Difficult Channel Generation Using Genetic Algorithm

Siddhartha Banerjee

Department of Computer Scince, Rama Krishna Mission Residential College, Narendrapur

Mitra Tithi Dey and Sayari Dutta

Department of Computer Science, Barrackpore Rastraguru Surendranath College, Barrackpore

Abstract

For channel routing problems, Deutsch's channel examples were used extensively as benchmarks for testing new algorithms. However, it is also important to test the performance of channel routing algorithms on a wider variety of difficult examples. In this paper, we present a random channel routing generator which can generate difficult channel routing instances of arbitrary size. In this paper our goal is to generate those channels using Genetic Algorithm, which have maximum constraints (both vertical and horizontal constraint).

Key words: Channel routing, vertical and horizontal constraint, Genetic algorithm.

1. Introduction

Channel routing plays a central role in the physical design of VLSI chips. To meet the increasing demands of functionality, the number of transistors on a chip today has increased considerably. Most layout systems begin with placing modules on a chip, and then wiring together terminals that should be electrically connected on different modules. An efficient approach for solving the wiring problem is to heuristically partition the chip into a set of rectangular channels, and then route each channel separately. This effectively divides a difficult problem into smaller subproblems that can be conquered more easily.

For channel routing problems, Deutsch's examples [2] were used extensively as benchmarks for evaluating the performance of new algorithms, especially the so-called Deutsch's Difficult Example (DDE). In this paper, we develop a random channel routing generator which can generate difficult channel routing instances of arbitrary size using Genetic Algorithm. This research is motivated by the following facts:

- Because the benchmarks represent an extremely small subset of real problems, they may
 not represent the complexity that exists in the majority of today's and the future's
 designs.
- The number of transistors on a chip has increased considerably. Testing on the traditional benchmarks may not be sufficient for evaluating the performance of channel routing algorithms.

DOI: 10.5121/ijaia.2010.1412

• It is possible to design an algorithm that works well for known benchmarks, but not other examples. As our channel routing generator can randomly generate difficult instances of arbitrary size, it will fully test these algorithms.

In Section 2, we introduce the model as well as the major constraints on a CRP. Then in section 3 we introduce the concept of Genetic algorithm. The difficult CRP generator using Genetic Algorithm is discussed in Section 4 and some random examples is given in Section 5.

2. The Restricted Manhattan Model

We consider the two-layer *restricted* Manhattan model [5]. Although the three-layer and multi-layer process is available, the two-layer model is still attractive for the following reasons:

- The yield is higher for the two-layer process. The three-layer and multi-layer process is much more expensive than the two-layer process.
- If the product is time critical on the market, the two-layer model provides a faster way of bringing the product to the market.

A two-layer *channel* is a gridded rectangular area on a chip consisting of a metal layer running horizontally and a polysilicon layer running vertically (or vice versa). A wire in the horizontal layer is called a track and a wire in the vertical layer is called a column. There are fixed terminals on the top and bottom sides, and floating terminals on the left and right sides of the channel. Each set of points that need to be electrically connected is called a net. A net can connect terminals from the top and bottom of the channel and can exit the channel at the left and right sides. Wires of a net on different layers are connected by vias. A channel is a routing region bounded by two parallel rows of terminals. Without loss of generality, it is assumed that the two rows are horizontal. The top and the bottom rows are also called top boundary and bottom boundary, respectively. Each terminal is assigned a number, which represents the net to which that terminal belongs. Terminals numbered zero are called vacant terminals. A vacant terminal does not belong to any net and therefore requires no electrical connection. The net list of a channel is the primary input to most of the routing algorithms. The horizontal dimension of the routed channel is called the *channel length* and the vertical dimension of the routed channel is called the *channel height*. The horizontal segment of a net is called a *trunk* and the vertical segments that connect the trunk to the terminals are called its branches. A dogleg is a vertical segment that is used to maintain the connectivity of the two trunks of a net on two different tracks. An example of a CRP is shown in Figure 1.

