
International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

DOI : 10.5121/ijaia.2012.3410 131

FEASIBILITY OF GENETIC ALGORITHM FOR
TEXTILE DEFECT CLASSIFICATION USING NEURAL

NETWORK

Md. Tarek Habib1, Rahat Hossain Faisal2, M. Rokonuzzaman3

1Department of Computer Science and Engineering, Prime University, Dhaka, Bangladesh.
md.tarekhabib@yahoo.com

2 Department of Electronics and Telecommunication Engineering, Prime University, Dhaka,
Bangladesh

rhfaisal@ymail.com
3School of Engineering and Computer Science, Independent University, Dhaka, Bangladesh.

zaman.rokon@yahoo.com

ABSTRACT

The global market for textile industry is highly competitive nowadays. Quality control in production
process in textile industry has been a key factor for retaining existence in such competitive market.
Automated textile inspection systems are very useful in this respect, because manual inspection is time
consuming and not accurate enough. Hence, automated textile inspection systems have been drawing plenty
of attention of the researchers of different countries in order to replace manual inspection. Defect detection
and defect classification are the two major problems that are posed by the research of automated textile
inspection systems. In this paper, we perform an extensive investigation on the applicability of genetic
algorithm (GA) in the context of textile defect classification using neural network (NN). We observe the
effect of tuning different network parameters and explain the reasons. We empirically find a suitable NN
model in the context of textile defect classification. We compare the performance of this model with that of
the classification models implemented by others.

KEYWORDS

Textile Defect, Neural Network, Genetic Algorithm, Model Complexity, Accuracy.

1. INTRODUCTION

The importance of quality control in industrial production is increasing day by day. Textile
industry is not an exception in this regard. The accuracy of manual inspection is not enough due
to fatigue and tediousness. Moreover, it is time consuming. High quality cannot be maintained
with manual inspection. The solution to the problem of manual inspection is automated, i.e.
machine-vision-based textile inspection system. Automated textile inspection systems have been
drawing a lot of attention of the researchers of many countries for more than a decade. Automated
textile inspection systems mainly involve two challenging problems, namely defect detection and
defect classification. A lot of research has been done addressing the problem of defect detection,
but the amount of research done to solve the classification problem is little and inadequate.

Automated textile inspection systems are real-time applications. So they require real-time
computation, which exceeds the capability of traditional computing. Neural networks (NNs) are
suitable enough for real-time systems because of their parallel-processing capability. Moreover,

mailto:tarekhabib@yahoo.com
mailto:rhfaisal@ymail.com
mailto:rokon@yahoo.com

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

132

NNs have strong capability to handle classification problems. The classification accuracy of an
appropriate NN, which handles multiclass problems, is good enough [2, 3]. There is a number of
performance metrics of NN models. Classification accuracy, model complexity and training time
are three of the most important performance metrics of NN models.

Considering the fact that learning in NNs is an optimization process; genetic algorithm (GA),
which is an optimization method, has attracted considerable attention of the NN research
community. It has been applied to train NN in many contexts, but, to the best of our knowledge,
has not yet been applied in order to classify textile defects.

In this paper, we investigate the feasibility of GA in the context of NN based textile defect
classification. We observe and justify the impact of tuning different network parameters, such as
crossover rate, mutation rate etc. We attempt to find proper NN model in the context of textile
defect classification by tuning these parameters. Finally, we compare the performance of the NN
model with that of the classification models described in different published articles in terms of
the two performance metrics − accuracy and model complexity.

2. LITERATURE REVIEW

A number of attempts have been made for automated textile defect inspection [4-24]. Most of
them have concentrated on defect detection, where few of them have concentrated on
classification. Mainly three defect-detection techniques [8, 25], namely statistical, spectral and
model-based, have been deployed. A number of techniques have been deployed for classification.
Among them, NN, support vector machine (SVM), clustering, and statistical inference are
notable.

Statistical inference is used for classification in [18] and [19]. Cohen et al. [18] have used
statistical test, i.e. likelihood-ratio test for classification. They have implemented binary
classification, i.e. categorization of only defective and defect-free. Campbell et al. [19] have used
hypothesis testing for classification. They also have implemented classification of only defective
and defect-free classes. Binary classification, i.e. categorization of only defective and defect-free
fabrics, doesn’t serve the purpose of textile-defect classification. Murino et al. [10] have used
SVMs for classification. They have worked on spatial domain. They have used the features
extracted from gray-scale histogram, shape of defect and co-occurrence matrix. They have
implemented SVMs with 1-vs-1 binary decision tree scheme in order to deal with multiclass
problem, i.e. distinct categorization of defects. Campbell et al. [17] have used model-based
clustering, which is not suitable enough for real-time systems like automated textile inspection
systems.

