
International Journal of Artificial Intelligence & Applications (IJAIA), Vol.2, No.3, July 2011 

DOI : 10.5121/ijaia.2011.2301                                                                                                                     1 

 

 

 

MULTINOMIAL AGENT’S TRUST MODELING USING 

ENTROPY OF THE DIRICHLET DISTRIBUTION 

Mohammad Anisi
1
 and Morteza Analoui

2 

1
School of Computer Engineering, Iran University of Science and Technology, Narmak, 

Tehran, Iran 
m.anisi@ece.ut.ac.ir 

2
School of Computer Engineering, Iran University of Science and Technology, Narmak, 

Tehran, Iran 
analoui@iust.ac.ir 

ABSTRACT 

Nowadays one of the most important challenges for integrated systems such as social networks is the 

evaluation of trust for agents which are interacting with each other in the environment. It plays an 

important role that the trust has been evaluated from the agent’s experiences. In this paper, we propose a 

new mathematical approach based on the entropy of Dirichlet distribution, to model the agent’s trust to 

another agent, based on the past observation from him. The use of Dirichlet distribution for trust model, 

allows us to evaluate the trust in multinomial cases. Also our approach considers the uncertainty and 

conflict of agent’s behavior for underlying trust model. 
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1. INTRODUCTION 

In simple words, a key intuition about trust is that reflects the trusting party’s belief which the 

trusted party will support its plans [2]. For example, Alice trusts Bob as a mechanic. This means 

that Alice relies on Bob to repair his car and he believes that Bob will do his job perfectly. It is 

obvious that rationally Ali's belief resulted from experiences and observations established in 

interaction with Bob. 

An agent keeps his experiences of interaction with the other one as a set of observation quality 

factors. For an example, Agent B has served agent A perfectly 3 times and imperfectly 5 times. 

Obviously, observation quality spaces is not limited to perfect and imperfect ––that is good and 

bad. It can be modeled in more category such as good, average and bad. 

Another important issue in observations analysis is the existence of conflict among them. 

Suppose this: agent A has acted perfectly 4 times and also imperfectly 4 times, where, agent B 

has acted perfectly 7 times and imperfectly 1 time. It is obvious that agent A has more 

conflicting actions in comparison with B and consequently, one may trust him with less 

uncertainty. 

Agents trust modelling is the subject of many researches. [12] has proposed a trust evaluation 

method based on trust uncertainty measure, but the shortcoming is that there is no relation 

between agents experiences to the evaluated trust. [8] has introduced an approach to evaluate 

trust based on agents experiences and uncertainty. Following him, [9] has modelled 

observations using multinomial space. However, none has mentioned the conflicts between 

observations and they both have just assumed uncertainty as a function of total observations 
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count. [10] and [11] have modelled agents trust based on their observations and a probability 

model for uncertainty of observations. Although this method for trust modelling has considered 

conflicts between observations, but it models observations in a binomial case which consists of 

good and bad as observation quality and has no solution for multinomial space.  

On the other hand, [16] has a method to model trust in wireless sensor networks using discrete 

case entropy, but its approach has two main weaknesses, first his trust model has been accept 

just simple two dimensions, the rate of good observations and the rate of bad observations, and 

second he just has been used from entropy in his model to deal with evidence’s conflict, and 

there is no way to model the strength of evidence. 

Therefore, this research tries to model trust, considering the following properties: 1) Agents 

trust is a result of their observations in interaction with each other. 2) Observation qualities are 

not limited to good and bad, so there is no limitation for observation space. 3) Uncertainty is 

modeled in agents trust. 4) The proposed uncertainty measure depends on conflicts between 

observations and considers them. 

This paper is organized as follows: In section 2, first Dirichlet distribution is described as a 

basis for the introduced method of agents trust modelling. In section 3, the entropy notion is 

described, and furthermore, by the use of the Dirichlet distribution entropy, a method is 

proposed to model the uncertainty in agents’ behaviour. Additionally, method’s properties and 

also results are analyzed in this section. Section 4 describes the mapping of observations space 

to trust space and finally, the last section contains concluding remarks on the proposed method. 

2. MODELLING AGENT’S BELIEF 

In this section we introduce the preliminaries for modelling agent’s belief to another agent using 

the Dirichlet distribution. 

