

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.1, January 2012

DOI : 10.5121/ijaia.2012.3111 139

MAN – MACHINE INTERFACE

S.Bhuvaneswari, Reader, Pondicherry University, Karaikal Campus, Karaikal,

e-mail: booni_67@yahoo.co.in

R.Hemachandran, Faculty in Mechanical Engineering, N.I.T., Puducherry

Suman Kumar Pandey, Scholar, Pondicherry University, Karalkal Campus, Karaikal

ABSTRACT

Agents trained by learning techniques provide a powerful approximation of state spaces in games that are

too large for naive approaches. In the study Genetic Algorithms and Manual Interface was implemented

and used to train agents for the board game LUDO. The state space of LUDO is generalized to a small set

and encoded to suit the different techniques. The impact of variables and tactics applied in training are

determined. Agents based on the techniques performed satisfactory against a baseline finite agent, and a

Genetic Algorithm based agent performed satisfactory against competitors from the course. Better state

space representations will improve the success of learning based agents.

KEYWORDS

 AI, State spaces, GA, Intelligent Agents

1. Introduction

Artificial Intelligence Ludo (ai-ludo) is an environment for artificial agents. Its purpose is to

compare several approaches in the area of artificial intelligence. On the one hand, Ludo is rather a

simple game and fully observable but, on the other hand contains a few challenges due to the

stochastic and multi agent environment. Therefore it offers a good balance between simplicity

and complexity and is able to attract a wide audience and not only professionals. In addition, it is

very common and well known around the world. The goal was to provide a simple platform on

which everybody could add an own player and check its strength compared to several other ones.

By providing a possibility to create game statistics it is feasible to analyze the various players in

detail. As first players we implemented the Manual Player and the genetic learning player. The

genetic learning player bases decision on a utility function to evaluate all possible following game

states. In this case, the utility function is composed of several terms and their weights are

determined beforehand with the help of a genetic algorithm. We will show that the approach

based on a genetic algorithm is applicable and profitable and significantly outnumbers the player

in wins.

First this paper introduces the ludo game rules players must adhere to be comparable with other

players. Afterwards the theory about utility functions and genetic algorithms as well as the

concrete application on the Ludo game is described. In the end, our experimental results as well

as their evaluation are presented.

This study concerns the use of learning based agents in the game LUDO. The LUDO game is

rather complex systems that contain dice which adds randomness as a factor. It is implemented in

a JAVA framework with a number of finite agents to be used for training against. It is difficult to

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.1, January 2012

140

model the game using classical AI techniques, which require a complete model of the state space.

This includes constraint based agents, adversarial search based agents and logic based agents,

albeit probability theory can be used for these to predict the random outcomes. The state space is

the second difficult factor, because it is enormous as there are 16 bricks in total divided among

four players, and 52 configurations for each brick, resulting in a full state space of 1652. This

makes global search practically impossible, at least for this study.

Instead local search based learning techniques are used, which do not require a complete model of

the state space. Rather they in different ways approximate this space through learning and

adaptation. Three techniques are investigated: Genetic Algorithms (GA). Purpose Implement

experiment and compare the performance of learning agents in the game LUDO, using Genetic

Algorithm.

2. Purpose

Implement Genetic algorithm based agent and a Manual player environment which is Human

interface to chess agent the Genetic Learning agent. For experiment and compare the performance

of learning agent and Manual player provide a LUDO game simulator. After a number of

simultaneously played games show the performance result of the each agent and deduce the

performance ability among them which one is best for learning technique.

3. Game Rules

There are several ludo games available. The game consists of a board with 40 fields, 1 begin

field, 4 start positions, 4 pawns and 4 end fields for each player.

A pawn is moveable if the dice count added to the pawn’s current position would not lead to a

field which is already possessed by another player’s pawn and it would not lead to hypothetical

field which is behind the end fields. The game is won by a player, if he is the first to have all his

pawns on his end fields. The rules of this version are as follows:

• Any player who throws a 6 has to take an own pawn from the start position to a begin field.

– If there is no pawn left on the start position, the player is allowed to move

any moveable pawn.

• Afterwards, the player is allowed to throw the dice again and to move the according number of

points.

– The begin field has to be freed as soon as possible.

– If there is no pawn left on the start position the pawn is allowed to stay on its begin field.

• If a player’s pawn A is moved to a field which is possessed by an opponent’s pawn B the

opponent’s pawn is thrown. This means, pawn B has to be moved back to the corresponding start

position.

