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ABSTRACT 

 
Agents trained by learning techniques provide a powerful approximation of state spaces in games that are 

too large for naive approaches. In the study Genetic Algorithms and Manual Interface was implemented 

and used to train agents for the board game LUDO. The state space of LUDO is generalized to a small set 

and encoded to suit the different techniques. The impact of variables and tactics applied in training are 

determined. Agents based on the techniques performed satisfactory against a baseline finite agent, and a 

Genetic Algorithm based agent performed satisfactory against competitors from the course. Better state 

space representations will improve the success of learning based agents. 
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1. Introduction 
 

Artificial Intelligence Ludo (ai-ludo) is an environment for artificial agents. Its purpose is to 

compare several approaches in the area of artificial intelligence. On the one hand, Ludo is rather a 

simple game and fully observable but, on the other hand contains a few challenges due to the 

stochastic and multi agent environment. Therefore it offers a good balance between simplicity 

and complexity and is able to attract a wide audience and not only professionals. In addition, it is 

very common and well known around the world. The goal was to provide a simple platform on 

which everybody could add an own player and check its strength compared to several other ones. 

By providing a possibility to create game statistics it is feasible to analyze the various players in 

detail. As first players we implemented the Manual Player and the genetic learning player. The 

genetic learning player bases decision on a utility function to evaluate all possible following game 

states. In this case, the utility function is composed of several terms and their weights are 

determined beforehand with the help of a genetic algorithm. We will show that the approach 

based on a genetic algorithm is applicable and profitable and significantly outnumbers the player 

in wins. 

 

First this paper introduces the ludo game rules players must adhere to be comparable with other 

players. Afterwards the theory about utility functions and genetic algorithms as well as the 

concrete application on the Ludo game is described. In the end, our experimental results as well 

as their evaluation are presented. 

This study concerns the use of   learning based agents in the game LUDO. The LUDO game is 

rather complex systems that contain dice which adds randomness as a factor. It is implemented in 

a JAVA framework with a number of finite agents to be used for training against. It is difficult to 
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model the game using classical AI techniques, which require a complete model of the state space. 

This includes constraint based agents, adversarial search based agents and logic based agents, 

albeit probability theory can be used for these to predict the random outcomes. The state space is 

the second difficult factor, because it is enormous as there are 16 bricks in total divided among 

four players, and 52 configurations for each brick, resulting in a full state space of 1652. This 

makes global search practically impossible, at least for this study. 

 

Instead local search based learning techniques are used, which do not require a complete model of 

the state space. Rather they in different ways approximate this space through learning and 

adaptation. Three techniques are investigated: Genetic Algorithms (GA). Purpose Implement 

experiment and compare the performance of learning agents in the game LUDO, using Genetic 

Algorithm. 

 

2. Purpose 

 
Implement Genetic algorithm based agent and a Manual player environment which is Human 

interface to chess agent the Genetic Learning agent. For experiment and compare the performance 

of learning agent and Manual player provide a LUDO game simulator. After a number of 

simultaneously played games show the performance result of the each agent and deduce the 

performance ability among them which one is best for learning technique. 

 

3. Game Rules 

 
There are several ludo games available. The game consists of a board with 40 fields, 1 begin 

field, 4 start positions, 4 pawns and 4 end fields for each player. 

 

A pawn is moveable if the dice count added to the pawn’s current position would not lead to a 

field which is already possessed by another player’s pawn and it would not lead to hypothetical 

field which is behind the end fields. The game is won by a player, if he is the first to have all his 

pawns on his end fields. The rules of this version are as follows: 

 

• Any player who throws a 6 has to take an own pawn from the start position to a begin field. 

– If there is no pawn left on the start position, the player is allowed to move 

any moveable pawn. 

 

• Afterwards, the player is allowed to throw the dice again and to move the according number of 

points. 

– The begin field has to be freed as soon as possible. 

– If there is no pawn left on the start position the pawn is allowed to stay on its begin field. 

 

• If a player’s pawn A is moved to a field which is possessed by an opponent’s pawn B the 

opponent’s pawn is thrown.  This means, pawn B has to be moved back to the corresponding start 

position. 

– If the field is possessed by another player’s pawn C, the player is not allowed to move the                   

 

• If there are several pawns of a player on the board, the player is allowed pawn A to this field to 

choose which pawn to move. 

– Only one pawn per player is allowed to be moved in one round. 

