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ABSTRACT 

In casting units, workers work under tough conditions to perform the desired task. These tough 

conditions normally give rise to various musculoskeletal disorders within the workers. These disorders 

emerge within the workers body due to repetitive lifting, differential lifting height, ambient conditions 

etc. For the minimization of musculoskeletal disorders it is quite difficult to model with mathematical 

difference or differential equations. In this paper the minimization of musculoskeletal disorders problem 

has been formulated using artificial neural networks model. But the existing neural network model has 

various drawbacks like large training time, huge data requirement to train for a non linear complex 

musculoskeletal disorders problem, the relatively large number of hidden nodes required etc. Hence, an 

attempt has been made to develop a non linear model using fuzzified neuron sub-models to overcome the 

above mentioned problems. These models would have the capability of representing solutions for 

minimizing musculoskeletal disorders needed for workers working in the casting units.   
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1. INTRODUCTION 

The ability to maintain balance between health and production targets is increasingly important 

within workers of different industry. Workers tend to exert their bodies to various types of 

musculoskeletal disorders unknowingly and tend to lose both on the financial end as well on 

the health end. Generally these types of disorders tend to decrease the efficiency of the workers 

over a length of time especially for those who are highly exposed to repetitive tasks. The 

ligaments of the workers tend to depreciate over a period of time such that they lead to critical 

permanent disabilities [1-5]. The ligaments of the shoulder muscle as well as of the low back 

muscles are the major effected muscles among casting unit workers. Musculoskeletal disorders 

are the condition where a part of musculoskeletal system gets injured over time due to 

repetitive task. Musculoskeletal disorders are the disorders where the human body gets 

traumatized in either a minor or major way over a period of time. Most common examples of 

these type of disorders are: vibrating white finger, scoliosis etc. Musculoskeletal disorders are 

caused in most of the industries where the workers work day and night for their bread and 

butter without having any sufficient knowledge how to pursue their work so as to have the right 

balance between health and money earned. In this chapter the main focus will be to observe the 

impact of these musculoskeletal disorders on automobile industry in detail. Survey conducted 

in thirty odd automobile industry both of small scale and medium scale type, it is clear that 

musculoskeletal disorders had a wide existence within the poor unknown workers working day 
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and night. Consequences of these disorders was huge as it was observed in the survey that in 

many cases the poor workers had to quit from their job permanently as their body had no more 

tolerance power to work anymore under the given circumstances. Normally it is observed that 

workers tend to exert their body to such undesirable levels that it became difficult for 

themselves even to bear the pain which occurred after some time.  

Main Causes of MSD’s that were observed in Casting Industry are:- 

• Maintaining an unnatural or unhealthy posture while working. 

• Lower back support is inadequate for the user. 

• Continuous sitting in the same position for an extended period of time. 

• Set up of the workstation is ergonomically poor. 

• Adverse work environment. 

• Continuous lifting of heavy automobile components from ground height. 

• Awkward posture maintained by workers during lifting 

These Musculoskeletal disorders represent a wide range of disorders, which can differ in 

severity from mild periodic symptoms to severe chronic and debilitating conditions [9-15]. The 

challenges in designing the workstation for repetitive lifting task workers can be broadly 

categorized as follows:  

a. Optimizing differential lifting heights 

b. Minimizing musculoskeletal disorders 

c. Increasing the efficiency of workers 

This paper concentrates on minimizing musculoskeletal disorders for workers of casting unit of 

automobile industry. Repetitive, forceful or prolonged exertions of the hands; frequent or heavy 

lifting, pushing, pulling, or carrying of heavy objects; prolonged awkward postures; and 

vibration contribute to Work based musculoskeletal disorders (WMSDs) [16-20]. 

