear viscous 

dampers. However, the suspension part is modeled as a nonlinear spring in parallel with a 

nonlinear damper and a nonlinear hydraulic actuator. The nonlinear frictional forces due to 

rubbing of piston seals with the cylinders wall inside the actuators are taken into account to 

calculate the real supply forces generated by the hydraulic actuator 

 

 

 

 

 

 

 

 

 

The following equations of motion are derived for the model using Newton laws of motion: 

 

I. Vertical motion 

According to 

∑ ∑ ∑+−−=
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4

1

4

1

4

1i i i
PiCiKic FFFzM &&                                                                                                (1) 

where KiF  and ��� are the nonlinear suspension spring force and nonlinear suspension damping 

force, respectively,  which can be written as [14] 
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The force generated by hydraulic actuator can be written as 

fiAiPi FFF −=  

where FAi is the nonlinear hydraulic force provided by the i
th
 actuator and Ffi the nonlinear 

frictional force due to rubbing of piston seals with the cylinder wall inside the i
th
 actuator. The 

Figure 1.  Full Vehicle Nonlinear Active Suspension 
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relation between the spool valve velocity, ���� , and the output force of this actuator, FAi = Ap PLi, 

possess a nonlinear dynamic behaviour [15]. 
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�#�� �$� ��%                                                  (2) 

The frictional force is modeled with a smooth approximation of Signum function:  
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II. Pitching motion 
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where b is the distance between the front wheels (or rear wheels). 

III. Rolling motion 
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where l1 is the distance between the centre of  front wheel axle and centre of gravity of the 

vehicle.  l2 is the distance between the centre of gravity of the vehicle and the centre of rare wheel 

axle. 

The motion of the i
th
 unsprung mass is governed by the following equation: 

 

iPCiKiiiiiiiii FFFuwcuwkwm −++−−−−= )()( &&&&                                                                          (6) 

 

The experimental values for the above parameters are shown in Table 1. 

 

3. FRACTIONAL-ORDER  PIλD
µ
 CONTROLLER  

A fractional order differential equation is used to describe the fractional order PI
λ
D

µ
 controller. In 

PID controller case, three parameters Kp, Kd and Ki should be tuned to optimize the controller. 

One of the possibilities to improve PID controllers is to use fractional-order controllers with a 

real order of derivative and integral. The differential equation of fractional order controller can be 

described by 

 [16] 

)()()()( teDKteDKteKtu tdtip
µλ ++= −                                                                                    (7) 
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where e(t) is the error between a measured process output variable and a desired set point and u(t) 

is the control output. Eq. (7) shows that the FOPID controller needs to tune five parameters: Kp, 

Ki, Kd, λ and µ. Therefore, the integral order and derivative order add more flexibility to design 

an FOPID controller. 

The continuous transfer function of the FOPID is given by 

 

µ
λ
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s
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K
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)(                                                                                            (8) 

The big challenge is how the optimal parameters of the FOPID controller can be chosen for 

designing an accurate controller. An Evolutionary Algorithm has been used to serve this purpose. 

 

 

Notation Description Values Units 

 

K1, K2 

Front-left and Front-right 

suspension stuffiness, 

respectively. 

 

19960 

 

N/m 

 

K3, K4 

Rear-right and rear-left 

suspension stuffiness, 

respectively. 

 

17500 

 

N/m 

 

k1-k4 

Front-left, Front-right, rear-

right and rear-left tire 

stuffiness respectively. 

 

175500 

 

N/m 

 

C1, C2 

Front-left and Front-right 

suspension damping, 

respectively. 

 

1290 

 

N.sec/m 

 

C3, C4 

Rear-right and rear-left 

suspension stuffiness, 

respectively. 

 

1620 

 

N.sec/m 

 

c1-c4 

Front-left, Front-right, rear-

right and rear-left tire 

damping, respectively. 

 

14.6 

 

N.sec/m 

M Sprung mass. 1460 kg 

 

m1, m2 

Front-left, Front-right tire 

mass, respectively. 

 

40 

 

kg 

 

m3, m4 

Rear-right and rear-left tire 

mass, respectively. 

 

35.5 

 

kg 

Jx Moment of inertia x-

direction. 