2.1. The Dirichlet Distribution 

The multinomial distribution is a generalization of the binomial for the situation in which each 

trial results in one and only one of several categories, as opposed to just two, as in the case of 

the binomial experiment. Let � � ���, … , ��� where �	 is the number of independent trails that 

results in category 
 � 1, 2, … , . Then the likelihood function of this experiment is ���|��, such 

that 

���|�� ���	��
�

	��
 (1) 

where �	 is the probability that a given trails results in one of  category, 
 � 1, 2, … , . The 

parameter space of vector � is � � ��	��	 � 0;  
 � 1, 2,… , ; ∑ ������ � 1� and the vector of 

observation � satisfies, � � ��	� ∑ �	�	�� �  � where   equals to the total number of 

observations. 

The so-called Dirichlet distribution is the conjugate family––the family of distributions in 

Bayesian analysis that the prior and posterior distributions have the same type––of priors for the 

multinomial distribution. The probability density function of Dirichlet distribution is such that 
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#$%&'�� ; (� � 1)�(���	*�+�
�

	��
 (2) 

where �	 � 0; ∑ �	�	�� � 1 and (	 , 0. The parameter (	 can be interpreted as prior 

observation counts for the events of category 
. The normalization constant )�(� is )�(� �∏ .�(	��	�� ./∑ (	�	�� 01  that is the multinomial generalization for Beta function [1]. Using (	 as 

the prior in the above multinomial experiment, yields a Dirichlet posterior with parameters �	 2 (	. So the probability density function of posterior distribution is 

!
"
#$%&'�� ; � 2 (� � 1)�� 2 (���	��3*�+�
�

	��
. (3) 

We can use natural non-informative prior by taking (	 � 1 for all categories 
 [3]. The expected 

value of each probability �	 in the Dirichlet distribution is also known as 5��	� � (	 ∑ (�����⁄  

that is the relative frequency for occurrences of events in the category 
. The expected value can 

be interpreted as the chance of occurring event of category 
 in the next trail [13]. So if there is 

an experiment with observation parameter 7, the posterior distribution with non-informative 

prior has been modelled by !
"
#$%&'�� ; 7 2 1� and the chance of occurring event of category 
 at next trail, becomes 

5��	� � 7	 2 1 2 ∑ 7	��  (4) 

In the case of Beta distribution, that we have only two categories and events of each category 

has been occurred 7� and 78 times respectively, the expected value for �� becomes 7� 2 1 7� 2 78 2 2⁄ , that leads the same result as Laplace’s rule of succession in the course of 

treating the sunrise problem[7]. So for contract, we will use non-informative prior for Dirichlet 

distribution throughout this paper. 

2.2. Agents Belief 

In this section we introduce a way to model the belief of agent to the quality of another one, 

based on the quality of past experiences had been took place between them. Let see some 

examples. 

Example 1- Suppose there are two agents 9 and ) interacting with each other. Agent 9 had 5 

positive and 2 negative observations from Agent ) in the past experiences. In this situation, the 

probability that ) act positively in next interaction with 9, according to (4), is equal to the 

expected value of �� in Dirichlet distribution with posterior !
"
#$%&'�� ; :5 2 1, 2 2 1<�, so it 

results 5���� � 6 9⁄ . Similarly the probability that ) act negatively with respect to 9 is 5��8� � 3 9⁄ . 

There is no limitation on the number of qualities for experiences that take place between agents 

and because of the capability of Dirichlet distribution; these qualities can be extended to 

multiple ones. Let see the example below. 

Example 2- Suppose the quality of experiences in example 1 is divided to three parts, good, 

average and bad. And there are 4, 1 and 2 observations for good, average and bad experiences 

respectively. So the probability that Agent ) act in positive manner with 9 will be calculated 
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from the expected value of �� for !
"
#$%&'�� ; :4 2 1, 1 2 1, 2 2 1<� that is 5 10⁄ . Likewise 

the probability of being average and bad will be 2 10⁄  and 3 10⁄  respectively. 

With these preliminaries, we define the belief of agent 9 on the quality of agent ) based on the 

past observations of agent ) as follows. 

Definition 1- The belief of agent 9 with respect to agent ) and from the past observation of this 

agent is 

)&%
&�AB�7� � CD|D	 � 5��	�E (5) 

where 7 � C7�, … , 7�E is the observation vector of agent 9 from ) and  5��	� is the expected 

value for each parameter of Dirichlet distribution !
"
#$%&'�� ; 7 2 1�. With this definition, the 

belief of agent 9 from ) for example 1 and 2 becomes :2 3⁄ , 1 3⁄ < and :5 10⁄ , 2 10⁄ , 3 10⁄ < 
respectively. 

