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ABSTRACT 

Minimization of arrival time at scenes plays an essential role to help injured people in emergency events. 

This can be undertaken through mathematical programming models, called emergency medical services 

location problem, and solved by conventional exact algorithms or by recent meta-heuristic methods as 

well. Meta-heuristic algorithms have recently been realized to be more efficient in the sense of computing 

times especially in large-scale cases. The emergency medical services location problem would be further 

complicated when the number of stations and/or emergency vehicles, as an important indicator of system 

costs, should be determined at the same time. In this paper, a newly introduced optimization method, 

Imperialist Competitive Algorithm (ICA), is used to solve the EMS location problem. The ICA mimics the 

human's socio-political evolution to solve continuous problems. In this paper, a discrete version of the 

ICA is sought to be adapted to solve the EMS location problem. The adapted ICA algorithm is then 

applied on two benchmark problems with four different demand scenarios as well as on the real 

transportation network of Mashhad City. Results of this algorithm are compared with those of other well-

know meta-heuristic algorithms (i.e. the genetic algorithm, the simulated annealing and the particle 

swarm optimization). These results indicate that the cpu time of the ICA is averagely less than that 

obtained from the other algorithms, and the number of required ambulances is not considerably different. 
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1. INTRODUCTION 

Almost all the problems concerning optimization issues in complex systems have a 

combinatorial nature. The vehicle routing problem, the warehouse or other facility location 

problems, and the transportation (or communication) network design problem are examples of 

complex and combinatorial optimization problems. In practice, the size of these problems is 

usually so large that one cannot obtain the global optimum solution for them with a polynomial 

run-time. However, these problems must be addressed even if the adopted algorithm turns over 

a suboptimal (local optima) solution. It should be noted that these sub-optimal solutions should 

be acceptable in terms of both time and quality. The adequacy of algorithm’s performance is 

usually realized through experimenting on small size cases.  

In different countries, to reduce morbidity and mortality caused by diseases and accidents, 

successful and efficient systems, usually called Emergency Medical Services (EMS) are 

designed. The task of such a system is to offer treatment services on event scenes and, if 
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necessary, to move them from the scenes to medical centers. Due to increasing population 

growth, lack of facilities, limited capacity and system adequacy, strategies needed to be thought 

in this area even with the resources available to prevent emergency patients’ mortality. Locating 

the emergency medical services is essential to reduce the response time. Thus, any reduction in 

the response time of emergency services will play an essential role in saving lives. Location 

models used in order to locate Emergency Medical Services’ sites specify the number of 

ambulances needed at each location. In these models, the demand nodes usually obtained by 

aggregating emergency demands of neighbour regions (e.g., depending on the number of calls 

per day). In areas where it is possible to establish (open) a station (base) for a limited number of 

emergency medical services (vehicles) the use of potential nodes is suggested, among which the 

applied model seeks to deploy the least number of stations (ambulances) that are required to 

cover most parts of the whole demand.  

Maximum distance (time) between a potential node and a demand node is an important 

parameter in the EMS location problems. Different values for this parameter have been 

considered in different countries. The values in urban and rural networks are also different. 

Another important parameter considered in this context is the required reliability level for the 

demand served within an acceptable maximum (standard) distance (time). 

In this paper, the model presented in the thesis "A model for locating emergency medical 

service for required reliability levels" [1] is used to determine the location of Emergency 

Medical Service centres. This model is linear and binary. One of the main variables of this 

model as many other similar models is “busy fraction”, which is calculated as follows: (total 

estimated time for missions in a demand point) divided by (total number of available 

ambulances at that point). It should be noted that in this model, the busy fraction is not 

calculated as an input, but the upper limit is determined for it and the model is designed so that 

this upper limit is ensured as restrictions of the model for all ambulances. Therefore, if in the 

desired level of reliability α , the minimum number of ambulances f , which can cover the 

demand nodes within the standard distance, is considered, then the reliability of each demand 

node will be greater than or equal to the pre-specified upper level. The objective function and 

the constraints of the model are defined as follows: 

Objective function: minimize the number of ambulances that should be deployed to provide 

coverage within the standard time with reliability α  for all demand nodes. 