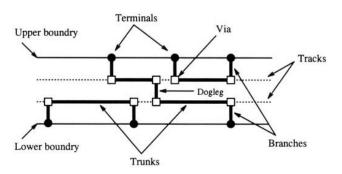


Figure 1: An example of CRP.

2.1 Horizontal Constraints and Vertical Constraints

There is a horizontal constraint [5] between two nets if the trunks of these two nets overlap each other when placed on the same track. For a channel C the interval spanned by the net N_i , denoted by I_i is defined by where is the right most terminal of the net and where is the leftmost terminal of the net. Given a channel routing problem, a *horizontal constraint graph* (HCG) is a undirected graph $G_h = (V, E_h)$ where

$$V = \{ V_i | N_i \subseteq C \}$$

 $E_h = \{(V_i, V_j) \mid I_i \text{ and } I_j \text{ have non-empty intersection}\}$

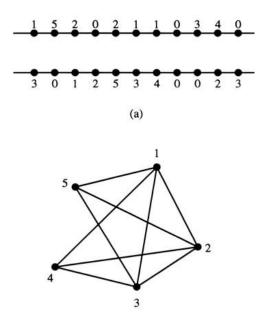


Figure 2: (a) A channel routing problem (b) Horizontal Constraint graph for the channel.

(b)

The HCG plays a major role in determining the channel height. In a grid based two-layer model, no two nets which have a horizontal constraint maybe assigned to the same track. As a result, the maximum clique in HCG forms a lower bound for channel height. In the two-layer grid-less model, the summation of widths of nets involved in the maximum clique determine the lower bound.

The constraints that two nets cannot overlap on the vertical layer are called the vertical constraints [5]. If net i connects to the c-th column in the top row and net j connects to the c-th column in the bottom row, $i \neq j$, then net i must be assigned to a track higher than net j. In this case, we say that there is a vertical constraint from i to j. Given a channel routing problem, a vertical constraint graph (VCG) is a directed graph $G_v=(V,E_v)$ where,

$$V = \{V_i \mid N_i \subseteq C\}$$

$$E_v = \{(V_i, V_i) \mid N_i \text{ has vertical constraint with } N_i\}$$

It is easy to see that a vertical constraint implies a horizontal constraint; however, the converse is not true.

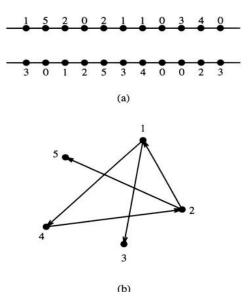


Figure 3: (a) A channel routing problem (b) The Vertical Constraint graph for the channel.

3. Genetic Algorithm

An overview of genetic algorithm presented in this paper is shown in Figure 4. The number of individuals N is kept constant throughout all generations.

```
Create initial population (P<sub>c</sub>)
Fitness_calculation (P<sub>c</sub>)
P<sub>best</sub> = Best_individual (P<sub>c</sub>)
For generation = 1 to max_generation
    P<sub>n</sub>=φ
    For offspring = 1 to max_decendent
          P_{\alpha} = selection (P_{c})
           P_{\beta} = selection (P_{c})
           P_n = P_n U \text{ crossover } (P_\alpha, P_\beta)
     End for
     Fitness_calculation (P<sub>n</sub>)
     P_c = Reduction (Pc U P_n)
     Mutation (P<sub>c</sub>)
     Fitness_calculation (P<sub>c</sub>)
     P<sub>best</sub> = Best_individual (P<sub>best</sub> U P<sub>c</sub>)
 End for
```

Figure 4: Outline of the Genetic Algorithm.

4. Algorithm for Difficult CRP generator using Genetic Algorithm

4.1 Initial population creation:

We create an initial population of channels using repetitive call to the make_VC() and create _channel() algorithms.

Make_VC (N, p) is an algorithm that randomly generates the vertical constraint where N is the number of nets and p is the probability (0 for an edge from net i to net j to occur in the VCG.