NNs have been deployed as classifiers in a number of articles. Habib and Rokonuzzaman [1] have
deployed counterpropagation neural network (CPN) in order to classify four types of defects.
They concentrated on feature selection rather than giving attention to the CPN model. They have
not performed in-depth investigation on the feasibility of CPN model in the context of automated
textile defect inspection.

Backpropagation learning algorithm has been used in [8], [11], [14] and [15]. Saeidi et al. [8]
have trained their NN by backpropagation algorithm so as to deal with multiclass problem, i.e.
categorizing defects distinctly. They have first performed off-line experiments and then
performed on-line implementation. Their work is on frequency domain. Karayiannis et al. [11]
have used an NN trained by backpropagation algorithm in order to solve multiclass problem.
They have used statistical texture features. Kuo and Lee [14] have used an NN trained by
backpropagation algorithm so as to deal with multiclass problem. They have used maximum

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

133

length, maximum width and gray level of defects as features. Mitropulos et al. [15] have trained
their NN by backpropagation algorithm so as to deal with multiclass problem. They have used
first and second order statistical features. Islam et al. [9, 23] have used resilient backpropagation
algorithm to train their NN. Their networks have been capable of dealing with multiclass
problem.

Shady et al. [16] have used learning vector quantization (LVQ) algorithm in order to train their
NNs. Their NNs have been implemented in order to handle multiclass problem. They have
separately worked on both spatial and frequency domains for defect detection. Kumar [12] has
used two NNs separately. The first one has been trained by backpropagation algorithm. The
network has been designed for binary classification, i.e. categorization of only defective and
defect-free. He has shown that the inspection system with this network was not cost-effective. So
he has further used linear NN and trained the network by least mean square error (LMS)
algorithm. The inspection system with this NN was cost-effective, but it could not deal with
multiclass problem. Inability to deal with multiclass problem doesn’t serve the purpose of textile-
defect classification. Karras et al. [13] have also separately used two NNs. They have trained one
NN by backpropagation algorithm. The other NN used by them was Kohonen’s Self-Organizing
Feature Maps (SOFM). They have used first and second order statistical-texture features for both
NNs. Both of the networks used by them are capable of handling binary classification problem.
Categorization of only defective and defect-free fabrics doesn’t serve the purpose of textile-defect
classification.

3. NN MODEL TRAINED GENETIC-ALGORITHM-TRAINED

Learning in NNs can be considered as an optimization process. GA is an optimization method. It
can be applied as a learning algorithm on any network topology.

3.1. Choice of Activation Function

The GA evaluates the error function at a set of some randomly selected points, which is known as
a population, of the definition domain. Taking this information into account, a new set of points,
i.e. a new population is generated. Gradually the points in the population approach local minima
of the error function. GA can be used when no information is available about the gradient of the
error function at the evaluated points. That means the error function does not need to be
continuous or differentiable. Therefore, the activation function can also be discontinuous or not
differentiable [2].

3.2. Initialization of Weights

Initialization of weights is an issue that needs to be resolved. Training begins with initial weight
values, which are randomly chosen. Large range of weight values may lead the training phases to
take more number of training cycles.

3.3. Choice of Fitness Function

An important issue is that how the fitness is measured, i.e. what the definition of fitness function
F is. This needs to be resolved. There are many options of defining the fitness function. The goal
of classification is to achieve as much accuracy as possible on future, i.e. unseen input or feature
vectors [29].

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

134

3.4. Choice of Convergence Criterion

The stopping or convergence criterion depends on the application although there are a number of
options of setting the stopping or convergence criterion of the GA.

3.5. Choice of Population Size

The GA evaluates the error function at a set of points in every training cycle. This set of search
points is known as the population and the training cycle is known as the generation. The size of
the population is represented by M. M has to be chosen as a value less than 2n, where n is the
number of the bits comprising each search point. A search point is also known as a string in this
context and is represented by s [30]. In fact, the proper value of M depends on the application.

3.6. Setting Selection Strategy

The GA applies three operators known as genetic operators. Of the three operators, selection is
the first operator that comes into play in a training cycle. It determines the strings of current
generation, from which the population of next generation is build. The strings selected undergo
the crossover operation [30]. The selection operator can be implemented in many ways.