– If the field is possessed by another player’s pawn C, the player is not allowed to move the

• If there are several pawns of a player on the board, the player is allowed pawn A to this field to

choose which pawn to move.

– Only one pawn per player is allowed to be moved in one round.

• If a player has no pawns on the field he has 3 attempts per round to throw the necessary 6.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.1, January 2012

141

 4. Related Work

From the first stirrings in the area of artificial intelligence until today, games have always taken

an important position. Often it is easier to test new algorithms on closed environments with a

fixed set of rules, like games, before applying them on real world problems. In many cases the

first idea is to use search algorithms in order to find a solution, for example like Deep Blue1 the

chess playing agent does it. If a search cannot be used because of the large search space or

space/time restrictions, heuristic methods, like the A*-Search or genetic algorithms, may provide

a basis for building artificial players. Beside the search strategies, a second huge class of

algorithms is concerned with learning. These ones, like neutral networks reinforcement learning,

require some training data and compute the best moves for an artificial player beforehand and not

directly during the game. For nearly every imaginable game artificial players have been

developed based on at least one of the two basic methods.

In addition, for most of them exists some competitions to prove which player is the best one.

Even for the Ludo game there is a huge amount of artificial player implementations included in

almost every Ludo game is playable on a computer. Unfortunately most of them do not provide

any information about their internals, but it would be nice to compare the technique for Ludo

implementations.

5. STATE SPACE

A smaller state space is necessary for the learning techniques to converge in realistic time, albeit

the information is less complete than the full state space. This makes the design and choice of the

state space vital for the success of the agent, no matter the duration and parameters of training.

A full state space contains within it the optimal solution, along with countless local solutions that

are suboptimal. It is theoretically possible to use learning on the full state space, but even for a

game like LUDO, this space is enormous. Given enough computing power, time and space, it

would however be possible to learn this complete space, and

the optimal solution within.

All the implemented learning techniques share the same state space. This state space is partly

derived from the provided LUDO agent as well as additional information about the game. Each

state is the consequence of moving a brick with the given dice.

The states are the following in the given order:--
1. Brick can hit an opponent home.

2. Brick can enter the goal.

3. Brick can hit itself home.

4. Brick can hit a star.

5. Brick can enter a dangerous field.

◦ A dangerous field is a field in which opponents can hit the brick home in the near future.

6. Brick can enter a safe field.

◦ Fields such as globes, the last fields leading to the goal or if the field is not dangerous.

7. Brick can move out of start area.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.1, January 2012

142

The representation of states varies for each technique, GA assign weights to states .Despite the

difference in representation, the states can be interchanged between techniques, allowing hybrid

approaches to readily be applied.

6. Background Knowledge

In our project, we developed an artificial player which internally uses a utility function. The

weights of this utility function are computed using a genetic algorithm.

To get a first impression about utility functions and the functionality of genetic algorithms in

general, the following section describes the theory behind it.

Utility Function

Utility functions are often adapted within the construction of artificial agents. They are used to

internally evaluate the states of the environment. This can also be helpful to estimate the utility of

possible following games states in the case the agents performs a certain action. How to model

the utility function is very problem dependent and has to be considered on a case-by-case basis.

 As counterpart to the utility function, the performance measure is often used to evaluate how

well agents operate but their behavior is observed from the outside. Due to the different point of

views on the agents’ performance, they might result different values and thus should be

distinguished.

Genetic Algorithm

The genetic algorithm is a search heuristic which can especially be used to find solutions to

optimization and search problems where the search space is too huge to use traditional methods.

Based on the fact that it is only a heuristic, the found solution must not necessarily be the optimal

one, but in most cases it works quite well. In general, the idea is to imitate the biological

evolution. The whole process is depicted in the following Figure and has to take several steps.

Fig.1. Process of a genetic algorithm

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.1, January 2012

143

First, a population is needed which consists of several individuals whereby each individual has a

number of genes. In addition, a fitness function is required which assigns every individual a

certain value. According to this values, the individuals can be ordered and it is possible to

determine the best individual among them. If a specified termination criterion is satisfied, for

example the value of the best individual is above a threshold or 20 generations have been

generated, the algorithm terminates and returns the best individual. Otherwise, the individuals

with the lowest values of the fitness function are deleted from the population. Afterwards, a new

generation arises by crossover whereby the new individuals have genes compounded of the genes

of their parents. In addition, mutation of genes is also possible whereby some genes are changed

randomly to ensure genetic diversity. After creating the next generation, the whole procedure

starts again with the new population.