• If a player has no pawns on the field he has 3 attempts per round to throw the necessary 6. 
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 4. Related Work 

 
From the first stirrings in the area of artificial intelligence until today, games have always taken 

an important position. Often it is easier to test new algorithms on closed environments with a 

fixed set of rules, like games, before applying them on real world problems. In many cases the 

first idea is to use search algorithms in order to find a solution, for example like Deep Blue1 the 

chess playing agent does it. If a search cannot be used because of the large search space or 

space/time restrictions, heuristic methods, like the A*-Search or genetic algorithms, may provide 

a basis for building artificial players. Beside the search strategies, a second huge class of 

algorithms is concerned with learning. These ones, like neutral networks reinforcement learning, 

require some training data and compute the best moves for an artificial player beforehand and not 

directly during the game. For nearly every imaginable game artificial players have been 

developed based on at least one of the two basic methods. 

 

In addition, for most of them exists some competitions to prove which player is the best one. 

Even for the Ludo game there is a huge amount of artificial player implementations included in 

almost every Ludo game is playable on a computer. Unfortunately most of them do not provide 

any information about their internals, but it would be nice to compare the technique for Ludo 

implementations. 

 

5. STATE SPACE 

  
A smaller state space is necessary for the learning techniques to converge in realistic time, albeit 

the information is less complete than the full state space. This makes the design and choice of the 

state space vital for the success of the agent, no matter the duration and parameters of training. 

 

A full state space contains within it the optimal solution, along with countless local solutions that 

are suboptimal. It is theoretically possible to use learning on the full state space, but even for a 

game like LUDO, this space is enormous. Given enough computing power, time and space, it 

would however be possible to learn this complete space, and 

the optimal solution within. 

 

All the implemented learning techniques share the same state space. This state space is partly 

derived from the provided LUDO agent as well as additional information about the game. Each 

state is the consequence of moving a brick with the given dice. 

 

The states are the following in the given order:-- 
1. Brick can hit an opponent home. 

2. Brick can enter the goal. 

3. Brick can hit itself home. 

4. Brick can hit a star. 

5. Brick can enter a dangerous field. 

◦ A dangerous field is a field in which opponents can hit the brick home in the near future. 

6. Brick can enter a safe field. 

◦ Fields such as globes, the last fields leading to the goal or if the field is not dangerous. 

7. Brick can move out of start area. 
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The representation of states varies for each technique, GA assign weights to states .Despite the 

difference in representation, the states can be interchanged between techniques, allowing hybrid 

approaches to readily be applied. 

 

6. Background Knowledge 

 
In our project, we developed an artificial player which internally uses a utility function. The 

weights of this utility function are computed using a genetic algorithm. 

 

To get a first impression about utility functions and the functionality of genetic algorithms in 

general, the following section describes the theory behind it. 

 

Utility Function 

 
Utility functions are often adapted within the construction of artificial agents. They are used to 

internally evaluate the states of the environment. This can also be helpful to estimate the utility of 

possible following games states in the case the agents performs a certain action. How to model 

the utility function is very problem dependent and has to be considered on a case-by-case basis. 

 

 As counterpart to the utility function, the performance measure is often used to evaluate how 

well agents operate but their behavior is observed from the outside. Due to the different point of 

views on the agents’ performance, they might result different values and thus should be 

distinguished. 

 

Genetic Algorithm 

 
The genetic algorithm is a search heuristic which can especially be used to find solutions to 

optimization and search problems where the search space is too huge to use traditional methods. 

Based on the fact that it is only a heuristic, the found solution must not necessarily be the optimal 

one, but in most cases it works quite well. In general, the idea is to imitate the biological 

evolution. The whole process is depicted in the following Figure and has to take several steps. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

  

Fig.1.  Process of a genetic algorithm 
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First, a population is needed which consists of several individuals whereby each individual has a 

number of genes. In addition, a fitness function is required which assigns every individual a 

certain value. According to this values, the individuals can be ordered and it is possible to 

determine the best individual among them. If a specified termination criterion is satisfied, for 

example the value of the best individual is above a threshold or 20 generations have been 

generated, the algorithm terminates and returns the best individual. Otherwise, the individuals 

with the lowest values of the fitness function are deleted from the population. Afterwards, a new 

generation arises by crossover whereby the new individuals have genes compounded of the genes 

of their parents. In addition, mutation of genes is also possible whereby some genes are changed 

randomly to ensure genetic diversity. After creating the next generation, the whole procedure 

starts again with the new population. 