3.7. Choice of Crossover Rate

Of the three genetic operators, crossover is the second operator that comes into play in a training
cycle. It involves the mixing of two strings. A split point is randomly chosen along the length of
either string. The last parts of the two strings are swapped, thereby yielding two new strings [29,
30]. Fig. 1 shows an example of the crossover operation on two 8-bit strings. The split point is 5
here (counting from the left).

The crossover operator is the most crucial of the three genetic operators in obtaining global result.
It is responsible for mixing the partial information contained in the strings of the population [30].

The probability that the crossover operator will be applied on a pair of strings is called the
crossover rate Pc. If Pc is too low, the average improvement from one generation to the next will
be small and the learning will be very long. Conversely, if Pc is too high, the evolution will be
undirected and similar to a highly inefficient random search [29]. In fact, the right value of Pc

depends on the application. Values between 0.6 and 0.99, inclusive, are reasonable choices of Pc

[30].

3.8. Choice of Mutation Rate

Mutation is the third and last genetic operator that comes into play in a training cycle. It involves
the flipping, i.e. changing from a 1 to a 0 or vice versa, of the bits in a string. Each bit in a string
is given a small uniform chance, i.e. probability of being flipped. This small uniform chance is
called the mutation rate Pm [29]. Fig. 2 shows an example of the mutation operation on an 8-bit
string, where Pm = 0.01. A random number, r ε [0, 1], is chosen for each bit of the string

(a) (b) (c)
Figure 1 An example of the crossover operation on two 8-bit strings. (a) Two strings are selected. (b) A

slit point is randomly chosen. (c) The last parts of the two strings are swapped.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

135

11001001. If r < Pm, then the bit is flipped, otherwise no action is taken. For the string 11001001,
suppose the random numbers (0.093, 0.041, 0.003, 0.069, 0.027, 0.054, 0.081, 0.009) are
generated. Then the bit flips take place. In this case, the third and eighth bits are flipped. The
purpose of the mutation operator is to diversify the search and introduce new strings into the
population in order to fully explore the search space [30].

Finding the right value of Pm is an important issue that needs to be resolved. If Pm is too low, the
average improvement from one generation to the next will be small and the learning will be very
long. Conversely, if Pm is too high, the evolution will be undirected and similar to a highly
inefficient random search [29]. In fact, the right value of Pm depends on the application. Values

between 0.001 and 0.01, inclusive, are reasonable choices of Pm [30].

3.9. Reduction of Computing Units

An important issue is that how large the NN is required to successfully solve the classification
problem. This should be resolved. Both training and recall processes take a large amount of time
with a large number of computing units. That means computation is too expensive with a large
number of computing units. Again, training process does not converge with too small number of
computing units. That means the NN will not be powerful enough to solve the classification
problem with too small number of computing units [27].

In fact, the right size of NN depends on the specific classification problem that is being solved
using NN. One approach to find the right size of NN is to start training and testing with a large
NN. Then some computing units and their associated incoming and outgoing edges are
eliminated, and the NN is retrained and retested. This procedure continues until the network
performance reaches an unacceptable level [27, 28].

4. APPROACH AND METHODOLOGY

We are to address the automated textile defect inspection problem. Many possible approaches are
investigated in order to accomplish our task. Finally, we have found the approach, shown in Fig.
3, optimal. Our approach starts with an inspection image of knitted fabric, which is converted into
a gray-scale image. Then the image is filtered in order to smooth it and remove noises. The gray-
scale histogram of the image is formed and two threshold values are calculated from the
histogram. Using these threshold values, the image is converted into a binary image. This binary
image contains object (defect) if any exists, background (defect-free fabric), and some noises.
These noises are removed using thresholding. Then a feature vector is formed calculating a
number of features of the defect. This feature vector is inputted to an NN, which is trained earlier
by GA with a number of feature vectors, in order to classify the defect. Finally, it is outputted
whether the image is defect-free, or defective with the name of the defect.

Figure 2. An example of the mutation operation on an 8-bit string.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

136

4.1. Defect Types

In this paper, we have dealt with four types of defects. They frequently occur in knitted fabrics in
Bangladesh. They are color yarn, hole, missing yarn, and spot shown in Fig. 4. Missing yarn can
further be divided into two types – vertical and horizontal [1].

4.2. Terminology

We have adopted some special words [1] for the ease of explanation and interpretation of our
automated textile defect inspection problem. We are going to use them in the rest of the paper.

i)
Inspection Image: Inspection image or image is the image to be inspected.

ii) Defective Region: Defective Region is the maximum connected area of defect in
an inspection image.

iii) Defect-Free Region: Defect-free region is the maximum connected area in an
inspection image, which does not contain any defect.

iv) Defect Window: Defect window is the rectangle of minimum area, which
encloses all Defective Regions in an inspection image.