The artificial neural networks and fuzzy set theoretic approach are very often used for complex 

problems, which are highly non-linear in nature like musculoskeletal disorder forecasting 

problem. The integration of these approaches can give improved results. Both the modelling 

techniques have their own advantages and disadvantage as follows: 

1. Fuzzy models possess large power in representing linguistic and structured knowledge by 

fuzzy sets and performing fuzzy reasoning by fuzzy logic in qualitative manner and usually 

rely on the domain experts to provide the required knowledge for a specific problem.  

2. The compensatory operators in the fuzzy models as connectives are found quite suitable and 

give results very close to the actual result. 

3. On the other hand, neural network models are particularly good for non-linear mappings and 

for providing parallel processing facility to simulate complex system. The neural network 

models are developed via training. 

4. Furthermore, while the behavior of fuzzy models can be understood easily due to their 

logical structure and step by step inference procedures, a neural network models acts normally 

as a black box, without providing explanation facility [6-8].  
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From these investigations, it is quite natural to consider the possibilities of integrating the two 

paradigms, in order to utilize the desired strength of both types of models. There are various 

possibilities for combining fuzzy systems and neural networks such as: 

1. Treating fuzzy model and neural network model as two different compositional elements. 

The overall task is divided into two, some of which are completed by neural networks and 

some others by fuzzy models. 

2. Fuzzy systems may be employed as a supervisor at a higher level in the hierarchy and 

supervise lower level neural network models. 

3. The other possibility of the combination of these systems is that both systems work together 

competitively or co-operatively 

– By neuralizing fuzzy systems i.e. the introduction of neural network concepts in fuzzy 

systems. Technically, it may be realized by mapping out fuzzy systems into neural network, 

either functionally or structurally. 

– Or fuzzifying neural networks implying introducing fuzzy concepts in neural networks. As is 

well recognized, fuzzy systems are logical based with fuzzy set representation and flexible 

fuzzy logic operations. Thus the resulting fuzzy neural system may include minimum, 

maximum or compensatory operators, apart from usual sum and product operators found in 

neural computing. For example, product – sum unit may be replaced by a min-max unit. 

In this paper, an attempt has been made to develop a fuzzified neural network for 

musculoskeletal disorders forecasting problems. Conventional network model has been 

modified using fuzzy compensatory operators as aggregation operators to overcome the 

following obstacles of these models: 

i. Number of neurons required in hidden layer is large for complex function approximation. 

ii. Number of hidden layers required for complicated functions may be three or more. 

iii. Above mentioned bottlenecks are not only computationally expensive in terms of 

convergence and large number of neurons in each layer, but also in determining fault tolerant 

capabilities of the neural network.Several iterations are required before the artificial neural 

network gets trained to give accurate results. 

iv. Size of neural networks decides total number of unknowns to be determined and hence 

minimum number of training input – output pairs required for development of the model. In the 

case of complex functions, a huge set of training data is necessary due to the requirement of 

large number of neurons and hidden layers. 

v. The training time of the neural network depends on the input and output mappings like �x-y, 

x-�y, �x-�y and so on. The effect of mappings and different normalization ranges has been 

studied for different electrical machine models and load forecasting problems adopting neural 

network [21-28]. The proposed fuzzified neuron models overcome these drawbacks and 

incorporate the following features: 

i. They accommodate variations in mappings and hence drastically reduce the total number of 

neurons in the neural network. 

ii. These neurons should also exhibit characteristics of existing neurons so that the models are 

general enough to accommodate properties of simple neurons to higher order neurons. 
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iii. Total number of hidden layers required must also be reduced. This would result in a neural 

network model, which is computationally efficient. 

iv. The new models should not require huge data for training, i.e. there should be reduction in 

free parameters associated in the neurons [29-31]. 

2. EXISTING NEURON MODELS 

The general structure of the existing simple neuron is an aggregation function and its 

transformation through a filter. It has been shown in literature that the neural networks can be 

universal function approximators for given input–output data. However, the existing simple 

neuron structure has summation as aggregation function with sigmoidal, radial basis, tangent 

hyperbolic or linear limiters as thresholding functions as shown in Figure 1. 