Constraints: 1) ensure that the busy fraction of all selected sites (ambulances) will be less than 

the pre-specified upper bound of ambulance unavailability probability (busy fraction), ρ . 2) 

Ensure that if a station is sited, at least one ambulance will be positioned in that station. 3) 

Ensure that a minimum number of ambulances will cover any demand node. 4) Force the binary 

constraints on the decision variables. 

The rest of this paper is organized as follows. Section 2 reviews the revealed literature on 

reliability-based EMS location problems and the EMS location problems solved by meta-

heuristic algorithms. Section 3 introduces the Imperialist Competitive Algorithm (ICA). Section 

4 describes how the EMS location problem is solved through the ICA. Section 5 presents 

computational results for two benchmark problems. Section 6 concludes the paper.   

2. RELATED WORKS 

2.1. Reliability-based EMS location models 

One of the first mathematical programming models that incorporates the ambulance busy 

fraction is the maximum expected covering location problem (MEXCLP), which has been 

presented by Daskin [2]; this model assumes an equal busy fraction for all vehicles, which is 

calculated as an input by dividing the total demand (in hours) by the total servers' capacity (also 

in hours). Repede and Bernardo [3] developed an extension of the MEXCLP model, called 

TIMEXCLP, to consider travel time variations throughout a day. Goldberg et al. [4] also 
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developed a nonlinear model to incorporate the effect of travel time variability into the 

MEXCLP model by considering the fact that, in reality, each sited vehicle has a specific busy 

fraction that should be estimated by dividing the duration of the call summoning the vehicle by 

its available working time. This type of busy fraction has been known in the EMS literature as 

the 'site-specific busy fraction', as opposed to 'area-specific busy fraction', which is the ratio of 

the duration of calls throughout a particular area per hour of available service within it. Based 

on this definition, the busy fraction incorporated in both the MEXCLP and the TIMEXCLP 

models is an area-specific type. Usually, this type of busy fraction accounts separately for sub-

areas surrounded by the whole study area (e.g. in MALPII and PLSCP developed by Revelle 

and Hogan [5,6]. Recently, Rajagopalan and Saydam [7] proposed a new approach to locate 

ambulances that can meet coverage requirements while minimizing expected system-wide 

response times, inspired by Revelle and Hogan's alpha-reliable p-center model. By assuming 

each sub-area to be a multi-server loss queue system with Poisson arrivals, Marianov and 

Revelle [8] proposed QPLSCP to relax the independence assumption in MALPII. In a similar 

way, various extensions were presented thereafter by integrating the queuing theory and the 

maximum vehicle availability concept, such as those works presented by Marianov and ReVelle 

[9] as well as Marianov and Serra [10,11,12]. To provide the reliability requirements for each 

demand point, Ball and Lin [13] developed a nonlinear constraint that guarantees an upper 

bound for the unavailability probability of the vehicles serving the demand point. Their model is 

called Rel-P.  Borras and Pastor [14] proposed two adapted visions of the Rel-P model based on 

the site-specific estimates of busy fractions: a queuing reliability location set covering problem 

and a binomial reliability location set covering problem. 

2.2. Meta-heuristic algorithms and EMS location problem  

Different meta-heuristic algorithms have been used for solving location models [15-20]. For 

instance, there are many studies that apply the genetic algorithm (GA) to solve different types of 

the location problem. Beasley and Chu [21] in 1996 used a genetic algorithm to solve a simple 

location problem resulting in acceptable results. Aickelin [22] used a special type of genetic 

algorithm for solving this problem. Jia et al. [23] compared genetic algorithm with other meta-

heuristic methods. 

Simulated annealing (SA) algorithm in solving location model, both alone and in combination 

with other meth-heuristics have many applications [24-27]. As examples see Murray and 

Church [28], which uses SA alone, and Marvin et al. [29], which compares the performance of 

the simulated annealing algorithm with the genetic algorithm and the tabu search algorithm. 