4.3. An Appropriate Set of Features

An appropriate set of features are selected for classifying the defects. The features are
encountered from geometrical point of view. So the features are of same type, namely geometrical
feature. Geometrical features describe different discriminatory geometrical characteristics of the
defect in the inspection image. The geometrical features selected for classifying the defects are
computationally simple to extract. Their discriminatory qualities are also high. Each of these
geometrical features is discussed and justified here [1].

i) Height of Defect Window, HDW.
ii) Width of Defect Window, WDW.
iii) Height to Width Ratio of Defect Window, RH/W = HDW / WDW (1)
iv) Number of Defective Regions, NDR.

Figure 3. Block diagram of the textile defect inspection method

Inspection
Image

Conversion into
Gray-Scale Image

Filtering Histogram
Processing

Thresholding for
Segmentation

Thresholding for
Noise Removal

Feature
Extraction

Artificial
NN

Making
Output

Figure 4. Different types of defect occurred in knitted fabrics. (a) Color yarn. (b) Hole. (c) Missing

yarn. (d) Spot.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

137

5. IMPLEMENTATION

According to our approach to the automated textile defect inspection problem, shown in Fig. 3,
we start with an inspection image of knitted fabric of size 512×512 pixels, which is converted into
a gray-scale image. In order to smooth the image and remove noises, it is filtered by 7×7 low-pass
filter convolution mask, which is shown in Fig. 5. We have tried with a number of masks and find
the one in Fig. 4 is the most suitable for our captured images. It considers the pixels in horizontal,
vertical and diagonal directions of the center pixel more neighboring than the pixels in all other
directions of the center pixels. So, it comparatively accentuates the pixels in horizontal, vertical
and diagonal directions of the center pixel. Then gray-scale histogram of the image is formed.
From this histogram, two threshold values θL and θH are calculated from the histogram using
histogram peak technique [26]. This technique finds the two peaks in the histogram
corresponding to the object (defect) and background (defect-free fabric) of the image. It sets one
threshold value halfway between the two peaks and the other value either 0 or 255 depending on
the positions of the two peaks corresponding to the object (defect) and background (defect-free
fabric). Using the two threshold values θL and θH, the image with pixels p(x, y) is converted into a
binary image with pixels b(x, y), where



 ≤≤

=
otherwise

yxpif
yxb HL

,0

),(,1
),(


. (2)

This binary image contains object (defect) if any exists, background (defect-free fabric), and
some noises. These noises are smaller than the minimum defect wanted to detect. In our approach,
we want to detect a defect of minimum size 3mm×1mm. So, any object smaller than the
minimum-defect size in pixels is eliminated from the binary image. If the minimum-defect size in
pixels is θMD and an object with pixels o(x, y) is of size So pixels, then



 ≥

=
otherwise

Sif
yxo MDo

,0

,1
),(


. (3)

Then a number of features of the defect are calculated, which forms the feature vector
corresponding to the defect in the image. Fig. 6 shows the images in the corresponding steps
mentioned in Fig. 3. Important parts of 512×512-pixel images are shown in Fig. 6 rather than
showing the entire images for the sake of space.

2112112

1323231

1244421

2345432

1244421

1323231

2112112

109

1 ∗

Figure 5. The 7×7 low-pass filter convolution mask

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

138

The classification step consists of the tasks of building a GA model. Building a GA model
involves two phases, namely training phase and testing phase. A hundred color images of
defective and defect-free knitted fabrics of seven colors are acquired. So, the number of
calculated feature or input vectors is 100. That means our sample consists of 100 feature vectors.
Table I shows the frequency of each defect and defect-free class in our sample of 100 images.

The features provided by the feature extractor are of values of different ranges. For example, the
maximum value can be 512 for HDW or WDW, whereas NDR’s can be much less than 512. This
causes imbalance among the differences of feature values of defect types and makes the training
task difficult for the NN models. According to our context, the scaling, shown in (4), (5), (6), and
(7), of the deployed features is made in order to have proper balance among the differences of
feature values of defect types. If H/

DW, W/
DW, R/

H/W, and N/
DR represent the scaled values of the

features provided by the feature extractor, HDW, WDW, RH/W, and NDR, respectively, then

100
512

×=′ DW
DW

H
H . (4)

(a) (b) (c)

(d) (e)

Figure 6. The images of missing yarn in the corresponding steps of our approach. (a) Inspection image.
(b) Converted gray-scale image. (c) Filtered image. (d) Segmented image. (e) Noise-removed image.