3. UNCERTAINTY MODELLING IN AGENT BEHAVIOR 

There are a lot of cases that derived belief will be equal for those ones because the belief 

measure has been affected just by the rate of observations at each category. Therefore we are 

looking for a measure with the ability of differentiating such cases. So our concentration in this 

paper is to model uncertainty of agent’s behavior that truly models these cases. For this purpose, 

we introduce a method to model uncertainty based on information theoretic entropy of Dirichlet 

distribution based on the belief model proposed in section 2. 

3.1. Entropy 

Entropy as a scientific notion was introduced first in thermodynamics by Clausius in 1850. 

Several years later, it was given a probabilistic interpretation in the context of statistical 

mechanics (Boltzmann 1877). In 1948 Shannon established the connection between entropy and 

typical sequences. This led to the solution of a number of basic problems in coding and data 

transmission and finally became the initial basics for the information theory [4]. Shannon 

entropy calculate the number of bits required to obtain a secure transmission in communication 

but there are different type of interpretation for the concept of entropy that depend critically on 

the nature of the context of the underlying problem [5]. 

Generally the entropy of a discrete random variable F with possible value C7�, … , 7GE is H�F� � 5/I�F�0 where 5 is the expected value and I is the information content of F. I�F� is 
itself a random variable, so if ��F� denotes the probability mass function of F, then the entropy 

can explicitly be written as follows. 

H�F� � JK��7	� L %M/��7	�0
G

	��
 (6) 

This is the so-called Shannon entropy. There is also a well defined extension for entropy of 

continuous random variable F with probability density function ��F�, that represents the 

maximum information obtainable within the duration of an experiment that is modelled by this 

random variable [6]. The extension is 

H�F� � J5�%M ��F�� � JN��7� L %M/��7�0O7P  (7) 
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In 6 and 7 when the argument of %QR is zero, then its result equals to zero. 

3.2. Uncertainty in Agent’s Behavior 

We mentioned in section 2 that the agent’s belief to the behavior of another one according to his 

experiences, can be modeled by expected value of parameters of the Dirichlet distribution and 

then we saw in previous section that the information obtainable from a random experiment can 

be achieved by the entropy of the random variable that models the experiment. So if we look at 

the observation from an agent with the viewpoint of a random experiment, thus we can calculate 

the information that we have from the agent until now. So we define the information of an agent 

from another agent as follows. 

Definition 2- Information of agent 9 from agent ) with respect to the last observation from 

agent ) is 

IM�QAB�7� � H/!
"
#$%&'�� ; 7 2 1�0 (8) 

where 7 is the observation vector from agent ) and H is the Shannon entropy  calculated by (7). 

It can be mathematically proved that entropy of Dirichlet distribution with parameter ( is 

equivalent to %M/)�(�0 2 ∑ S�(	 J 1� L /T�(	� J T�(U�0V��  where (U � ∑ (	�� , T�(� �
W
W* %M/.�(�0 and )�(� is the multinomial case for Beta function [1]. So the IM�QAB�7� can be 

rewritten as follows. 

IM�QAB�7� � %M/)�7 2 1�0 2K7	 L �T�7	 2 1� J T�7U 2 � �
�

	��
 (9) 

Where 7U is equivalent to 7� 2X2 7�. Figure 1 shows IM�QAB�7� where 7 contains two 

elements 7� and 78, representing the number of successes and failures of agent ) respectively 

and when these elements vary between 0 and 50. As we see in figure 1, the information of agent 9 from agent ), generally increases when the total number of observation increased. This is 

intuitively a good feature for IM�QAB�7� that we will explain later in section 3.3. 

 

Figure 1, Entropy of Dirichlet distribution for 0 Y 7�, 78 Y 50. 
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It is intuitively justifiable that when we have more information from someone or something, we 

have more certainty to make decision about him. With this point of view, we can relate certainty 

in making decision to the information obtained about a subject until now. Thus we can say ZAB�7� � IM�QAB�7� where ZAB�7� is the certainty of agent 9 in relationship with agent ). 

Certainty in the literature of trust modelling usually has a real value between 0 and 1 

[8,9,10,11]. But it is obvious from (9), IM�QAB ranges over 0 and 2∞. So we have to rescale IM�QAB to define a metric for ZAB. Thus we define certainty as follows. 

Definition 3- The certainty of agent 9 for making decision about agent ) with the past 

observation from agent ) is equal to ZAB�7� � R SIM�QAB�7�V, where R�\� is a monotonically 

increasing function from :0, 2∞� to :0,1< that acts as a scaling function and 7 is the observation 

vector of agent 9 from agent ). 