To be a valid channel specification that can be routed without dogleg, the VCG must be cycle free. An algorithm make_VC(N, p), randomly generates the vertical constraints which is represented by a N X N matrix M_k in the k-th call. $M_k[i][j]=1$ denotes that there is a vertical constraint between net i and net j and $M_k[i][j]=0$ denotes there is no vertical constraint between net i and net j. To make VCG acyclic make_VC(N, p) generates $M_k[i][j]=1$ iff i<j.

The make $_{\rm VC}$ (N, p) algorithm is given below. In the algorithm random() is a random number generator which generates a real number in (0, 1).

Step1: for all i,j M_k [i][j]=0

Step2: For i=1 to N-1

For j=i+1 to N

If random()<p then

 $M_k[i][j]=1$

Step3. End

For example two call to this algorithm may produces the following two matrices randomly, with N=5.

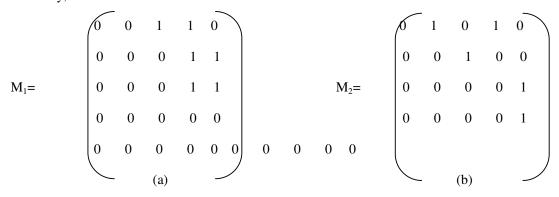


Figure 5: Two Random Vertical Constraint Matrices generated by make_VC algorithm.

Create_channel() algorithm is used to create a channel from the matrix M_k generated by make_VC() algorithm. TOP_k and $BOTTOM_k$ are two net lists of a channel indicating top and

bottom terminal respectively of the k-th channel. The algorithm to create k-th channel from the matrix M_k is given below:

```
Step1: P=1

Step2: For i = 1 to N-1

For j = i+1 to N

If M_k[i][j] = 1 then

TOP_k[P]=i
BOTTOM_k[P]=j
P=P+1
```

Step3: end

Thus the channel for the matrix M_1 and M_2 of Figure 1 is given below in Figure 5 and Figure 6 respectively.

TOP₁: 1 1 2 2 3 3

BOTTOM₁: 3 4 4 5 4 5

Figure 5: Channel for matrix M_1 .

TOP₂: 1 1 2 3 4

BOTTOM₂: 2 4 3 5 5

Figure 6: Channel for matrix M₂.

In this way we create the initial population by making several call to make_VC() and create_channel() algorithms.

Assume that the initial population in our algorithm is as in Figure 7.

Channel 1	TOP ₁	1	1	2	2	3	3
	$BOTTOM_1$	3	4	4	5	4	5
Channel 2	TOP ₂	1	1	2	3	4	
	$BOTTOM_2$	2	4	3	5	5	
Channel 3	TOP ₃	1	2	3	4		
	$BOTTOM_3$	2	4	4	5		
Channel 4	TOP ₄	1	1	2	2	3	4
	BOTTOM ₄	2	5	4	5	5	5

Figure 7: Initial population.

4.2 Fitness calculation:

Since we want to create a difficult channel we fixed up fitness function of a channel to be the total number of vertical and horizontal constraints in the channel. If we generate a channel with maximum fitness value we get a harder channel.

Fitness value of the channel C i.e. F(C) = Number of vertical constraints in channel C + number of horizontal constraint in channel C.

Number of vertical constraints in channel C can be obtained by counting number of columns in TOP or BOTTOM terminal of the channel C, where net number in TOP and BOTTOM are different.

Number of horizontal constraint can be obtained by the following way:

Step1: Find the span S_k of net k. If net k starts from column C_1 and ends in C_2 then S_k contains all integers from C_1 to C_2 both inclusive.

Step2: Net N_i and N_j are horizontally constraint iff $S_i \cap S_j = \phi$ if i<j. Count total number of horizontal constraint.

As an example, the fitness value is calculated for channel 1 of Figure 7.