TABLE I. FREQUENCY OF EACH DEFECT AND DEFECT-FREE CLASS

No. Class Frequency
1 Color Yarn 6
2 Vertical Missing Yarn 16
3 Horizontal Missing Yarn 16
4 Hole 11
5 Spot 18
6 Defect-Free 33

Total 100

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

139

100
512

×=′ DW
DW

W
W . (5)

WHWH RR // 100×=′ . (6)

()500 999101 ×−=′ DRDR NN . (7)

We split all feature vectors into two parts. One part consisting of 53 feature vectors is for both
testing and training the NN model and the other part consisting of the rest of the feature vectors is
for testing only. The target values are set to 1 and 0s for the corresponding class and the rest of
the classes, respectively. That means if a feature vector is presented to the NN model during
training, the corresponding computing unit in the output layer of the corresponding class of the
feature vector is assumed to fire 1 and all other units in the output layer are assumed to fire 0. The
NN model is trained with maximum number of training cycle 106, maximum amount of training
time 5 hours and maximum tolerable error less than 10-3. That means training continues until 106

training cycles and 5 hours are elapsed and error less than 10-3 is found. After the training phase is
completed, the NN model is tested with all the feature vectors of the both parts. Then all feature
vectors are again split into two parts. The first fifty percent of the part for training comes from the
previous part for training and the rest fifty percent comes from the previous part for only testing.
All other feature vectors form the new part for only testing. The NN model is trained with these
new parts and then is tested. In this way, for a specific combination of network parameters, the
model is trained and tested 3-5 times in total. We take the results that mostly occur. If the results
are uni-modal, we take the results that are the closest to their averages.

We use three-layer feedforward NN for this model, where it is assumed that input layer
contributes one layer. We started with a large NN that has 4 computing units in the input layer, 48
computing units in the hidden layer and 6 computing units in the output layer (since we have six
different classes as per Table I). We describe the entire training in detail in the following parts of
this section, i.e. Section V.

5.1. Activation Function Chosen

One of the most used activation functions for GA is the step function,

f : IR → {x | x ε {a, b, (a + b) / 2, 0} and a, b ε IR}, which is defined as follows, where c ε IR:

()




>
<

=
cxifb

cxifa
xf

,

,
(8)

and at c, f(c) is defined to equal a or b or (a + b) / 2 or 0. Common choices are c = 0, a = 0, b
= 1, and c = 0, a = -1, b = 1 [27]. In our implementation, we choose the step function,
f : IR → {0, 1}, which is defined as follows:

()




>
≤

=
0,1

0,0

xif

xif
xf . (9)

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

140

5.2. Initial Weight Values Chosen

Initialization of weights is an issue that has been resolved. In our implementation, we randomly
choose initial weight values of small range, i.e. between -1.0 and 1.0, exclusive, rather than large
range, e.g. between -1000 and 1000, exclusive.

5.3. Fitness Function Chosen

We want that the goal of classification, which is to achieve as much accuracy as possible on
future, i.e. unseen input or feature vectors [29], be reflected in the method of measuring fitness in
our implementation. So, we define the fitness function F based on the value of the error function
E in the following way:

E
F

1= . (10)

The value of F will be in (0, ∞) as per (10).

5.4. Convergence Criterion Chosen

The stopping or convergence criterion of GA depends on the application. For our implementation
of GA, we employ a desired fitness, i.e. inverse of maximum tolerable error, θ, as the
convergence criterion. θ is called the convergence-criterion fitness [29]. We choose the value of θ
as less than 10-3. That means the training cycle repeats until a search point with fitness greater
than 103 is found.

5.5. Population Size Chosen

As we mentioned earlier, the proper value of M depends on the application. In our
implementation, we first train the NN for M = n = 64. We successively increase the value of M
and train the NN for that value of M. We find that the fitness and accuracy increase for 64 ≤ M ≤
8192 and start decreasing at M = 10000. We also find that the number of elapsed training cycle
increases for M ≥ 64. So, we choose 8192 as the value of M since we find maximum fitness and
accuracy, i.e. 1/7 and 81.44%, respectively, and minimum number of elapsed training cycle, i.e.
952 for this value of M.

5.6. Selection Strategy Set

As we stated earlier, the selection operator can be implemented in many ways. In our
implementation, we focus on allowing the strings with above-average fitness to undergo the
crossover operation. That means the average of the fitness of all strings in the population is
computed in a training cycle or generation. The strings, which have fitness greater than the
average, survive and undergo the operation of crossover [30].