 

 

Figure 1 – Existing Neuron Model, Fuzzified Neuron Model-0 and  

Fuzzified Neuron Model-1 

 

3. DEVELOPMENT OF FUZZIFIED NEURON MODELS 

The aggregation operators used in the neurons are generally crisp. However, they overlook the 

fact that most of the processing in neural networks is done with incomplete information at 

hand. Thus a fuzzified neuron model approach has been adopted which uses the fuzzy 

compensatory operators, which are partly sum and partly product to take into account the 

vagueness involved, as described by Muzomoto in his paper. Existing models use the sigmoidal 

thresholding function and ordinary summation or product as aggregation functions. These fail 

to cope with the non-linearities involved in real life problems. To deal with the above, the 

proposed models have both sigmoidal and gaussian functions with weight sharing. The 

fuzzified neuron models have flexibility at both the aggregation and threshold function level to 

cope with the non-linearity involved in the type of applications dealt with. The neuron has both 

Σ and π aggregation functions. The aggregation function has been used with the Sigmoidal 

characteristic function while the aggregation function has been used with the Gaussian function 

as a characteristic function. The final output of the neuron is a function of the two outputs OΣ 

and Oπ with the weights WΣ and Wπ, respectively. 
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Figure 2 – Simulation results of Musculoskeletal Disorder Forecasting using existing 

simple neural network model and generalized neuron models 0-6 

3.1 Fuzzified neuron model–0 

In this model both Σ as well as π have been taken as the aggregation functions and the output of 

these aggregation functions have been passed through the Sigmoidal and Gaussian functions 

respectively. Finally, the outputs are summed up to get the neuron output. The output of the 

neuron can be mathematically written as: 

Opk = Oπ * Wπ * OΣ * WΣ 

3.2 Fuzzified neuron model–1 

This model is similar to the above developed generalized neuron model–0. The only difference 

is that in this model the weight associated with the output of the product aggregation function 

when passed through the Gaussian function is (1 – WΣ) as shown in Figure 2. Hence the output 

of the neuron becomes: 

Opk = Oπ * (1 – WΣ) * OΣ * WΣ 

 

The above mentioned neuron model is known as summation type compensatory neuron model, 

since the output of the Sigmoidal and Gaussian functions have been summed up. 
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4. LEARNING ALGORITHM OF GENERALIZED NEURONS 

4.1 Model–1 

The following steps are involved in the training of Generalized Neural Network: 

Step 1 – The output of Σ – part of generalized neuron is: 

OΣ = f1(Σ WΣi Xi +XoΣ) 

Step 2 – The output of π- part of generalized neuron is: 

Oπ = f2(πWπi Xi +Xoπ) 

Step 3 – The output of Generalized Neuron can be written as: 

Opk = Oπ *(1-WΣ) * OΣ * WΣ 

Step 4 – after calculating the output of Generalized Neuron in the forward pass of feedforward 

backpropagation neural networks, it is compared with the desired output to find the error and 

then it is minimised to train the Generalized Neural Network (GNN) model. Hence in this step 

the output of the GNN with a single flexible generalized neuron model is to be compared with 

the desired output to get error for the ith set of input. 

Error Ei = (Yi – Oi) 

Then it is necessary to calculate the sum squared error for convergence while training. 

Ep = 0.5 Σ Ei
2
 

A multiplication factor of 0.5 has been taken for simplifying the calculations. 

Step 5 – Reversed pass for modifying the connection strength. 