Only the fittest individuals of a population survive and thus a new generation consists of

individuals with genes which have already been proved as good ones based on the fitness

function. This implies that a very late generation is just made up of individuals with the best

genes. To solve problems with this approach, it is first required to model the individuals with

their genes and a according fitness function. Usually, the genes are potential solutions, for

example assume an optimization problem compounded of a number of variables and for each

variable a value should be assigned such that these variables solve the problem as good as

possible. In this case, it can be modeled that a gene corresponds to exactly one variable. Then a

fitness function might assign the score of the variables, which is reached when applied to the

optimization problem, to the individual. Furthermore, it is also necessary to define how many

individuals to delete, the termination criteria as well as a strategy for crossover, e.g. how to

determine the parents, and one for mutation, e.g. how many genes of how many individuals

should be mutated. In the end, the best individual is returned, which represents the best possible

solution the algorithm detected.

7. Player

There are two types of artificial players implemented: a Manual player and an evolution player

(also called genetic learning player). The strategy of the genetic learning player is described in the

following section.

Genetic Learning Player

After explaining the theory of utility function and genetic algorithm we can make use of it and

adapt it to our idea of implementing an artificial player for the Ludo game. Now in this section,

the implementation of the genetic learning player is described.

 Utility Function:

Internally, the genetic learning player is based on a utility function assigning a score to each

possible resulting game state. This score is a sum of several positive and negative terms

describing different situations.

Following situations should result in a positive term:--

• Directly beat a pawn of another player.

• Get into a position where another pawn is potentially beatable in the next round.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.1, January 2012

144

• Get out of a position where an own pawn is potentially beatable by another player.

• Get pawn on an end field.

• Get as close as possible to the end fields.

Following situations should result in a negative term:--
• Move own pawn into a position where it can potentially be beaten by Another’s player pawn.

• Move pawn on a begin field of another player.

Potentially beatable means that the distance between two opponent pawns is less or equal to six.

We also considered other situations, but we concentrated on these ones because the utility

function should be as easy as possible and nevertheless simultaneously cover all important cases.

After defining the utility function, it is necessary to determine the values of the terms in detail.

Therefore we used a genetic algorithm to provide best possible values.

8. Application of a Genetic Algorithm

It is necessary to model the individuals as well as several strategies, e.g. for mutation, to adapt the

algorithm to this problem. In our case, the genes’ of an individual are the utility function terms

and they can have integer numbers between 0 and 100. To evaluate the genes we used a fitness

function which just counts the number of victories an individual achieves in 100 games against a

random player, e.g. 80 of 100 won games results in a fitness assignment of 80. Our starting

population consists of individuals with randomly generated genes. Tests with different

termination criteria together with different mutation rate and number of deleted individuals have

been performed and will be presented later in this section. In general the parents, the composition

of the genes for new individuals and the genes to mutate are randomly chosen. It is assumed that

after a while the best individual will have approximately optimal genes and therefore the perfect

terms of the utility function are found.

The whole process is depicted in pseudo code in Algorithm:

Algrorithm GA(populationSize)

{

for i=1 TO populationSize do

generate(i,random)

score(i) = wins out of 100 games

population add(i)

end for
while !terminationCriteria do

{selection}

for i=1 TO numberOfNewIndividuals do

population delete(weakest)

end for
for i=1 TO numberOfNewIndividuals do

{crossover}

parents(i) = random individuals i1, i2

breakingPoint = random(1,7)

generate(i,i1,bp,i2)

population add(i)

{mutation}

if mutate(i) then

mutationPosition = random(1,7)

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.1, January 2012

145

mutationValue = random(0,100)

mutate(i,mutationPosition,mutationValue)

end if
{fitness assignment}

score(i) = wins of 100 games

end for

end while

return population get(best)

}

In the first for-loop, the starting population is generated containing individuals with random

genes. Afterwards the while-loop is repeated until the termination criteria are fulfilled. Now the

selection, crossover and mutation steps are carried out. During the selection the individuals which

lost the most games against a random player are deleted of the population. Afterwards the new

individuals are generated whereby the parents i1 and i2 are selected randomly as well as the

breaking point. The child gets all genes from i1 till the breaking point and the other ones from i2.