TOP ₁	1	1	2	2	3	3	
$BOTTOM_1$	3	4	4	5	4	5	

Vertical constraint=number of columns in the channel=6

To calculate horizontal constraint we first calculate the span of each net.

$$S_1=\{1,2\}$$

$$S_2=\{3,4\}$$

$$S_3=\{1,2,3,4,5\}$$

$$S_4=\{2,3,4,5,6\}$$

$$S_5=\{4,5,6\}$$

Now, since $S_1 \cap S_3 \neq \phi$, $S_1 \cap S_4 \neq \phi$, $S_2 \cap S_3 \neq \phi$, $S_2 \cap S_4 \neq \phi$, $S_2 \cap S_5 \neq \phi$, $S_3 \cap S_4 \neq \phi$, $S_3 \cap S_5 \neq \phi$ horizontal constraint in the channel is 8.

Hence fitness of the channel is =6 + 8=14.

Similarly we calculate the fitness of the all channels in the initial populations of Figure 7 in Figure 8.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4, October 2010

Channel 1	TOP ₁	1	1	2	2	3	3	Fitness=14
	$BOTTOM_1$	3	4	4	5	4	5	
Channel 2	TOP ₂	1	1	2	3	4		Fitness=12
	$BOTTOM_2$	2	4	3	5	5		
Channel 3	TOP ₃	1	2	3	4			Fitness=8
	$BOTTOM_3$	2	4	4	5			
Channel 4	TOP ₄	1	1	2	2	3	4	Fitness=13
	$BOTTOM_4$	2	5	4	5	5	5	

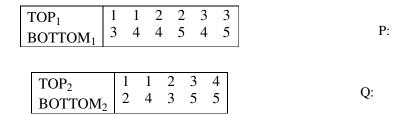
Figure 8: Fitness of initial populations of Figure 7.

4.3 Crossover:

To perform crossover following steps are done:

Step1: Select two channels P and Q from the initial population.

Step2: Find the length of channel P and Q i.e. number of columns in P and Q and denote them C_P and C_Q respectively.


Step3: Find minimum between C_P and C_Q and let it C_{min} i.e. C_{min} = C_P if C_P < C_Q , C_{min} = C_Q if C_Q < C_P and if C_P = C_Q then C_{min} is either C_P or C_Q .

Step4: Generate a random number between 1 and C_{min} and assume it to be C_{rand}.

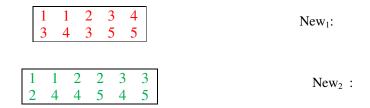
Step5: Find two new channels by cross over at column C_{rand} . One channel is generated by taking column 1 to column C_{rand} from P and column $C_{rand} + 1$ to last column from Q. Another channel is generated from column 1 to column C_{rand} from Q and column $C_{rand} + 1$ to last column from P.

We illustrate the procedure with an example.

Step1: Chose P and Q from our initial population of Figure 4 as

Step2: Length of P i.e. $C_P=6$ and length of Q i.e. $C_Q=5$.

Step 3: $C_{min} = 5$


Step4: Let a random number between 1 and 5 be 2, i.e. C_{rand}=2

Step5: Two channels are generated by cross over as:

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.1, No.4, October 2010

TOP ₁	1	-	1	2	2		3	3
$BOTTOM_1$	3		+	4	3		+	3
								7
TOP_2		1	1	- 2	2	3	4	
BOTTOM	2	2	4	-	3	5	5	

Then two newly generated channels are

Now the fitness function of new solutions are calculated and F(New₁)=12 and F(New₂)=13.

4.4 Mutation:

In mutation operation we chose two random columns between 1 and C_{max} is the maximum column of the channel) and swap this two columns since it may increase number of horizontal constraint.

We illustrate the procedure with the channel New₂ generated from crossover operation.

Assume two random numbers between 1 and 6 (hare C_{max} =6) are 2 and 5. Thus new channel (New₃) is generated by swapping column 2 and column 5 in channel New₂ as

Now the fitness of the channel New₃ is 16.

