
International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4, October 2010

DOI : 10.5121/ijaia.2010.1408 101

REGULATING RESPONSE TIME IN AN AUTONOMIC

COMPUTING SYSTEM: A COMPARISON OF

PROPORTIONAL CONTROL AND FUZZY CONTROL

APPROACHES

Harish S. Venkatarama
1
 and Kandasamy Chandra Sekaran

2

1
Reader, Computer Science & Engg. Dept.,

Manipal Institute of Technology, Manipal, India
harish.sv@manipal.edu

2
Professor, Dept. of Computer Engg.,

National Institute of Technology Karnataka, India
kch@nitk.ac.in

ABSTRACT

Ecommerce is an area where an Autonomic Computing system could be very effectively deployed.

Ecommerce has created demand for high quality information technology services and businesses are

seeking quality of service guarantees from their service providers. These guarantees are expressed as

part of service level agreements. Properly adjusting tuning parameters for enforcement of the service

level agreement is time-consuming and skills-intensive. Moreover, in case of changes to the workload, the

setting of the parameters may no longer be optimum. In an ecommerce system, where the workload

changes frequently, there is a need to update the parameters at regular intervals. This paper describes

two approaches, one, using a proportional controller and two, using a fuzzy controller, to automate the

tuning of MaxClients parameter of Apache web server based on the required response time and the

current workload. This is an illustration of the self-optimizing characteristic of an autonomic computing

system.

KEYWORDS

autonomic computing, ecommerce, proportional control, fuzzy control

1. INTRODUCTION

The advent and evolution of networks and Internet, which has delivered ubiquitous service with

extensive scalability and flexibility, continues to make computing environments more complex

[1]. Along with this, systems are becoming much more software-intensive, adding to the

complexity. There is the complexity of business domains to be analyzed, and the complexity of

designing, implementing, maintaining and managing the target system. I/T organizations face

severe challenges in managing complexity due to cost, time and relying on human experts. All

these issues have necessitated the investigation of a new paradigm, Autonomic computing [1],

to design, develop, deploy and manage systems by taking inspiration from strategies used by

biological systems. Ecommerce is one area where an Autonomic Computing system could be

very effectively deployed. Ecommerce has created demand for high quality information

technology (IT) services and businesses are seeking quality of service (QoS) guarantees from

their service providers (SPs). These guarantees are expressed as part of service level agreements

(SLAs). As an example, performance of an Apache web server [16] is heavily influenced by the

MaxClients parameter, but the optimum value of the parameter depends on system capacity,

workload and the SLA. Properly adjusting tuning parameters for enforcement of the SLA is

time-consuming and skills-intensive. Moreover, in case of changes to the workload, the setting

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4, October 2010

102

Sensor

Resource

Effector

Autonomic Manager

Figure 1. Autonomic computing architecture

of the parameters may no longer be optimum. In an ecommerce system, where the workload

changes frequently, there is a need to update the parameters at regular intervals.

The simplified architecture for autonomic computing is shown in figure 1. Adding an autonomic

manager makes the resource self-managing [2]. The manager gets required data through the

sensors and regulates the behavior of the resource through effectors. This shows how self-

managing systems are developed using feedback control loops. This observation suggests that

control theory will be of help in the construction of autonomic managers.

Control theory has been applied to many computing systems, such as networks, operating

systems, database management systems, etc. The authors in [3] propose to control web server

load via content adaptation. The authors in [5] extend the scheme in [3] to provide performance

isolation, service differentiation, excess capability sharing and QoS guarantees. In [4][8] the

authors propose a relative differentiated caching services model that achieves differentiation of

cache hit rates between different classes. The same objective is achieved in [6], which

demonstrates an adaptive control methodology for constructing a QoS-aware proxy cache. The

authors in [7] present the design and implementation of an adaptive architecture to provide

relative delay guarantees for different service classes on web servers.

Real-time scheduling theory makes response-time guarantees possible, if server utilization is

maintained below a pre-computed bound. Feedback control is used in [9] to maintain the

utilization around the bound. The authors in [10][11] demonstrate the power of a control

theoretic analysis on a controller for doing admission control of a Lotus Notes workgroup

server.