If enough individuals have been created, some of them are mutated if mutate (i) is evaluated to

true whereby the decision only dependents on the mutation rate. Again, the gene to mutate as well

as its new value will be randomly chosen. In the end, each new individual plays 100 games

against a Genetic Algorithm player to determine its fitness score and the whole process starts

again.

9. Experiment

If the algorithm terminates after 10 generations, it is not really obvious whether a high or a low

mutation rate is better. After 25 generations, it becomes clearer that either only a few individuals

should be mutated or all new ones. This is based on the fact that on one hand good individuals

might be mutated and get worse but on the other hand it prevents the population to head a set of

genes too early which might not be the best possible ones. It is also reasonable that a termination

criteria of 10 generation is too low because the genes might still be widespread. Thus for all

following tests we decided to set the mutation rate to 1.0% and the algorithm terminates after 25

generations have been created. Afterwards we changed the number of individuals which are

deleted or conversely the number of new individuals which are created. If only a few individuals

are generated, many individuals with rather bad genes stay in the population and in addition new

individuals might be created consisting of these genes.

Therefore we fixed the values 0.75 for the rate of new individuals which are created per

generation. At the end, we tested how changes in the population size affect the outcome. Except

for some small deviations, the size of the population does not significantly change the result.

To get in the situation that it might be possible to beat the opponent in the next round as well as to

escape a possible beat is rather not such important. This is of course not a general rule and might

change if the opponent has another strategy than just randomly selecting a pawn. All other values

are not really significant and are also partially different when using various sizes of populations.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.1, January 2012

146

Fig 2. : Term values for different populations sizes

10. Implementation of GA

 The GA technique is implemented in a JAVA package, consisting of a population of

chromosomes encapsulated in a GA class. For convenience, the implementation is general

purpose, and can thus be used in other problems than just LUDO. The chromosomes use floating

point numbers for their genes in the range [1;0], allowing direct mapping to the state space in the

form of weights. Chromosomes start with random values within the range.

The population size is fixed at an amount of 100. Selection is based on the elitism approach,

where the ten chromosomes with the highest fitness value are kept. All reproduction

combinations save with themselves are performed in order to create 90 children, thus keeping the

population at a fixed size of a 100. The reproduction strategy is cross breeding, such that even

numbered genes are of the first parent, and odd numbered genes are of the second parent.

Mutation is done through random selection of a gene, and adding a random value in the range [-

0.5;0.5], while maintaining the bounds of the range.

The agent utilizing GA contains a single chromosome to weigh the consequences a brick, and the

brick with the highest value are then selected. Eight genes are used; one more than the state

space, as all moves that is not described through the state space representation is weighted as an

eighth. This is necessary because weights are in the range [0;1], and bad moves must be able to be

marked lower than a move without benefits. Optimally, good moves are thus selected and bad

moves are refrained from after training.

Each chromosome within the population competes in a number of games, and the number of

victories is accumulated as the fitness score. Since fitness is determined by wins alone, there is no

need for a special agent to perform the training, and the GA agent is used by swapping its

chromosome throughout the tournament. This procedure is continued for a number of

generations, after which the chromosome with the highest fitness value are saved and used for the

final agent.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.1, January 2012

147

11. Conclusion

Summing things up, the goal of this project was to compare several approaches in the area of

artificial intelligence under the constrained environment of a Ludo game.

We, therefore, implemented a Manual player and a Genetic learning player who uses an adaptable

utility function to determine the most useful next action. The results are pretty clear: The Manual

player was beaten by the genetic learning player win with its best configuration in over 80% of

the time. So, the main question is answered: The genetic learning player is able to learn from

situation like the Manual player.

One might argue to add or remove criteria from the utility function and see how the genetic

learning player performs under these new constraints. It would even be possible to compare two

genetic learning players each trained with a different utility function. Further, more artificial

players might be added to the application.

Scope: There is also another learning technique which I can use as my extended project, like

 Neural Network Architecture (ANN) and Reinforcement-learning technique instead of Manual

Interface. It can be extended to a network based application in near future also.

Limitation : For making comparison Human beings are not capable to give appropriate Learning

Environment for LUDO. So it is necessary to implement another approaches. As LUDO board is

developed to consider to run in standalone system. It is also dependent for System monitor view

port.

References

1.Artificial Intelligence , “A Mordern Approch”, second edition, Stuart Russel and Peter Norving

2. Neural Networks, Fuzzy Logic, and Genetic Algorithm , “ Synthesis and Application”,

S. Rajasekaran and G.A. Vijayalakshmi Pai