 

Only the fittest individuals of a population survive and thus a new generation consists of 

individuals with genes which have already been proved as good ones based on the fitness 

function. This implies that a very late generation is just made up of individuals with the best 

genes. To solve problems with this approach, it is first required to model the individuals with 

their genes and a according fitness function. Usually, the genes are potential solutions, for 

example assume an optimization problem compounded of a number of variables and for each 

variable a value should be assigned such that these variables solve the problem as good as 

possible. In this case, it can be modeled that a gene corresponds to exactly one variable. Then a 

fitness function might assign the score of the variables, which is reached when applied to the 

optimization problem, to the individual. Furthermore, it is also necessary to define how many 

individuals to delete, the termination criteria as well as a strategy for crossover, e.g. how to 

determine the parents, and one for mutation, e.g. how many genes of how many individuals 

should be mutated. In the end, the best individual is returned, which represents the best possible 

solution the algorithm detected. 

 

7. Player 

 
There are two types of artificial players implemented: a Manual player and an evolution player 

(also called genetic learning player). The strategy of the genetic learning player is described in the 

following section. 

 

Genetic Learning Player 

 
After explaining the theory of utility function and genetic algorithm we can make use of it and 

adapt it to our idea of implementing an artificial player for the Ludo game. Now in this section, 

the implementation of the genetic learning player is described. 

 

 Utility Function: 

 
Internally, the genetic learning player is based on a utility function assigning a score to each 

possible resulting game state. This score is a sum of several positive and negative terms 

describing different situations. 

 

Following situations should result in a positive term:-- 

 

• Directly beat a pawn of another player. 

• Get into a position where another pawn is potentially beatable in the next round. 
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• Get out of a position where an own pawn is potentially beatable by another player. 

• Get pawn on an end field. 

• Get as close as possible to the end fields. 

Following situations should result in a negative term:-- 
• Move own pawn into a position where it can potentially be beaten by Another’s player pawn. 

• Move pawn on a begin field of another player. 

 

Potentially beatable means that the distance between two opponent pawns is less or equal to six. 

We also considered other situations, but we concentrated on these ones because the utility 

function should be as easy as possible and nevertheless simultaneously cover all important cases. 

After defining the utility function, it is necessary to determine the values of the terms in detail. 

Therefore we used a genetic algorithm to provide best possible values. 

 

8. Application of a Genetic Algorithm 

 
It is necessary to model the individuals as well as several strategies, e.g. for mutation, to adapt the 

algorithm to this problem. In our case, the genes’ of an individual are the utility function terms 

and they can have integer numbers between 0 and 100. To evaluate the genes we used a fitness 

function which just counts the number of victories an individual achieves in 100 games against a 

random player, e.g. 80 of 100 won games results in a fitness assignment of 80. Our starting 

population consists of individuals with randomly generated genes. Tests with different 

termination criteria together with different mutation rate and number of deleted individuals have 

been performed and will be presented later in this section. In general the parents, the composition 

of the genes for new individuals and the genes to mutate are randomly chosen. It is assumed that 

after a while the best individual will have approximately optimal genes and therefore the perfect 

terms of the utility function are found. 

 

The whole process is depicted in pseudo code in Algorithm: 

 
Algrorithm GA(populationSize) 

{ 

for i=1 TO populationSize do 

generate(i,random) 

score(i) = wins out of 100 games 

population add(i) 

end for 
while !terminationCriteria do 

{selection} 

for i=1 TO numberOfNewIndividuals do 

population delete(weakest) 

end for 
for i=1 TO numberOfNewIndividuals do 

{crossover} 

parents(i) = random individuals i1, i2 

breakingPoint = random(1,7) 

generate(i,i1,bp,i2) 

population add(i) 

{mutation} 

if mutate(i) then 

mutationPosition = random(1,7) 
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mutationValue = random(0,100) 

mutate(i,mutationPosition,mutationValue) 

end if 
{fitness assignment} 

score(i) =  wins of 100 games 

end for 

end while 

return population get(best) 

} 

 

In the first for-loop, the starting population is generated containing individuals with random 

genes. Afterwards the while-loop is repeated until the termination criteria are fulfilled. Now the 

selection, crossover and mutation steps are carried out. During the selection the individuals which 

lost the most games against a random player are deleted of the population. Afterwards the new 

individuals are generated whereby the parents i1 and i2 are selected randomly as well as the 

breaking point. The child gets all genes from i1 till the breaking point and the other ones from i2. 