MIMO techniques are used in [12][13] to control the CPU and memory utilization in web

servers. Queuing theory is used in [14] for computing the service rate necessary to achieve a

specified average delay given the currently observed average request arrival rate. Same

approach is used to solve the problem of meeting relative delay guarantees in [15].

The authors in [18] present a framework that monitors client perceived service quality in real-

time with considerations of both network transfer time and server-side queuing delays and

processing time. The authors in [19] present a fuzzy controller to guarantee absolute delays.

The authors in [20] present a Linear-Parameter-Varying approach to the modeling & design of

admission control for Internet web servers. The authors in [21] [22] study the

performance/power management of a server system.

The authors in [23] propose an approach to automate enforcement of SLAs by constructing IT

level feedback loops that achieve business objectives, especially maximizing SLA profits (the

difference between revenue and costs). Similarly, the authors in [24] propose a profit-oriented

feedback control system that automates the admission control decisions in a way that balances

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4, October 2010

103

the loss of revenue due to rejected work against the penalties incurred if admitted work has

excessive response times. The authors in [25] describe an approach to automate parameter

tuning using a fuzzy controller that employs rules incorporating qualitative knowledge of the

effect of tuning parameters.

This paper targets two objectives. Initially an approach to automate the tuning of MaxClients

parameter of Apache web server using a proportional controller is explained. As a second

objective, an approach to automate the tuning of MaxClients parameter of Apache web server

using a fuzzy controller is described. In both the cases the controller maximizes the number of

users allowed to connect to the system subject to the response time constraint as given in the

SLA. This is an illustration of the self-optimizing characteristic of an autonomic computing

system.

2. SYSTEM BACKGROUND

The system studied here is the Apache web server. In Apache version 2.2 (configured to use

Multi-Processing Module prefork), there are a number of worker processes monitored and

controlled by a master process [16]. The worker processes are responsible for handling the

communications with the web clients. A worker process handles at most one connection at a

time, and it continues to handle only that connection until the connection is terminated. Thus the

worker is idle between consecutive requests from its connected client.

A parameter termed MaxClients limits the size of this worker pool, thereby providing a kind of

admission control in which pending requests are kept in the queue. MaxClients should be large

enough so that more clients can be served simultaneously, but not so large that response time

constraints are violated. If MaxClients is too small, there is a long delay due to waits in the

queue. If it is too large resources become over utilized which degrades performance as well. The

optimal value depends on server capacity, nature of the workload and the SLA.

3. MODELING AND SYSTEM IDENTIFICATION

Any conventional controller design starts with modeling and system identification. Figure 2

shows the scheme used for this purpose. The simulation environment consists of a workload

generator which generates requests and a server program which services the requests.

In this model, parameter max-requests is varied from 200 in steps of 10 and the corresponding

response time values are noted. A first order ARX model is used to describe the relationship

between inputs and outputs.

y(k+1) = a*y(k) + b*u(k) (1)

Here, u is the input or actuating signal, y is the output signal and a and b are scalars. Since a

discrete signal has value only at specific instants of time, an integer k is used to index these

 response

time

max-

requests
Server

Workload

Generator

Figure 2. Modelling the system

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4, October 2010

104

instants. Using least squares regression, values for a and b are estimated as a = 0.1 and

b = -0.36. That is, we arrive at the model

y(k+1) = 0.1*y(k) – 0.36*u(k) (2)

4. PROPORTIONAL CONTROLLER DESIGN AND IMPLEMENTATION

We use the proportional control law.

u(k) = KP*e(k) (3)

 Here KP is a constant called gain of the controller. The actuating signal is proportional to the

present error signal. It is not dependent on the past values of the error. Taking Z transform of

equation (2) and manipulating, we get the open loop transfer function.

G(z) = Y(z) / U(z) = -0.36 / (z-0.1) (4)

Closed loop transfer function is as follows.