A social psychologist, James Kennedy, and an electrical engineer, Russell C. Eberhart, are the 

owners of the original idea of the Particle Swarm Optimization algorithm. The first simulation 

of this algorithm was done in 1995 [30-31]. This led them to simulate the behavior of birds to 

find the seed. Guner and Sevkli [32] used the discrete version of the algorithm to solve location 

problems. The use of this algorithm showed no significant effect on solving the EMS location 

problem. 

The Imperialist Competitive Algorithm (ICA) has originally introduced by AAtashpaz-Gargari 

[33], and, up to now, it has been used to deal with various issues. Only over a short period, its 

application to optimization problems has increased significantly [see 34-38]. The first article 

about this algorithm has been presented in 2007 [33]. This article presents a brief description of 

the algorithm and explains how to apply the algorithm as a first attempt for solving the location 

model problem. 

3. A BRIEF DESCRIPTION OF ICA 

The ICA is a novel global search strategy and inspired by the imperialistic competition based on 

the human's socio-political evolution [33]. Imperialistic competition forms the core of the 
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algorithm. This causes all countries to converge to an absolute minimum cost function. Figure 1 

shows the flowchart of this algorithm. 

Figure 1.  flowchart of ICA [33] 

The ICA starts with some countries as initial population, which is classified into two groups. 

Some of the countries with more power (analogous to the fitness value in the GA) are selected 

to be the imperialist (analogous to the elite in the GA) and all other countries with less power 

than the imperialists form colonies of them. The imperialist countries absorb the colonies based 

on their power using the absorption policy. The total power of an empire depends on both of its 

constituents, the imperialist country and the colonies. The mathematical expression of this 

relationship is defined as a power made up of the power of the imperialist country plus a 

percentage of the average power of the colonies. 

After the initial imperialists were formed, the imperialist competition step starts between them. 

Each imperialist that cannot act successfully in this competition to increase its power (or at least 

to prevent the loss of its influence) will collapse. Therefore, the survival of an imperialist 

depends directly on its ability to absorb the rival imperialists’ colonies and its ability to rule 

them out. Consequently, during the imperialist competition, gradually the power of larger 

imperialist is added and weaker imperialists will be removed. Those empires that want to 

increase their power will be forced to develop their own colonies. Thus, over time, colonies will 

be closer to imperialists, and a convergence will be seen. The convergence condition will be 

achieved when a single imperialist is created along with the colonies whose status are very close 

to the imperialist country. More details about this algorithm can be found in [20]. 

4. APPLICATION OF ICA TO THE EMS LOCATION PROBLEM  

In this section, we seek to apply the ICA in the EMS location problem. Let denote demand 

nodes by DN and potential stations by PS. The algorithm’s steps can be described as the 

following steps from A to J. 

4.1. Problem inputs  

A. Inputs to the model: 

• Coverage matrix: this is a (PS   * DN) matrix with binary variables. If an ambulance j is 

within a distance S from demand  node i, matrix element (i,j) will be one, otherwise it 

will be zero, 
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• Demand matrix: this is a (1   * DN) matrix each element of which expresses the amount 

of demand in a demand node, 

• Upper bound of ambulance unavailability probability (busy fraction), 

• Minimum number of ambulances which should cover any demand node. 

B. Inputs to the ICA: 

• The maximum number of iterations, 

•  Number of initial countries, 

•  Number of imperialist countries. 

4.2. Data encoding  

Each country has PS parameter (the search space is equal to PS) that can be zero or one, and as 

shown in Figure 2 represent parameters of socio-political components of a country. Value of 

one for a parameter means that the station has been opened (ambulance(s) have been positioned 

in the station), and zero means that the station has not been opened. 

 

 
 

 

Figure 2.  The candidate solutions of the problem, called country, consisting of a combination of 

some socio-political characteristics such as culture, language and religion 

4.3. Population initialization 

In this step, a parameter is created to represent the number of countries that have been 

determined through the first iteration. The two following methods have been used for 

developing initial countries: 

• Normal Random Sampling:  in this method a random generation function is used such 

that almost half of the parameters of a country become one and the other half become 

zero. 