If enough individuals have been created, some of them are mutated if mutate (i) is evaluated to 

true whereby the decision only dependents on the mutation rate. Again, the gene to mutate as well 

as its new value will be randomly chosen. In the end, each new individual plays 100 games 

against a Genetic Algorithm player to determine its fitness score and the whole process starts 

again. 

 

9. Experiment 

 
If the algorithm terminates after 10 generations, it is not really obvious whether a high or a low 

mutation rate is better. After 25 generations, it becomes clearer that either only a few individuals 

should be mutated or all new ones. This is based on the fact that on one hand good individuals 

might be mutated and get worse but on the other hand it prevents the population to head a set of 

genes too early which might not be the best possible ones. It is also reasonable that a termination 

criteria of 10 generation is too low because the genes might still be widespread. Thus for all 

following tests we decided to set the mutation rate to 1.0% and the algorithm terminates after 25 

generations have been created. Afterwards we changed the number of individuals which are 

deleted or conversely the number of new individuals which are created. If only a few individuals 

are generated, many individuals with rather bad genes stay in the population and in addition new 

individuals might be created consisting of these genes. 

 

Therefore we fixed the values 0.75 for the rate of new individuals which are created per 

generation. At the end, we tested how changes in the population size affect the outcome. Except 

for some small deviations, the size of the population does not significantly change the result. 

 

To get in the situation that it might be possible to beat the opponent in the next round as well as to 

escape a possible beat is rather not such important. This is of course not a general rule and might 

change if the opponent has another strategy than just randomly selecting a pawn. All other values 

are not really significant and are also partially different when using various sizes of populations. 
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Fig 2. : Term values for different populations sizes 

 

10. Implementation of GA  
 
  The GA technique is implemented in a JAVA package, consisting of a population of 

chromosomes encapsulated in a GA class. For convenience, the implementation is general 

purpose, and can thus be used in other problems than just LUDO. The chromosomes use floating 

point numbers for their genes in the range [1;0], allowing direct mapping to the state space in the 

form of weights. Chromosomes start with random values within the range. 

 

The population size is fixed at an amount of 100. Selection is based on the elitism approach, 

where the ten chromosomes with the highest fitness value are kept. All reproduction 

combinations save with themselves are performed in order to create 90 children, thus keeping the 

population at a fixed size of a 100. The reproduction strategy is cross breeding, such that even 

numbered genes are of the first parent, and odd numbered genes are of the second parent. 

Mutation is done through random selection of a gene, and adding a random value in the range [-

0.5;0.5], while maintaining the bounds of the range. 

 

The agent utilizing GA contains a single chromosome to weigh the consequences a brick, and the 

brick with the highest value are then selected. Eight genes are used; one more than the state 

space, as all moves that is not described through the state space representation is weighted as an 

eighth. This is necessary because weights are in the range [0;1], and bad moves must be able to be 

marked lower than a move without benefits. Optimally, good moves are thus selected and bad 

moves are refrained from after training. 

 

Each chromosome within the population competes in a number of games, and the number of 

victories is accumulated as the fitness score. Since fitness is determined by wins alone, there is no 

need for a special agent to perform the training, and the GA agent is used by swapping its 

chromosome throughout the tournament. This procedure is continued for a number of 

generations, after which the chromosome with the highest fitness value are saved and used for the 

final agent. 
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11. Conclusion 

Summing things up, the goal of this project was to compare several approaches in the area of 

artificial intelligence under the constrained environment of a Ludo game. 

We, therefore, implemented a Manual player and a Genetic learning player who uses an adaptable 

utility function to determine the most useful next action. The results are pretty clear: The Manual 

player was beaten by the genetic learning player win with its best configuration in over 80% of 

the time. So, the main question is answered: The genetic learning player is able to learn from 

situation like the Manual player.  

 

One might argue to add or remove criteria from the utility function and see how the genetic 

learning player performs under these new constraints. It would even be possible to compare two 

genetic learning players each trained with a different utility function. Further, more artificial 

players might be added to the application. 

 

Scope:  There is also another learning technique which I can use as my extended project, like        

 Neural Network Architecture (ANN) and Reinforcement-learning technique instead of  Manual 

Interface. It can be extended to a network based application in near future also. 

 

Limitation : For making comparison Human beings are not capable to give appropriate Learning 

Environment for LUDO. So it is necessary to implement another approaches. As LUDO board is 

developed to consider to run in standalone system. It is also  dependent for System monitor view 

port.   
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