FR(z) = Y(z) / R(z) = KP*G(z) / (1 + KP*G(z))

Solution of the characteristic equation, 1 + KP*G(z) = 0 gives the poles. For the system in

question, there is only 1 closed loop pole, given by the following equation.

p1 = 0.1 + 0.36*KP

For stability, we need to have,| 0.1 + 0.36*KP | < 1 or -3.1 < KP < 2.5

Figure 3 shows the system for proportional control which is used for the implementation. In

terms of figure 1, server is the resource and controller is the autonomic manager. Response time

is converted to error signal, which corresponds to input to the manager from the sensor. Just as

the behavior of the resource is influenced by the effector, the server is influenced by max-

requests.

The incoming request from the workload generator is first put into a queue in the server. When

the server becomes free, the first request in the queue is dequeued. The time spent by the request

in the queue is called the response time. The workload generator generates requests such that the

time between generations of consecutive requests is exponentially distributed. Also, the time

taken by the server to process each request is exponentially distributed. Thus, the client server

architecture is simulated here as an M/M/1 queue.

reference

time

response

time

error
max-

requests +

-

Controller Server

Workload

Generator

Figure 3. System for Proportional control

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4, October 2010

105

Integrator

Workload

Generator

Server Fuzzy

Controller

response time

error

reference change-in-

max-requests

Figure 4. Block diagram of the fuzzy control system

Workload generator is set to generate requests such that the time between arrivals of

consecutive requests on an average (mean interarrival) is 0.2 second. That is 300 requests per

minute on an average. Mean service time is set to 60 seconds. Readings are noted every 3

minutes. To ensure that transients do not affect the readings, readings are taken for the last 1

minute of the 3 minute interval. Response time values of the requests which entered service in

the last 1 minute are noted and the average is calculated. In this simulation, MaxClients is

simulated by max-requests. Gain KP is set to -1.5.

The controller tries to drive the error signal to 0 by adjusting the value of max-requests at

regular intervals. That is, it tries to make the response time equal to the reference time. The

simulation is carried out using C-based simulation language “simlib” [17]. Each simulation was

run for 60 minutes.

5. FUZZY CONTROLLER DESIGN AND IMPLEMENTATION

The block diagram of the fuzzy control system is shown in figure 4. The simulation

environment consists of a workload generator program to generate requests, a server program to

service the requests, a fuzzy controller program and an integrator routine.

The incoming request from the workload generator is first put into a queue in the server. When

the server becomes free, the first request in the queue is dequeued. The time spent by the request

in the queue is called the response time. Here also, the client server architecture is simulated as

an M/M/1 queue. The number of requests accepted by the server is limited by the parameter

max-requests, which is updated by the integrator at the beginning of every measurement

interval. Simulation readings are recorded after every interval, called measurement interval.

-1 +1 0

µ

negsmall zero possmall

neglarge poslarge

error

-1 +1 0

µ

negsmall zero possmall

neglarge poslarge

change-in-max-requests

Figure 5. Membership functions

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4, October 2010

106

Table 1. Fuzzy Rules

Rule

IF THEN

error
change-in-

max-requests

1

2

3

4

5

neglarge

negsmall

zero

possmall

poslarge

poslarge

possmall

zero

negsmall

neglarge

Any fuzzy control system involves three main steps, that is, fuzzification, inference mechanism

and defuzzification [26]. Figure 5 shows the triangular membership functions used for the

fuzzification of the input and defuzzification of the output. In each case, the parameter is

divided into 5 intervals called neglarge, negsmall, zero, possmall and poslarge. Neglarge is an

abbreviation for “negative large in size”. Similarly negsmall, possmall and poslarge are

abbreviations. Zero is the name of the interval denoting small changes. The measured numeric

values will be multiplied by factors known as the normalized gains. That is why the x-axis

shows -1 and 1 for all the membership functions. The output value, change-in-max-requests,

obtained will be denormalized by dividing by the normalized gain to obtain the actual output

value. The fuzzy rules describing the working of the controller is shown in table 1.

As before, workload generator is set to generate requests with mean interarrival equal to 0.2

second and mean service time is set to 60 seconds. The fuzzy controller program takes as input,

error, which is response-time subtracted from the reference value. The controller calculates the

adjustment required for max-requests, i.e., change-in-max-requests for the next measurement

interval. This value is sent to the integrator, which calculates the value of max-requests for the

next interval. The measurement interval and the method for noting the readings is the same as

before.