5.7. Crossover Rate Chosen

Since values between 0.6 and 0.99, inclusive, are reasonable choices of Pc [30], we first train as
well as test the NN for Pc = 0.99 and the mutation rate Pm = 0.01. We successively decrease the
value of Pc, and train as well as test the NN for that value of Pc, where we keep the value of Pm

unchanged. We find that there is no improvement in the fitness and accuracy for Pc < 0.99, rather
the fitness and accuracy are maximum, i.e. 1/7 and 81.44%, respectively, for Pc = 0.99. Although
the number of elapsed training cycle is minimum, i.e. 565 for Pc = 0.9, we choose 0.99 as the
value of Pc because of the accuracy and fitness.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

141

5.8. Mutation Rate Chosen

Since values between 0.001 and 0.01, inclusive, are reasonable choices of Pm [30], we first train
as well as test the NN for Pm = 0.01 and Pc = 0.99. We gradually decrease the value of Pm, and
train as well as test the NN for that value of Pm keeping the value of Pc unchanged. We find that
there is no improvement in the fitness and accuracy for Pm < 0.01, rather the fitness and accuracy
are maximum, i.e. 1/7 and 81.44%, respectively, for Pm = 0.01. Moreover, the number of elapsed
training cycle is also minimum for Pm = 0.01. So, we gradually increase the value of Pm from 0.01
and train the NN for that value of Pm keeping the value of Pc unchanged. We find that there is also
no improvement in the fitness and accuracy for Pm > 0.01; the fitness and accuracy are maximum,
i.e. 1/7 and 81.44%, respectively, for Pm = 0.01. Although the number of elapsed training cycle is
minimum, i.e. 803 for Pm = 0.2, we choose 0.01 as the value of Pm because of the accuracy and
fitness.

5.9. Reduction of Computing Units

As per the approach to find the right size of NN described in Section 3.9, we first train as well as
test a large feedforward NN, which has 4 computing units in the input layer, 30 computing units
in the hidden layer and 6 computing units in the output layer. Then we successively eliminate 2
computing units in the hidden layer, and train as well as test the reduced NN. We find that there
are fluctuations in the fitness function and accuracy as the number of computing units in the
hidden layer decreases from 30. The fitness function is the maximum, i.e. 1/5.5 when the number
of computing units in the hidden layer is 26 or 14, but the accuracy is the maximum, i.e. 91.75%
when the number of computing units in the hidden layer is only 26. We also find that the NNs
with 26 and 9 computing units in the hidden layer finish training in minimum and maximum
number of cycle, i.e. 50 and 4481, respectively.

6. ANALYSIS OF RESULTS

The NN model we implement is for GA. We use three-layer feedforward NN for this model,
where it is assumed that input layer contributes one layer. We started with a large feedforward
NN, which has 4 computing units in the input layer, 48 computing units in the hidden layer and 6
computing units in the output layer. We describe the results of the entire training, where the
number of feature is 4, in detail in the following parts of this section.

6.1. Effect of Tuning Population Size

We first train the NN letting the population size (M) equal the number of the bits comprising each
string in the population, i.e. 64. Then we test the NN with the feature vectors. We successively
increase the value of M, and train as well as test the NN for that value of M. The results achieved
are shown in Table II and Fig. 7. Here is to mention that the elapsed time of each training shown
in Table II and Fig. 7 is equal to 5 hours.

We see from Table II, Fig. 7(a) and Fig. 7(d) that the fitness function F and accuracy increase for
64 ≤ M ≤ 8192 and start decreasing at M = 10000. We also see from Table II, Fig. 7(b) and Fig.
7(c) that the limit of the number of training cycle decreases as M increases, and so is for the
number of elapsed training cycle. Larger population size indicates more number of strings, i.e.
search points, which means more likelihood of achieving better performance. In our situation,
where there are constraints on time, i.e. maximum number of training cycle 106 and maximum
amount of training time 5 hours, the fitness function and accuracy get better for M ≤ 8192 and
start getting worse for M > 8192. We also know that larger population size indicates more number
of strings, i.e. search points, which means more time for computation in a training cycle. This is

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

142

why, the limit of the number of training cycle decreases as M increases, and so is for the number
of elapsed training cycle.