4.5 Two or multi terminal Channel generation

The final channel obtained by genetic algorithm describe above required some modification such that all the nets are at least two terminal in the channel. There are two cases:

Case 1: Net N has no terminal in the channel. In this case we introduce two columns in the channel one with top terminal N and bottom terminal 0 or vice versa and another with top terminal 0 and bottom terminal N or vice versa. We introduce these two channels in two extreme of the channels such that it increase horizontal constraint.

Case 2: Net N has only one terminal in the channel. In this case we introduce only one column with top terminal N and bottom terminal 0 or vice versa and introduce the column in one

of the extreme of the channel so that it is furthest from the column that contains N, because it increases the horizontal constraint.

5. Result

This algorithm generates difficult random channel routing instances of arbitrary size using Genetic Algorithm. Several executions generate random channels with different size. In all cases, we find better solution than well known benchmark channels. The generated random channels are difficult to route since they have higher vertical and horizontal constraints. As an example, we compare our randomly generated channels with well known benchmark channel DDE. DDE has 72 nets and 174 columns. For comparison purpose we generate our random channels with fixed length i.e. 174 columns and 72 nets. We generate five such random channels. The solutions are given with their fitness value in Figure 9. The channel in DDE with its fitness is given in Figure 10. In all cases we find that our algorithm generates channels with higher fitness value, i.e. channels which are difficult to route.

5. Conclusion

In this paper we generate random difficult channel of arbitrary length which are guaranteed to be routed using two layer no dogleg routing algorithms. This algorithm can also be extended such that it generates such difficult channels that cannot be routed using two layer no dogleg routing algorithms and can be routed using two layer dogleg or three layer or multi layer routing algorithms.

Sample	Terminal	Generated channel	Fitness
			value
	TOP	46 45 01 02 02 02 03 03 03 44 04 43 05 05 05 06 06 06 42 07 41 08 08 08	
		09 40 09 10 10 10 11 11 11 39 12 12 38 13 13 14 37 14 15 15 16 16 36	
		17 35 17 35 18 18 19 34 19 34 20 20 33 21 21 22 32 22 23 23 23 24 24 31	
		25 30 25 26 26 26 27 27 27 28 28 28 29 29 29 30 30 25 31 31 24 32 32 32	
		33 21 20 34 34 19 35 18 17 16 16 36 37 37 14 13 38 12 12 39 11 10 40 09	
		08 08 07 42 07 06 43 43 04 04 03 44 02 02 01 01 46 57 47 47 56 55 55 54	1502
		54 49 49 50 50 50 51 51 51 52 52 52 53 53 53 49 54 48 48 55 48 56 47 56	1302
		57 57 46 58 58 58	
1			
1			
	BOTTOM	47 48 15 05 06 08 05 06 09 45 07 47 06 07 08 07 10 16 45 12 51 10 11 13	
		11 43 14 11 13 15 15 16 18 40 18 19 45 19 20 17 41 21 18 19 20 18 19 37	
		20 39 22 37 20 22 20 40 26 38 25 27 41 24 25 23 39 28 25 28 29 25 28 32	
		29 37 33 27 28 29 30 31 33 29 30 33 30 31 32 31 32 32 32 33 25 34 37 39	
		36 23 25 37 38 23 36 19 21 22 19 42 38 40 18 20 45 18 17 41 16 15 42 13	
		13 11 14 44 09 10 44 45 08 05 06 49 08 05 12 05 51 61 48 49 58 61 57 63	
		61 51 53 53 56 57 53 54 60 53 55 59 54 57 59 50 62 51 50 58 49 57 50 59	
		58 60 52 59 61 63	