Figure 6. Results for proportional control with reference time

= 20 secs (left hand side) and 25 secs (right hand side)

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4, October 2010

107

6. RESULTS

The simulation was carried out for different values of reference times. Each simulation was run

for 60 minutes. Figure 6 shows the results for the proportional controller for reference time = 20

seconds (top and bottom figures on left hand side) and 25 seconds (top and bottom figures on

right hand side) respectively. The plots at the top of the figure show the variation of max-

requests, while the plots at the bottom show the variation in response time.

Figure 7 shows the results for fuzzy controller for reference time = 20 seconds (top and bottom

figures on left hand side) and 25 seconds (top and bottom figures on right hand side)

respectively. The plots at the top of the figure show the variation of max-requests, while the

plots at the bottom show the variation in response time.

There is not much difference in terms of performance of the controllers with respect to

regulation of response time. Further, for higher value of reference time, smaller value of max-

requests suffices. This is true in both cases. However, proportional control is seen to be more

efficient, since the regulation is done by having comparatively smaller values of max-requests,

which means the resource requirement is lesser. This is true irrespective of reference time. The

disadvantage of proportional control is that the system to be controlled has to first modeled.

Moreover, in case of changes to the system or workload, the model may no longer be valid. As

seen, fuzzy controller design does not need modeling of the system. In this sense, it is

independent of the model.

8. CONCLUSIONS

This paper describes two approaches to regulate response time in an ecommerce system. One

approach uses proportional control while the other uses fuzzy control. Proportional control leads

to smaller value of max-requests, but the downside is the modeling and system identification

step. A proportional controller design is very closely tied to the system characteristics. If the

parameters of the system are expected to be relatively constant, then a proportional controller

may be a better choice, given its efficiency. Otherwise a fuzzy controller does a better job. So

the choice of controllers, depends on the system to be controlled.

Figure 7. Results for fuzzy control with reference time

= 20 secs (left hand side) and 25 secs (right hand side)

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4, October 2010

108

These are illustrations of the self-optimizing characteristic of an autonomic computing system.

Specifically, the system studied here is tuning of MaxClients parameter of the Apache web

server to satisfy the parameters mentioned in the SLA. The workload and server are simulated

as an M/M/1 queue. The controller attempts to maximize max-requests, which is equivalent to

MaxClients. It is easily seen from the results, that a single fixed value of max-requests will not

be optimum for all cases. Since workload of a server can change rapidly, it is of immense

benefit to have a controller which updates the value of MaxClients at regular intervals.

Though the controllers are properly able to adjust value of max-requests, it takes some time for

them to converge to the optimum value. Thus, as part of future work, it is intended to find ways

to speed up the working of the system. It is also intended to test the functioning of the

controllers under different simulation environments like having an arbitrary (general)

distribution for the service time, i.e., simulating the workload and server as an M/G/1 queue.

REFERENCES

[1] Salehie, M., Tahvildari, L.,: Autonomic Computing: Emerging trends and open problems. Proc.

of the Workshop on the Design and Evolution of Autonomic Application Software (2005)

[2] Diao, Y., Hellerstein, J.L., Parekh, S., Griffith, R., Kaiser G.E., Phung, D.: A control theory

foundation for self-managing computing systems. IEEE J. on Selected Areas in

Communications, Vol. 23, No. 12 (Dec 2005)

[3] Abdelzaher, T.F., Bhatti, N.: Web server Quality of Service management by adaptive content

delivery. Intl. Workshop on Quality of Service (June 1999)

[4] Lu, Y., Saxena, A., Abdelzaher, T.F.: Differentiated caching services - A control-theoretical

approach. Proc. of the International Conference on Distributed Computing Systems (April 2001)

[5] Abdelzaher, T.F., Shin, K.G., Bhatti, N.: Performance guarantees for web server end-systems : A

control-theoretical approach. IEEE Trans. on Parallel and Distributed Systems, Vol. 13, No. 1

(Jan 2002)

[6] Lu, Y., Abdelzaher, T.F., Lu, C., Tao, G.: An adaptive control framework for QoS guarantees

and it’s application to differentiated caching services. Proc. of the Intl. Conference on Quality of