There are so many functions satisfy the condition of def. 3 for R�\� and it is obvious that the 

result of ZAB for different R will differ. But it is worth mentioning that R just acts as a scaling 

function, and it does not affect the final decision of agent. Please look at this example, 

Example 3- Let IM�QAB�7� � 1.5 and IM�Q]B�7^� � 2 and also there are R�\� � 1 J &+_ and 

R^�\� � 1 J &+à. It is clear that both R and R^ satisfy conditions of def. 3. Therefore when R is 

the scaling function, we have ZAB�7� � 0.777 and Z]B�7^� � 0.918, and for R^ we have ZAB�7� � 0.528 and Z]B�7^� � 0.714. Finally, it is obvious that for both R and R^, agent 9 has 

more certainty on agent Z rather than ). So there is no difference to choose either of R or R^. So 

we choose R�\� � 1 J &+_, then certainty in def. 3 equals to 1 J &+dGeUfg�h�. 
Since certainty and uncertainty are complement concepts, so we can define uncertainty as 

follows. 

Definition 4- The uncertainty of agent 9 for making decision about agent ) with the past 

observation from agent ) is equal to  

iAB�7� � 1 J ZAB�7� � &+dGeUfg�h� (10) 

Figure 2 shows iAB�7� when 7 has two element 7� and 78, and these elements vary from 0 to 50. One can see in fig. 2, when there is no observation from agent ), uncertainty has the 

maximum value 1 and when observations are increased, the uncertainty approaches to 0. This 

approach is faster when all observations are likely placed in one of two categories. We will 

discuss this behavior in section 3.3. 
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Figure 2, iAB�7� when 0 Y 7�, 78 Y 50. 

 

3.3. Properties of Uncertainty 

There are two conditions under which the behavior of the proposed uncertainty measure must be 

analyzed. Firstly, when the observations from an agent for each quality, are growing with the 

same rate and secondly, different conditions under which the total observations do not vary 

while the observations of each quality vary. 

For the first case, assume there are three different qualities for observations, good, normal and 

bad. In this situation, the probability of observing each quality remains identical when new 

observations take place. Therefore the belief does not vary among the time. For an example let 

observation vector of agent 9 from ) in two different time, is :1, 5, 7< and then :2, 8, 11<. So the 

belief according to (5) in both cases, is :0.125, 0.375, 0.5<. But it is obvious that in the second 

case, agent 9 has more certainty to make decision about agent ). We can calculate the 

uncertainty according to (10) for first and second case is equal to 0.133 and 0.095 respectively. 

Figure 3 shows this property in a sample situation in the case of two quality categories, which 

verifies our claim. Theorem 1 generalizes this behavior. 

 

Figure 3, iAB�7� for identical belief while total observations are increasing 
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Theorem 1- If )&%
&�AB�7� remains constant for different 7, as 7U increases , iAB�7� will be 

decreased. 

Proof sketch- While )&%
&�AB�7� is constant, iAB�7� will be a function of 7U � ∑ 7	�� . So It can 

be rewritten as iAB�7U�. Thus it is enough for the proof to show that 
j
jhk CiAB�7U�E l 0 or 

accordingly 
j
jhk CZAB�7U�E � 0. Appendix contains the complete proof. □ 

In the second case, consider the situation which the total observation is constant and observation 

of events at each category varies. To explain more, we have to introduce a way of clarifying this 

situation. So according to [14] we define conflict measure as follows. 

Definition 5- For D	 m )&%
&�AB�7� the conflict measure is equivalent to ZQM�%
#'AB�7� �nSAop	oefg�h�VpG � � +∑ q�LpG q�rspG �  where H is equal to the discrete entropy for the element of belief 

vector according to (6). 

Conflict measure according to [15] is equivalent to measure of fuzziness for fuzzy sets or 

according to [14] equals to specificity measure in evidence theory. According to the definition 

of discrete entropy, when all D	 have the same value, the entropy is at its maximum value which 

equals to %M  and when the differences between all D	 is maximum, the entropy and therefore 

conflict is at its minimum value which is 0 [4]. So we can conclude that conflict measure has a 

value in the range of :0, 1<. Figure 4 shows the behavior of proposed uncertainty measure with 

respect to conflict when total observation is 40 and there are 2 quality categories. We can see 

that when ZQM�%
#'AB increases, iAB increases. 