460 kg.m
2 

Jy Moment of inertia y-

direction. 

2460 kg.m
2
 

 

l1 

Distance between the center 

of gravity of vehicle body 

and front axle. 

 

1.011 

 

m 

 

l2 

Distance between the center 

of gravity of vehicle body 

and rear axle. 

 

1.803 

 

m 

Table 1.Vehicle Suspension Parameters 
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4. THE STRUCTURE AND ITS TRAINING OF ADAPTIVE NEURO FUZZY 

INFERENCE SYSTEM (ANFIS) 
 

The ANFIS is one of the methods to organize the fuzzy inference system with given input-output 

data pairs. The ANFIS is a combination of a fuzzy logic controller and a neural network, which 

enables the controller self-tuning and adaptive. If these two intelligent techniques are combined, 

it will achieve good reasoning in quality and quantity. This approach enables the fuzzy logic 

capability to adapt the membership function parameters that best allow the associated fuzzy 

inference system to track the given input and output data. The data obtained from the FOPID 

controller will be use to modify the parameters of the ANFIS model. In order to process a fuzzy 

rule by neural networks, it is necessary to modify the standard neural network structure 

accordingly. Figure 2 depicts the structure of Neuro-fuzzy inference system (the type is called 

Takagi-Sugeno-Kang [18]). For simplicity, the following assumptions will be made:   (a) the 

model has two inputs x and y and one output z, (b) it has just two rules (R1 and R2). 

&1: )* � +, 	-./0 1 +, 2-345/ *- � 6-� 7 8-1+9- 

&2: )*� +,	;./01 +, 2-345/ *; � 6;� 7 8-1 7 9;  

 

 
Figure 2. ANFS model structure 

 

In Figure 2, the square nodes (adaptive nodes) have adaptable parameters while the circle nodes 

(fixed nodes) have non-adaptable parameters. The function of each layer is described below: 

 

A1 

A2 

B1 

B2 
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Π N 
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x 
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x y 

x y 

s1 

s2 

��=1 

��=2 

��=1��1 

��=2��2 
z 

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 

b Width of vehicle body 1.51 m 

> Empirical parameter 0.1 - 
 

?, A , B 

 

Actuator parameters 

4.515*10
13

,1, 

1.545*10
9 

 

- 

AP Cross section area of piston 3.35*10
-4 

m
2 

 � Supply pressure 10342500 Pa 

C Time constant 1/30 sec 

Cd Discharge coefficient 0.7 - 

ρ Fluid density 970
 

kg/m
3
 

ω Area gradient 1.436e-2
 

m
2
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 Layer 1: Every node I in this layer is a square node with a node function 

 

D�- � µ���$�       i=1, 2                                                                                                               (9) 

 

where w is the input to the node i (x or y) and Ai is the linguistic label associated with this node. 

µ���$� has been chosen as bell shape membership function: 

 

µ���$� �
1

1 7 �E$ � F�.� G;%H�
        

 

where {.�, I�, F�J are the parameters of membership function (they are called premise parameters) 

which will be modified in the training phase. 

 

Layer 2: Every node in this layer is a circle node (has non-adaptable parameters) labeled Π which 

multiplies the incoming signals. The output of each node in this layer can be written as: 

 

D�; � ,� � µ����� X µL��1�        i=1, 2                                                                                      (10) 

Layer 3: Every node in this layer is a circle node labeled N. the output of i
th 

node is the 

normalized of the i
th
 rule’s firing strength. The output of any node in this layer can be given as 

 

D�M � ,=� � ��
�NO�P                                                                                                                          (11) 

 

Layer 4: Every node in this layer is square node with a linear function 

 

*� � 6�� 7 8�1 7 9�                                                                                                                    (12) 

 

where {6� , 8�, 9�J is the set parameters called consequent parameters of linear equation which will 

be modified in the training phase. The output of any nodes in this layer can be written as: 

 

D�Q � ,=�*� � ,=��6�� 7 8�1 7 9��                                                                                                 (13) 

 

Layer 5: the node in this layer is circle node labeled Σ that computes the overall output as the 

summation of all incoming signals 

 

# � D�R � ∑ ,=�*� � ∑ ��T��
∑ ���� .                                                                                                         (14) 

 

The adaptable parameters of the ANFIS {.� , I�, F� ,  6� , 8�, 9�J should be modified to minimize the 

following performance function:    

 

U � ∑ U
�
V-                                                                                                                               (15) 

 

where P is the total number of training data set and Ep the error signal between the desired output 

of p
th
 data and the actual output of the ANFIS model of p

th
 data. Ep can be given by 

 

U
 � W
 � #
                                                                                                                             (16) 
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where Tp is the p
th
 desired output and zp is the p

th
 actual output in the ANFIS model. 