	TOP	01 31 01 31 02 30 30 03 03 04 29 04 29 05 28 06 28 06 07 27 07 08 08 08 09 09 09 26 10 25 11 11 11 12 12 12 13 13 13 14 23 14 15 15 15 16 16 16 16 17 17 17 18 18 18 19 19 19 20 20 20 21 21 21 22 22 22 23 14 23 24 24 12 25 11 10 26 26 09 27 08 07 06 06 05 29 05 04 03 03 02 02 01 31 32 32 57 57 56 55 34 34 54 35 53 52 52 51 45 37 50 49 49 44 38 39 46 39 40 43 44 41 41 41 42 42 42 42 43 40 43 44 38 40 38 37 45 36 39 46 47 47 47 48 48 48 45 49 37 45 50 50 51 36 51 46 52 35 53 35 53 54 34 54 55 55 33 56 33 56 33 32 57 58 58 58	1232
2	ВОТТОМ	06 35 12 34 05 40 36 06 07 12 35 17 32 07 36 07 32 11 10 31 13 09 10 11 12 15 16 27 14 31 13 14 19 15 17 18 17 20 24 15 27 20 16 17 19 19 20 22 18 19 20 20 21 23 20 23 26 23 25 26 22 27 28 23 25 30 26 16 28 25 26 17 28 13 15 27 30 15 28 09 11 11 10 12 30 06 16 07 04 06 04 09 38 33 34 60 59 59 58 35 39 60 37 55 56 54 53 54 43 51 62 53 47 43 42 51 45 41 45 49 47 48 52 43 44 45 44 42 46 46 42 43 39 45 54 43 43 53 48 49 54 49 52 56 52 61 46 53 52 53 52 44 55 50 55 40 54 39 56 56 40 61 56 57 36 57 35 61 34 35 61 59 61 63	
	TOP	01 01 01 02 02 02 03 52 03 51 04 51 05 51 50 06 50 06 49 07 49 08 49 08 09 09 48 48 10 47 11 11 11 12 12 12 12 13 46 45 14 45 14 44 15 15 16 16 16 43 17 17 18 18 42 19 19 19 41 20 20 21 21 40 22 40 22 23 23 23 24 39 38 25 25 25 26 26 37 27 27 27 28 28 28 29 29 29 30 30 30 31 31 31 32 32 32 33 33 33 34 34 34 34 35 35 35 36 36 36 37 37 26 38 25 24 24 23 39 40 22 21 21 20 20 19 42 18 18 43 17 16 15 15 45 14 13 46 12 12 47 47 47 48 09 09 08 07 07 06 50 05 05 04 04 03 52 52 53 53 53 54 54 54 55 55 55 56 56 56 56 57 57 57 58 58 58	1753
3	ВОТТОМ	02 04 05 06 08 13 08 54 10 60 12 59 06 52 56 07 54 11 56 11 55 11 52 14 10 14 54 53 13 51 12 13 16 14 16 17 14 47 53 16 52 25 49 18 21 19 20 21 48 21 24 21 22 48 20 22 27 48 24 25 24 27 46 25 44 28 24 25 27 26 41 41 27 28 31 27 28 46 32 33 36 30 31 33 30 32 33 31 32 34 34 35 36 34 38 39 35 36 39 35 36 37 36 37 38 37 38 41 42 44 29 39 28 31 30 27 44 42 26 28 24 25 21 22 44 23 21 46 20 20 21 17 49 23 16 47 17 14 48 51 52 53 15 10 13 12 08 08 55 08 07 15 11 09 55 59 56 57 59 55 57 60 57 58 61 60 61 62 59 67 69 61 62 65	
Sample	Terminal	Generated channel	Fitness value