• Adjusted Random Sampling: in some cases it is necessary to determine the initial 

countries so as  more parameters have value of one in order to give these parameters the 

opportunity to converge into their  optimal values. This might happen because of the 

fact that in such cases the need for more non-empty parameters (or positioned 

ambulances) seems necessary for providing the required service coverage, and 

predetermination of more ambulances may expedite the algorithm’s convergence. 

Contrarily, in some other cases it might be needed to have more parameters with initial 

value of zero. In addition, alternatively, answers obtained from the other methods can 

be used as an input.  

4.4. Fitness evaluation 

In this model the objective function is the sum of characters in each country. In other words, it 

is equal to the number of parameters that have value of one. To take the constraints into 

consideration the penalizing strategy has been used, i.e. for violation of each constraint a 

specific large penalty is added to the objective function. It is to be noted that these penalty 
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factors should be so greater than the objective function that the algorithm tends to reduce the 

penalty terms to zero.  

In our location model two penalty terms have been adopted. First, a penalty for each uncovered 

demand point, and second, a penalty for each opened station whose busy fraction exceeds the 

pre-determined upper bound busy fraction . 

4.5. Initial imperialist countries and their colonies 

According to the fitness function, the cost of each country is calculated, and then all countries 

are arranged based on the calculated cost. We consider the countries that have lower costs as 

initial imperialist countries and the rest of the countries as colonies. The colonies are split 

between the imperialist countries so that the less cost imperialist countries have more chance to 

attract more colonies. 

4.6. Modeling the assimilation policy 

As mentioned in the previous section, colonial countries are attracted to the imperialist 

countries. This absorption does not occur directly along the line crosses them, but instead this is 

done with a small angle, which is an adjustable parameter.  

As the original ICA algorithm has been developed for continuous variables during the 

absorption procedure it also would be possible to produce non-binary values if they are 

corrected by comparing them with the maximum value of variables (i.e. one) and the minimum 

value of variables (i.e. zero).  

4.7. Revolution 

In the ICA, colonies are changed in accordance with a revolution rate probability determining if 

a colony should be kept completely or some of its characteristics should be changed. To this 

end, usually those countries that are encountered with the revolution phenomenon will be 

reproduced with a probability of 0.2 (i.e. 0.2 of the number of parameters will possess the value 

of one). 

4.8. Colonial and imperialist position movement 

Eventually, the costs of the colonies are re-calculated. If there is a colony with a cost less than 

the cost of its imperialist country, the colony is replaced with the imperialist. This procedure is 

repeated until all the imperialists are visited. 

4.9. Imperialist competition 

Now, as the next step, we find the weakest imperialist and randomly select one of its colonies to 

be replaced with it, and then the other imperialist countries will start a competition for the 

possession of the newly produced colony. 

4.10. Weak imperialist collapse 

After several cycles of weak imperialist countries’ takeover, the algorithm will reach at a status 

where the weak imperialist has no longer a colony. In this case, we will remove the weak 

imperialist. 

4.11. Stopping criterion 

After a pre-specified number of iterations were repeated, the algorithm stops solving and 

chooses the optimal solution found so far and display the corresponding scheme. 

5. RESULTS 

To examine the performance of the proposed algorithm, a Matlab code was written, and various 

parameters were studied. In Section 5.1, two benchmark networks with four demand modes and 
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two different standard distances were investigated as conventional test networks. The obtained 

solutions were compared with the exact solution to the problem obtained using GAMS software 

as well as the results of other meta-heuristic algorithms. (Interested readers can find the details 

of these algorithms in [1].) To show the capability of the proposed algorithm in large-scale 

networks and to provide more tangible results, the algorithm was applied to the transportation 

network of City of Mashhad. 