– Weight associated with the Σ and Σ -parts of the Generalized Neuron 

WΣ(k) = WΣ(k – 1) + ∆WΣ 

where ∆ WΣ = η δΣ (OΣ – Oπ ) Xj + αWΣ (k – 1) 

and δΣ  = Σ (Yi – Oi) 

– Weight associated with the inputs of the Σ -parts of the Generalized Neuron: 

WΣi(k) = WΣi(k – 1) + ∆WΣi 

where ∆WΣi = η δΣjXj + αWΣi (k – 1) and 

δΣj = Σ δk WΣ OΣ (1 – OΣ) 

– Weight associated with the input of the π-parts of the Generalized Neuron 

Wπi(k) = Wπi(k – 1) + ∆ Wπi 

where ∆ Wπi = η δπjXj + αWπi (k – 1) and 

δπj = Σ δk (1 – WΣ) Oπ (– 2 *(π WiXi + Xoπ)) 

4.2 Fuzzified neuron model–2 

The neuron model–2 is not a summation neuron model but a product type compensatory neuron 

model. The output of the Sigmoidal and Gaussian functions have been multiplied after being 

exponentiated to the powers (1 – WΣ) and WΣ. The neuron structure and its detailed diagram 
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have been shown in Figure 3. Here the output of this product type compensatory neuron is in 

the form of product as given below:   Opk = Oπ
(1 – WΣ)

 * OΣ 
W
Σ 

 

 
 

Figure 3 – Effect of Normalizations on the results of musculoskeletal disorder forecasting 

model using Generalized Neuron Model – 1  

4.3 Fuzzified neuron model–3 

This neuron model has a complicated aggregation function which is neither a summation 

function nor a product function alone but a summation type compensatory aggregation 

function. The output of this neuron model is: 

Opk = (OΣ – Oπ  – OΣ* Oπ)(1– OΣ) * OΣ WΣ 

4.4 Fuzzified neuron model–4 

This model is similar to the above neuron model–3 but the output of the compensatory neuron 

is in the product form as given below: 

Opk = (OΣ – Oπ  – OΣ* Oπ)
(1– WΣ)/2

 * OΣ WΣ 
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4.5 Fuzzified neuron model–5 

This is also a summation type compensatory neuron model, however, it uses the arithmetic and 

geometric means of the output of sigma and the product aggregation functions. 

The neuron output is as follows: 

Opk = (OΣ – Oπ) (1 – WΣ) /2 + √ (OΣ * Oπ) WΣ 

4.6 Fuzzified neuron model–6 

This model is similar to the above developed generalized neuron model–5 but the output is in 

the product form as follows: 

Opk = (OΣ – Oπ) 
W
Σ

 /2
 * (OΣ * Oπ) 

(1 – WΣ) /2
 

5. MUSCULOSKELETAL DISORDERS FORECASTING USING 

FUZZIFIED NEURON MODELS 

Experimentation was done on the SUBJECTS between 36 to 55 years and their EEG was 

recorded. SUBJECTS were asked to lift a 29 kg block from different height and put the block 

on the fixed platform which is at a height of 40 inches from the ground. The Lifting of the 

block was made synonymous with the actual task performed by the workers during casting of 

automobile products. Based on the lifting sessions their EEG was recorded and the value of the 

musculoskeletal disorder was taken based on the graphs variation from the mean. The values of 

the four inputs were normalized and were taken as the input data. EEG of the subject is shown 

in Fig 4. The results of the experiments were normalized as shown in Table 1 i.e. 

Input 1 – Ambient Conditions 

Input 2 – Frequency Of Lift 

Input 3 – Angle of Twist 

Input 4 – Lifting Height 

 

 
 

Fig 4. Electroencephalography of the SUBJECT 

The parameters for generalised neural network models and existing neural networks are as 

follows: 
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Learning rate – 0.1 