To modify the parameters of the ANFIS model, the steepest descent method as in neural network 

can be applied to modify the premise parameters {.� , I�, F�J and least square estimate can be 

applied to adapt the consequent parameters {6�, 8�, 9�J [19]. 

5. HARDWARE DESCRIPTION OF ANFIS 

The VHDL codes have been developed to describe the ANFIS model controller. The optimal 

values of the premise parameters and the consequent parameters have been used to write the 

VHDL codes. Xilinx ISE 10.1 has been used as programming environment to write these codes. 

To generate a configuration file used to program the FPGA board, the flowing steps should be 

followed: 

i. Create the design project and VHDL codes, 

ii. Create a testbench and perform RTL simulation, 

iii. Add a constraint file then synthesize and implement the codes. 

 

After downloading the configuration file on to the FPGA chip (XILINX Spartan XC3S700AN) 

the FPGA board will be ready to use as ANFIS controller for the controlled system. The Spartan 

3E starter Kit board highlights the unique features of the Spartan_3E FPGA family and provides a 

convenient development board for embedded processing applications. The Hirose 100-pin FX2 

Edge connector (J3) will be used as input and output port to receive the digital input data (error 

and error rate) from the A/D converter (error signal is the difference between the output of the 

controlled system and desired output) and send the digital control signal to the D/A converter 

(analogue control signal will be used to force the output of the controlled system to follow the 

desired output).  

6. SIMULATION AND RESULTS 

The active suspension is presented in order to reduce the discomfort arising from road roughness 

and to improve the handling quality. This necessitates a very fast and accurate controller to meet 

as much control objectives as possible. Furthermore, the controlled system has very complex 

nonlinear model as shown in Section 2.  Therefore, an intelligent Neuro fuzzy controller has been 

proposed to meet the control objectives. An Evolutionary Algorithm has been applied to modify 

the five parameters (proportional constant Kp, integral constant Ki, derivative constant Kd, integral 

order λ and derivative order µ) of each FOPID controller.  Figures 3, 4, 5, 6 and 7 show the 

changing of the control parameters during the optimization process. After 225 optimization 

iteration steps, the optimal values of the FOPID controller parameters can be obtained as shown 

in Table 2. During optimization phase, it is assumed that the inputs to the full vehicle model are 

just the road uneven excitation and control forces. The white noise input is supplied as road 

profile. 
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Figure 3. Changing value of Kp during optimization steps   Figure 4. Changing value of Kd during optimization steps 

 

 

Figure 5. Changing value of Ki during optimization steps           Figure 6. Changing value of λ during optimization steps 

                                                                                                         

Table 2. Initial and optimal values of FOPID controller 

                                                                                             

                                                                                                

 

Figure 7. Changing value of µ during optimization steps   

Parameter Initial value Optimal 

value 

KP 100 12678.26 

Kd 20 3253.92 

Ki 1 768.1 

λλλλ 0.3 0.45 

µµµµ 0.7 0.886 
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The hybrid learning algorithm has been used to modify the ANFIS (premise and consequent) 

parameters to track the input and output data obtained from FOPID controller. Four NF 

controllers have been designed (one for each suspension).  

To establish the effectiveness of the proposed controller the robustness should be examined. Four 

types of disturbances are applied in turn to check the robustness of the NF controller as described 

below. 

• Square input signal with varying amplitude applied as road input profile      

The square input signal has been applied as road input. The amplitude of this signal has been 

changed from 0.01m to 0.1m. At each value the cost function (as described in Equation 17) has 

been calculated: 

∑
=ε

ε=φ
4

1

2z5.0                                                                                                                              (17) 

Figure 8 shows the time response of the cost function as function of amplitude of square signal 

input. 