5.1. Benchmark instances 

In total, eight scenarios (i.e., 2 (coverage distances) * 4 (demand modes) = 8) for two networks 

were considered. The first network has 55 demand nodes and 55 potential nodes created 

originally by Swain [39] and modified later by Kroll [40]. The second network has 79 demand 

nodes and 79 potential nodes created originally by Serra [41] and used in many similar works as 

a test network. In these networks radial distances are considered. In four different modes of 

demand (in terms of number of calls per day) from the first mode to the fourth mode, the 

demand increases constructing different problems with different environments for demand 

patterns and coverage requirements. The higher the figure of scenarios the higher will be the 

complexity of the problem. The four scenarios were used for each network. To construct 

coverage matrices two maximum coverage distances (i.e., 1.5 miles and 3 miles) were used. The 

required reliability level was assumed to be 0.85 in all scenarios. As seen in Table 1, the 

proposed algorithm in all scenarios reaches the global solution except for the fourth scenario on 

55 node network, and the other algorithms results in the global solution except for the first 

scenario. 

Table 1.  Comparisons between the number of required ambulances the proposed algorithm and 

the other well-known methaheuristic algorithms; GA: genetic algorithms, SA: simulated 

annealing, and PSO: Particle Swarm Optimization . 

8 7 6 5 4 3 2 1 Scenario 

S (Standard distance, mile) 

Scenario Description 
3 1.5 

Demand mode Demand mode 

4 3 2 1 4 3 2 1 

12 7 4 2 21 14 10 6 Exact Solution 

55 node network 

12 7 4 2 21 14 10 6 GA 

12 7 4 2 21 14 10 6 PSO 

12 7 4 2 21 14 10 6 SA 

12 7 4 2 22 14 10 6 ICA 

18 12 7 5 24 18 12 12 Exact Solution 

79 node network 

18 12 7 5 25 18 12 12 GA 

18 13 7 5 24 18 12 12 PSO 

18 13 7 5 24 18 12 12 SA 

18 12 7 5 24 18 12 12 ICA 

 

Comparison of convergence trends between the applied algorithms is shown in Figure 3. As 

shown in this figure, the convergence of the proposed algorithm is considerably faster than 

those of the other algorithms. This comparison was  done for the 79-node network in the second 

scenario with the fourth demand mode the exact solution of which is 12. 
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Figure 3.  Comparison of convergence between the applied algorithm and the other algorithms. 

5.2. Real case-study 

The city of Mashhad is the second largest city in Iran with the population of about 2.5 which 

sometimes, because of tourism, may exceed 7 million. The basic transpiration network of 

Mashhad consisting of 253 traffic analysis zones was considered as the potential/demand points. 

The coverage of demand nodes was determined according to the travel time matrix in a two-

hour morning peak period. The required reliability level was assumed to be 0.85 as the upper 

level of reliability. The network is shown in Figure 4.    

 

Figure 4.  Network and demand nodes of mashhad city 
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Results of the proposed algorithm and genetic algorithm are shown in Table 2. This table show 

that the cpu time needed for the application of the proposed algorithm is about 0.6 (=42/69) of a 

standard genetic algorithm. 

Table 2.  Comparisons of the number of required ambulances and the cpu time between ICA 

and GA. 

ICA (proposed algorithm) GA   

75 75 Number of required ambulances 

42 69 Run time (second) 

 

6. CONCLUSIONS 

This paper used the ICA, a recently introduced meta-heuristic algorithm, to solve the EMS 

location problem. The application of the adapted algorithm to two benchmark networks showed 

that the solutions obtained from the proposed algorithm compared with those obtained from 

three well-known meta-heuristic algorithms (i.e., the genetic algorithm, the simulated annealing, 

and the particle swarm optimization) are competitive and in some cases are better. In addition, 

the convergence of the ICA is faster than that of the other three meta-heuristic algorithms. Also, 

the application of the proposed algorithm to the real case study of Mashhad showed that the 

proposed algorithm is applicable in large-scale networks in the sense of requiring reasonable 

cpu time as well as reaching promising objective function compared with GA. In recent years, 

researchers have focused on the ICA for solving continuous problems, but this paper is its first 

deployment on a discrete problem, i.e. the binary EMS location problem. 
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