Momentum – 0.6 

Gain scale factor – 1.0 

Tolerance – 0.01 

Table 1 Training Data 

         Input 1              Input 2           Input 3          Input 4      MSD 

           0.34             0.31             0.27            0.27       0.39 

           0.77             0.38             0.62            0.77       0.8 

                        0.61             0.78             0.8            0.81                   0.8 

                        0.81             0.74             0.6            0.7                   0.7 

      0.6        0.7         0.7        0.72                 0.73 

                        0.72             0.73             0.77            0.83                   0.8 

     0.84        0.81        0.79                  0.64              0.55 

                        0.37             0.36             0.32            0.38       0.5 

                        0.38             0.5             0.7            0.77       0.8 

      0.7        0.78         0.8        0.8              0.75 

      0.8                   0.75         0.67       0.55              0.55 

           0.67             0.55             0.55             0.6      0.65 

                        0.5             0.6             0.65             0.66       0.67 

     0.66        0.67        0.8        0.83             0.57 

                        0.8             0.84             0.75             0.66                  0.6 

           0.5             0.42             0.58             0.71               7000 

     0.64        0.53        0.63        0.67             0.73 

                        0.63             0.67             0.73             0.7                  0.7 

                        0.7             0.7             0.8             0.85                  0.8 

                        0.8           0.86           0.8           0.73      0.65 

The above mentioned generalized neural network models with only one neuron have been 

trained for the data given in Table 1 with the goodness of fit represented by tolerable sum 

squared error equal to 0.001. The performance of various models in terms of training time 

(epochs) required is given in Table 2 

Table 2 Comparison of training time for different neuron models for 

Musculoskeletal disorder forecasting problem  

(Tolerable Sum Squared Error = 0.0001) 

      Model        Epochs 

Existing  850 

Model 0  760 

Model 1  760 

Model 2  336 

Model 3  250 

Model 4  370 

Model 5  650 

       Model 6          200 
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The generalized neural network models have been tested for the data presented in Table 3. The 

results obtained for musculoskeletal disorder forecasting problem from the generalized neural 

network using fuzzified neuron model 0–6 and the existing neural network have been compared 

with the actual results and it is found that the generalized neural network is more efficient and 

accurate. The RMS, minimum and maximum errors for forecasting using different neuron 

models with X-Y mapping and 0.1 to 0.9 as the normalization range are tabulated in Table 4. 

From this table, it is very clear that the neuron model–6 requires the least training epochs with 

model–1 gives the minimum RMS predictive error. 

Table 3 Testing Data 

Input 1        Input 2       Input 3       Input 4  Output         Results of GNN      Existing 