TABLE II. RESULTS OF TUNING POPULATION SIZE M, WHERE MAXIMUM NUMBER OF
TRAINING CYCLE IS 106, MAXIMUM TOLERABLE ERROR IS LESS THAN 10-3, AND MAXIMUM

AMOUNT OF TRAINING TIME IS 5 HOURS

Figure 7. Results of tuning population size M, where maximum number of training cycle is 106, maximum
tolerable error is less than 10-3, and maximum amount of training time is 5 hours. (a) Fitness function F. (b)

Limit of number of elapsed training cycle. (c) Number of elapsed training cycle. (d) Accuracy.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

143

6.2. Effect of Tuning Crossover Rate

We first train the NN letting the crossover rate (Pc) equal 0.99 and the mutation rate (Pm) equal
0.01. Then we test the NN with the feature vectors. We successively decrease the value of Pc, and
train as well as test the NN for that value of Pc keeping the value of Pm unchanged. The results
achieved are shown in Table III and Fig. 8. Here is to mention that the elapsed time of each
training shown in Table III and Fig. 8 is 5 hours.

We see from Table III, Fig. 8(a) and Fig. 8(d) that there are fluctuations in the fitness function F
and accuracy for 0.5 ≤ Pc ≤ 0.99, and they are the maximum, i.e. 1/7 and 81.44%, respectively,
for Pc = 0.99. We also see from Table III and Fig. 8(b) that the limit of the number of training
cycle increases as Pc decreases from 0.99, but there are fluctuations in the number of elapsed
training cycle as Pc decreases from 0.99, and the number of elapsed training cycle is the
minimum, i.e. 565 for Pc = 0.9.

Smaller value of Pc indicates less probability of performing the crossover operation, which means
less time for computation in a training cycle. This is why, the limit of the number of training
cycle increases as Pc decreases from 0.99. We also know that values between 0.6 and 0.99,
inclusive, are reasonable choices of Pc [30]. In this context, F and the accuracy are the maximum,
i.e. 1/7 and 81.44%, respectively, for Pc = 0.99.

6.3. Effect of Tuning Mutation Rate

We first train the NN letting the crossover rate (Pm) equal 0.01 and the mutation rate (Pc) equal
0.99. Then we test the NN with the feature vectors, which comprise our entire sample. We
gradually decrease the value of Pm, and train as well as test the NN for that value of Pm keeping
the value of Pc unchanged. The results achieved are shown in Table IV and Fig. 9. Again, we
gradually increase the value of Pm from 0.01, and train as well as test the NN for that value of Pm

keeping the value of Pc unchanged so that improved fitness function and accuracy can be found.
The results achieved are shown in Table V and Fig. 10. Here is to mention that the elapsed time
of each training shown in Table IV, Fig. 9, Table V and Fig. 10 is 5 hours.

We see from Table IV, Fig. 9(a) and Fig. 9(d) that there are fluctuations in the fitness function F
and accuracy for 0.001 ≤ Pm ≤ 0.01, and they are the maximum, i.e. 1/7 and 81.44%, respectively,
for Pm = 0.01. We also see from Table IV and Fig. 9(b) that the limit of the number of training
cycle increases as Pm decreases from 0.01, but there are fluctuations in the number of elapsed
training cycle as Pm decreases from 0.01, and the number of elapsed training cycle is the
minimum, i.e. 952 for Pm = 0.01.Again, we see from Table V, Fig. 10(a) and Fig. 10(d) that there
are fluctuations in F and accuracy for 0.01 ≤ Pm ≤ 0.5, and they are the maximum, i.e. 1/7 and
81.44%, respectively, for Pm = 0.01. We also see from Table V, Fig. 10(b) and Fig. 10(c) that the
limit of the number of training cycle decreases as Pm increases from 0.01, but there are
fluctuations in the number of elapsed training cycle as Pm increases from 0.01, and the number of
elapsed training cycle is the minimum, i.e. 803 for Pm = 0.2.

Smaller value of Pm indicates less probability of performing the mutation operation, which means
less time for computation in a training cycle. This is why, the limit of the number of training
cycle increases as Pm decreases from 0.01. Conversely, the limit of the number of training cycle
decreases as Pm increases from 0.01. We also know that values between 0.001 and 0.01, inclusive,
are reasonable choices of Pm [30]. In this context, F and the accuracy are the maximum, i.e. 1/7
and 81.44%, respectively, for Pm = 0.99.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

144

TABLE IV. RESULTS OF TUNING MUTATION RATE Pm BELOW 0.01 (INCLUSIVE), WHERE
CROSSOVER RATE Pc IS 0.99, MAXIMUM NUMBER OF TRAINING CYCLE IS 106, MAXIMUM
TOLERABLE ERROR IS LESS THAN 10-3, AND MAXIMUM AMOUNT OF TRAINING TIME IS 5