 

Figure 4, iAB�7� behavior against ZQM�%
#'AB�7� 
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4. TRUST SPACE 

In previous sections, as [8, 9], we consider experiences of an agent in relationship with another 

agent as an observation vector which elements are the observation count for each quality. Now 

we are going toward the final target which is defining our trust report from agent’s experiences. 

And then define a mapping from experience space to trust space. 

Experience space can be formally defined as tu � �7|7	 � 0 ; 7U � ∑ 7	�� ; 7U , 0� where  is 

the number of different quality categories. According to [9] a trust report contains the agent’s 

belief to another with the uncertainty of its behavior. So we can say a trust report has  2 1 

element, first  elements represent the belief and the last element act as uncertainty. Thus the 

trust space contains all vectors satisfying (11). 

tv � w�D�, … , D�, x�yD	 � 0 ; x � 0 ; x 2KD	 � 1
�

	��
z (11) 

Now we can define a mapping from sample experience to trust which means we can evaluate 

agent’s trust for a given sample experience. 

Definition 6- Trust of agent 9 in relation with agent ), based on the past experiences 7, is {AB�7� � �D�| , … , D�| , x� where D	| � D	 L ZAB�7� , D	 m )&%
&�AB�7�and x � iAB�7� � 1 JZAB�7�.  
It can be easily proved that trust in definition 6, satisfies all conditions of (11). While the 

consisting components of the trust in Def. 6––which are uncertainty and belief––this trust model 

in contrast of [8, 9] considers the conflict of experiences and in opposite of [10, 11] considers 

the multinomial cases for experiences. 

5. CONCLUSION 

In this paper we proposed a model to evaluate agents trust by the use of Dirichlet distribution. 

Our model uses the experiences of agent in relationship with each other, for this evaluation. The 

ability of Dirichlet distribution to model multinomial random experiments provides a 

multinomial trust modelling basis which is the major weakness for the other approaches of this 

literature. Additionally, the use of information theoretic entropy notion, as an information 

measure, provides a good rational and mathematical fundament for our model which is its 

advantage over other proposed models in trust modelling context.  

Also we introduce a measure to show conflict in observations. Although this is not a new 

concept is computer science, but we are the first one who use it to model conflict in 

observations in the context of trust modelling. We model uncertainty in agent’s behaviour with 

the use of entropy of Dirichlet distribution which has a good behaviour against total number of 

observations and the conflict of observations. 
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APPENDIX 

Theorem 1- If )&%
&�AB�7� remains constant for different x, as x~ increases , iAB�7� will be 

decreased. 

Proof- While )&%
&�AB�7� is constant, all elements of belief vector—D	—are constants, and we 

can say iAB�7� is a function of 7U � ∑ 7	��  while 
h�3�hk3� � D	. So uncertainty can be rewritten as 

iAB�7U�. Thus it is enough for the proof to show that 
j
jhk CiAB�7U�E l 0 or accordingly 

j
jhk CZAB�7U�E � 0. Since ZAB�7U� is scaled by our scale function R�\� that is a monotonically 
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increasing function of IM�QAB�7U�, it is enough to show that IM�QAB�7U� is a monotonically 

increasing function. So we have to prove that 

OO7U CIM�QAB�7U�E � 0 

For simplicity we can substitute 7	 2 1 with (	 and rewrite the IM�QAB as %M/)�(�0 J∑ �(	 J 1� L �T�(	� J T�(U� ���  where 
*�*k � D	 ; D	 � 0 and (	 � 1. Since all D	 are known for 

us, we can say  

IM�QAB�(� � %M �∏ .�D	 L (U��� .�(U� � 2K�D	 L (U J 1� L �T�D	 L (U� J T�(U� �
�

	��
 

so IM�QAB�(� is just a function of just (U. While 
j
jh %M/.�7�0 � T�7�, for the first derivative we 

have 

OO(U CIM�QAB�(U�E
�KD	 L T�D	 L (U�

�

	��
J T�(U� JKD	 L T�D	 L (U�

�

	��
2 T�(U� LKD	

�

	��
2K�D	 L (U J 1� L �D	 L T^�D	 L (U� J T^�(U� �

�

	��
 

Since ∑ D	�� � 1, four first clauses will be removed and we have 

OO(U CIM�QAB�(U�E �K�D	 L (U J 1� L �D	 L T^�D	 L (U� J T^�(U� �
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where T| is the first derivation of T. Since (	 � 1, the first clause of multiplication in 

summation is positive and from [1] the second clause is also positive. So 
j
j*k CIM�QAB�(U�E is 

positive and theorem is proved. □ 