Service (May 2002)

[7] Lu, C., Abdelzaher, T.F., Stankovic, J.A., Son, S. H.: A feedback control approach for

guaranteeing relative delays in web servers. Proc. of the IEEE Real-Time Technology and

Applications Symposium (June 2001)

[8] Lu, Y., Abdelzaher, T.F., Saxena, A.: Design, implementation and evaluation of differentiated

caching services. IEEE Transactions on Parallel and Distributed Systems, Vol. 15, No. 5 (May

2004)

[9] Abdelzaher, T.F., Lu, C. Modeling and performance control of internet servers. IEEE Conf. on

Decision and Control (Dec 2000)

[10] Parekh, S., Gandhi, N., Hellerstein, J., Tilbury, D., Jayram, T., Bigus, J.: Using control theory to

achieve service level objectives in performance management. IFIP/IEEE Intl. Symposium on

Integrated Network Management (May 2001)

[11] Gandhi, N., Tilbury, D.M., Parekh, S., Hellerstein, J.: Feedback control of a lotus notes server :

Modeling and control design. Proc. of the American Control Conference (June 2001)

[12] Diao, Y., Gandhi, N., Hellerstein, J.L., Parekh, S., Tilbury, D.M.: Using MIMO feedback control

to enforce policies for interrelated metrics with application to the Apache web server. Proc. of

the IEEE/IFIP Network Operations and Management (April 2002)

[13] Gandhi, N., Tilbury, D.M., Diao, Y., Hellerstein, J., Parekh, S.: MIMO control of an Apache

web server : Modeling and controller design. Proc. of the American Control Conference (May

2002)

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4, October 2010

109

[14] Sha, L., Liu, X., Lu, Y., Abdelzaher, T.F.: Queuing model based network server performance

control. Proc. of the IEEE Real-Time Systems Symposium (2002)

[15] Lu, Y., Abdelzaher, T.F., Lu, C., Sha, L., Liu, X.: Feedback control with queuing-theoretic

prediction for relative delay guarantees in web servers. Proc. of the 9
th

 IEEE Real-Time and

Embedded Technology and Applications Symposium (2003)

[16] Apache Software Foundation, http://www.apache.org.

[17] Averill M. Law.: Simulation Modeling and Analysis. Tata McGraw Hill Publishing Company

Ltd, New Delhi (2008)

[18] J. Wei and C. Xu, “Feedback control approaches for Quality of Service guarantees in web

servers,” Fuzzy Information Processing Society, 2005.

[19] Y. Wei, C. Lin, T. Voigt and F. Ren, “Fuzzy control for guaranteeing absolute delays in web

servers,” Proc. 2
nd

 Intl. Conf. on Quality of Service in Heterogeneous Wired/Wireless Networks,

August 2005.

[20] W. Qin and Q. Wang, “Feedback performance control for computer systems: an LPV approach,”

Proc. American Control Conf., June 2005

[21] W. Qin, Q. Wang, Y. Chen and N. Gautham, “A first-principles based LPV modeling and design

for performance management of Internet web servers,” Proc. American Control Conf., June

2006.

[22] W. Qin and Q. Wang, “Modeling and control design for performance management of web

servers via an LPV approach,” IEEE Trans. on Control Systems Technology, Vol. 15, No. 2,

March 2007.

[23] Y. Diao, J. L. Hellerstein and S. Parekh, “A business-oriented approach to the design of

feedback loops for performance management,” Proc. 12
th

 IEEE Intl. Workshop on Distributed

Systems: Operations and Management, Oct 2001.

[24] Y. Diao, J. L. Hellerstein and S. Parekh, “Using fuzzy control to maximize profits in service

level management,” IBM Systems Journal, Vol. 41, No. 3, 2002.

[25] Y. Diao, J. L. Hellerstein and S. Parekh, “Optimizing Quality of Service using fuzzy control,”

Proc. Distributed Systems Operations and Management, 2002 – Springer

[26] Notes on fuzzy control system from Wikipedia. URL=

http://en.wikipedia.org/wiki/Fuzzy_control_system