• Sine wave input signal with varying amplitude applied as road input profile  

    The different amplitude of sine wave input from 0.01m to 0.1m has been applied as road 

profile input. The time response of the cost function for the full vehicle without controller, the 

result of the FOPID controller and NF controller are shown together in Figure 9 (where the scale 

of the y-axis is the log scale).  

• Bending inertia Torque (Tx) applied  

The value of bending torque (from 1000 Nm to 9000Nm) in addition to random signal as road 

profile has been applied. The cost function response is plotted as function of Tx in Figure 10.  

• Breaking inertia Torque (Ty) applied  

The value of breaking torque (from 1000 Nm to 9000Nm) in addition to random signal as road 

profile has been applied. The cost function response is plotted as function of Ty in Figure 11. 

 
 

Figure 8. Time response of the cost functions against              Figure 9. Time response of the cost functions against 

the different amplitude of square input                                     the different amplitude of sine wave input. 
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Figure 10. Time response of the cost functions                      Figure 11. Time response of the cost functions 

 against bending torque (Tx)                                                   against braking torque (Ty) 

 

 

After the design of NF has been completed and the robustness should be tested, the optimal 

values of the ANFIS model have been used to implement and design the FPGA boards (four 

FPGA boards have been designed, one for each NF controller). Figure 12 shows the connection 

of the FPGA board with process system. First, a VHDL codes are downloaded into the FPGA 

chip (XILINX Spartan XC3S700AN) by using USB cable. Then, the Hirose 100-pin FX2 Edge 

connector (one port of the FPGA board) is used to connect the board (NF controller) with the 

suspension system. The error between the reference input and the system output has been applied 

as input to the A /D converter.  The digital output of the A /D converter has been applied as input 

data to the FPGA boards. The FPGA board generates digital inputs to the NF controller (error and 

error rate).  The NF controller generates a suitable digital control signal based on the rules that 

store in the FPGA chip. The digital control signal will be sent to the D/A convertor to generate an 

analog control signal that will be applied as input to the suspension system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Layout of FPGA board with 
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A test is performed to make sure that the NF controller used inside the FPGA-based design 

functions properly. The ModelSim XE III 6.4b program has been used to simulate the outputs of 

FPGA boards before using them as control systems for the suspension unit. The control signals, 

which have obtained form the simulation program (ModelSim XE III 6.4b), have been compared 

with the control signals which have obtained from Simulink design using Matlab Program. 

Figures 13-16 show the control signals obtained from each design (Simulation design and 

hardware design) for each controller 

 
Figure 13.  The control signal for first controller of       Figure 14.  The control signal for second controller of 

           (a).Simulation design. (b)  Hardware design             (a).Simulation design. (b)  Hardware design       
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Figure 15.  The control signal for control three of       Figure 16. The control signal for control three of 

(a).Simulation design. (b).Hardware design                 (a).Simulation design. (b) .Hardware design      

 

 

 

7. CONCLUSIONS 

 
The main objectives of designed the controller for a vehicle suspension system are to reduce the 

discomfort felt by passengers which arises from road roughness and to increase the ride handling 

associated with the pitching and rolling movements. In this paper, an ANFIS model has used to 

design the control system for full vehicle nonlinear active suspension system. The results have 

been compared with the performances of the FOPID controller and the NF controller in the case 

sudden disentrances occur. The proposed controller improves the vertical displacements at each 

corner of the vehicle to reach low level. It means that the ride comfort and the road handling have 

been improved. It has been confirmed that the proposed controller is more robust and more 

effective than the Fractional Order PI
λ
D

µ
  (FOPID) controller. It provides a novel technique to be 

used to design NF controller for full vehicle nonlinear active suspension systems with hydraulic 

actuators. The optimal parameters of the NF controller have been used to design the controller 

hardware using the FPGA board. The results show that the control signals obtained from the 

FPGA boards are identical to the control signals which are obtained from design simulation. The 

results are encouraging and have proved the effectiveness both algorithm and hardware 

architecture. Therefore, the FPGA boards are effective to be used to control the full vehicle 

nonlinear active suspension systems with hydraulic actuators.     
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