	TOP	01	39	26	38	25	24	03	24	23	22	22	21	20	05	20	19	19	18	17	07	16	
	101														12								
															19								
															01								
															33								
															40								
															47								
		_													35								
				29				30	32	32	33	30	30	34	33	34	33	33	33	30	30	30	
		30	30	29	20	50	20																
																							1471
4	BOTTOM	02	42	32	41	27	29	04	25	26	26	23	26	28	07	21	26	22	20	23	14	20	
		09	18	17	23	19	13	16	18	20	14	15	17	15	18	20	15	16	17	12	20	11	
		16	11	18	10	15	23	20	21	09	19	10	23	09	24	80	80	24	06	23	80	27	
		07	25	06	25	06	29	05	12	31	04	28	03	30	06	34	03	30	31	61	31	59	
		31	34	35	62	32	60	32	71	65	33	63	36	57	35	36	35	61	37	43	44	48	
		59	42	57	38	62	47	39	40	29	29	44	54	41	42	43	56	45	48	45	51	55	
		45	47	52	45	46	49	46	50	52	47	48	55	49	50	53	49	50	51	50	55	57	
		52	54	44	42	54	42	41	61	62	55	43	39	55	43	36	36	34	59	63	65	71	
		33	31	34	32	60	30																
	TOP	56	57	01	02	02	02	03	01	58	01	57	03	56	58	05	54	54	53	07	52	57	
	101														44								
															33								
															26								
															19								
															40								
															10								
															54								
				04					-	-					•								
		01	٠.	٠.	50	00	50																
																							2010
_	D.O	63	C1	0.0	02	0.1	11	0-	63		02		10	F.0	72	00			F.0	00		50	
5	BOTTOM														72								
															49								
															36								
															31								
															34								
															47								
		-													13								
								53	13	55	56	12	60	10	58	09	57	07	62	06	59	13	
		55	12	09	61	20	72																

Figure 9: Random channels generated by our algorithm with 72 Nets and 174 Columns.

Benchmark	Terminal	Channel	Fitness
Channel			Value

BOTTOM 02		ТОР	03 05 07 09 05 12 14 15 07 12 14 07 04 13 08 06 15 18 14 08 06 11 22 21 00 18 16 18 16 00 08 06 26 11 00 24 23 25 20 01 29 00 22 03 22 03 00 00 09 02 09 02 00 32 23 33 19 06 08 30 27 34 35 36 37 39 31 39 35 38 31 08 30 37 41 19 06 44 45 00 33 31 33 31 00 27 35 36 48 49 31 39 46 47 50 52 20 53 24 00 47 39 00 24 51 20 52 20 52 23 08 30 50 56 00 00 57 49 19 06 06 19 49 59	
BOTTOM 02	DDE		52 20 69 24 00 46 62 63 68 00 24 65 20 52 00 70 60	
72 63 72 63 00 57 62 54 70 67 55 61 63 68	DDE -	ВОТТОМ	17 19 01 20 21 23 24 00 16 10 03 11 25 00 26 11 26 11 00 27 28 11 03 09 16 30 27 05 31 01 05 01 20 32 23 24 00 09 01 20 29 23 24 00 03 08 30 38 28 19 06 40 27 35 41 42 06 19 34 43 30 08 31 43 39 46 36 46 47 48 31 00 24 23 45 20 01 51 00 40 39 40 39 00 08 30 50 54 00 00 55 49 19 06 00 47 42 47 42 00 53 58 06 19 49 50 30 08 60 62 59 54 55 54 56 63 55 65 00 66 68 06 06 68 00 60 68 00 46 44 46 44 00 69 00 55 05 08 55 58 00 64 71 00	

Figure 10: Deutsch's Difficult Example (DDE) without left or right constraint

References

- [1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. *The Design and Analysis of Computer Algorithms*. Addison-Wesley Publishing Company, San Francisco, CA, 1976.
- [2] D. N. Deutsch. A dogleg channel router. In *Proceedings of the 13th Design Automation Conference*, pages 425-433, 1976.
- [3] S. Haruyama, D. F. Wong, and D. S. Fussell. Topological channel routing. *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, 11(10):1177-1197, October 1992.
- [4] R. K. Pal, S. P. Pal., and A. Pal. A new lower bound for channel routing. In *Proceedings of the IEEE Region 10 Conference on Computer, Communication, Control and Power Engineering*, pages 507-510,October 1993.
- [5] Naveed A. Sherwani, Algorithms for VLSI Physical Design Automation, 2nd edition.
- [6] Heng Yi Chao and Mary P. Harper, A Difficult Channel Routing Generator, Electrical and Computer Engineering, ECE Technical Reports, Purdue Libraries, 1995.