ANN 

  0.34          0.31  0.27         0.27    0.38   0.36             0.38 

  0.28          0.27  0.38         0.61    0.77   0.74             0.79 

  0.27          0.38  0.61         0.77    0.79   0.80             0.79 

  0.38          0.61  0.77         0.79    0.81   0.77             0.82 

  0.61          0.77  0.79         0.81    0.81   0.77             0.78 

  0.77          0.79  0.81         0.81    0.74   0.76             0.74 

  0.81          0.74  0.60         0.69    0.70   0.70             0.73 

  0.74          0.60  0.69         0.70    0.71   0.69             0.73 

  0.60          0.69  0.70         0.71    0.72   0.72             0.76 

  0.7          0.7  0.71         0.72    0.77   0.71             0.74 

  0.72          0.72  0.77         0.83    0.81   0.78             0.79 

  0.73          0.77  0.83         0.81    0.78   0.75             0.74 

  0.84          0.81  0.78         0.64    0.55   0.60             0.63 

  0.34          0.37  0.36         0.32    0.37   0.39             0.50 

  0.37          0.36  0.32         0.37    0.49   0.79             0.61 

  0.32          0.37  0.49         0.70    0.77   0.78             0.82 

  0.37          0.49  0.70         0.77    0.81   0.78             0.82 

  0.49          0.70  0.77         0.81    0.79   0.78             0.81 

  0.70          0.77  0.81         0.79    0.75   0.74             0.74 

  0.77          0.81  0.79         0.75    0.67  0.71            0.70 

  0.79          0.75  0.67         0.55    0.55   0.52             0.61 

  0.75          0.67  0.54         0.55    0.60   0.58             0.64 

  0.67          0.55  0.55         0.60    0.64   0.64             0.72 

  0.55          0.55  0.60         0.64    0.66   0.68             0.77 

  0.55          0.60  0.64         0.66   0.67   0.68             0.75 

  0.65          0.66  0.67         0.79    0.83   0.78             0.81 

  0.66          0.67  0.8         0.83    0.75   0.78             0.79 

  0.67          0.8  0.83         0.75    0.66   0.71             0.70 

  0.8          0.83  0.75         0.66    0.60   0.63             0.65 

  0.25          0.49  0.42         0.58    0.71   0.70             0.82 

  0.49          0.42  0.58         0.71    0.72   0.75             0.82 

  0.72          0.64  0.53         0.63    0.66   0.67            0.73 

 

Table 4 Performance of different neuron models in testing phase for 

short term load forecasting problem 
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                            Model       RMS Error      MIN Error         MAX. Error 

Existing  0.0692   0.0016   0.2509 

Model 0  0.0679   0.0009   0.2241 

Model 1  0.0671   0.0006   0.2228 

Model 2  0.3918   0.0148   0.5798 

Model 3  0.0694   0.0012   0.2331 

Model 4  0.0692   0.0012   0.2400 

Model 5  0.0681   0.0022   0.2027 

Model 6  0.0695   0.0011   0.2386 

 

 

Table 5 Effect of normalisation on training error of short term load 

forecasting models (in 32750 eopchs) 

Models     0.1 to 1.8    -0.1 to -2.7    -0.9 to -0.1     -0.9 to 0.9    -1.8 to 1.8     -2.7 to 2.7 

0  0.736            2.188        0.145     1.347             5.689           13.71 

1  0.709            1.664        0.146     0.712             3.119             8.086 

2  0.869            1.197        4.247     1.272              5.126           12.09 

3  4.754          31.11        4.248     1.327           10.44           21.40 

4  1.126            2.235        4.247     1.235             5.939           19.55 

5  5.472          31.43        0.132     1.317             5.261 

6  4.770          31.05        4.247     1.298             6.005           20.66 

 

Table 6 RMS error while forecasting the short term demand with different mappings 

 

Model   X-Y   DX-Y   DX-DY  X-DY 

0   0.0679   0.6570   0.0825   0.0852 

1   0.0671   0.1382   0.1036   0.0843 

2   0.3918   0.1458   0.1068   0.0907 

3   0.0694   0.1423   0.1019   0.0964 

4   0.0692   0.1414   0.1011   0.0945 

5   0.0681   0.1402   0.1029   0.0846 

6   0.0695   0.1406   0.1057   0.0941 

Existing  0.0682   0.1953   0.1084   0.5990 

 

It is well known that the training time and the training error are a function of the range of 

normalization as well as the input-output mappings. Hence, the effect of normalization on the 

training error has been studied for the generalized neural network models with X-Y mapping 

for same number of training epochs (i.e. 32750) and the results are shown in Table 5. The 

different input output mappings have also been tried to see the effect on training time and error, 

and the tests results are summarized in Table 6 for musculoskeletal disorders forecasting 

problem.  

6. CONCLUSION 

This paper brings to the reader different fuzzified neuron models for modeling musculoskeletal 

disorders forecasting problem. The feed-forward back-propagation neural networks have great 
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potential in modelling and simulation of these highly nonlinear disorders. We have seen that 

the training time of neural network models is a function of normalization ranges, different 

mappings between input-output, the noise in the training data, etc. For musculoskeletal disorder 

forecasting problem fuzzified neuron model–6 requires minimum training time (i.e. 200 

epochs) and it gave minimum error. Model–1 gives least error while forecasting with X-Y 

mapping and the effects of normalization are also minimum on this model. The X noise-Y 

mapping gives least error while forecasting using generalized neuron model– 6. The 

requirement of the total number of neurons and hidden layers is reduced drastically in the case 

of the flexible generalized neuron model. The neural networks with the generalized neuron 

models exhibit much superior properties both in terms of convergence time as well as in terms 

of prediction error. 
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