HOURS

Figure 9. Results of tuning mutation rate Pm below 0.01 (inclusive), where Pc is 0.99, maximum number of
training cycle is 106, maximum tolerable error is less than 10-3, and maximum amount of training time is 5
hours. (a) Fitness function F. (b) Limit of number of elapsed training cycle. (c) Number of elapsed training

cycle. (d) Accuracy.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

145

TABLE V. RESULTS OF TUNING MUTATION RATE Pm ABOVE 0.01 (INCLUSIVE), WHERE CROSSOVER
RATE Pc IS 0.99, MAXIMUM NUMBER OF TRAINING CYCLE IS 106, MAXIMUM TOLERABLE ERROR IS

LESS THAN 10-3, AND MAXIMUM AMOUNT OF TRAINING TIME IS 5 HOURS

Figure 10. Results of tuning mutation rate Pm above 0.01 (inclusive), where Pc is 0.99, maximum number
of training cycle is 106, maximum tolerable error is less than 10-3, and maximum amount of training time is

5 hours. (a) Fitness function F. (b) Limit of number of elapsed training cycle. (c) Number of elapsed
training cycle. (d) Accuracy.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

146

6.4. Effect of Reducing Computing Units

We first train a large feedforward NN, which has 4 computing units in the input layer, 30
computing units in the hidden layer and 6 computing units in the output layer, and we test the NN
with the feature vectors, which comprise our entire sample. Then we successively eliminate 2
computing units in the hidden layer, and train as well as test the reduced NN. We carry on the
procedure until the network performance reaches an unacceptable level. The results achieved are
shown in Table VI and Fig. 11. Here is to mention that the elapsed time of each training shown in
Table VI and Fig. 11 is 5 hours.

We see from Table VI, Fig. 11(a) and Fig. 11(d) that there are fluctuations in the fitness function
F and accuracy as the number of computing units in the hidden layer decreases from 30. F is the
maximum, i.e. 1/5.5 when the number of computing units in the hidden layer is 26 or 14, but the
accuracy is the maximum, i.e. 91.75% when the number of computing units in the hidden layer is
only 26. We also see from Table VI and Fig. 11(b) that the limit of the number of training cycle
increases as the number of computing units in the hidden layer decreases from 30, but there are
fluctuations in the number of elapsed training cycle as the number of computing units in the
hidden layer decreases from 30, as shown in Table VI and Fig. 11(c). We see from Table VI and
Fig. 11(c) that the NNs with 26 and 9 computing units in the hidden layer finish training in
minimum and maximum number of cycle, i.e. 50 and 4481, respectively.

TABLE VI. RESULTS OF REDUCING COMPUTING UNITS IN HIDDEN LAYER, WHERE CROSSOVER RATE
Pc IS 0.99, MUTATION RATE Pm IS 0.01, MAXIMUM NUMBER OF TRAINING CYCLE IS 106, MAXIMUM
TOLERABLE ERROR IS LESS THAN 10-3, AND MAXIMUM AMOUNT OF TRAINING TIME IS 5 HOURS

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

147

Figure 11. Results of reducing computing units in hidden layer, where Pc is 0.99, Pm is 0.01, maximum
number of training cycle is 106, maximum tolerable error is less than 10-3, and maximum amount of training
time is 5 hours. (a) Fitness function F. (b) Limit of number of elapsed training cycle. (c) Number of elapsed
training cycle. (d) Accuracy.

Considering two of the most important performance metrics of NN models, namely accuracy and
model complexity, we come up with the decision that the NN that contains 26 computing units in
the hidden layer is the best in our context. In case of this NN, the accuracy is modest (91.75%)
and the model complexity, i.e. the number of computing units is not small (4-26-6).

7. COMPARATIVE ANALYSIS OF PERFORMANCE

We need to compare our GA-trained NN model with others’ models in order to have a proper
understanding of our model. The models implemented by others are for the environment and
constraints that may not be same as or similar to ours. It is difficult to compare the models others
implemented with ours. Hence, substantially comparative comments cannot be made.
Nevertheless, we try to perform comparison as much substantial as possible.

SVMs have been used by Murino et al. [10] for classification. Two data sets, i.e. sets of images
have been separately used in their entire work. One set contained 2 types of fabric and the other
set contained 4 types of fabric. In neither case, name of any fabric type is mentioned. However,
size of data set in both cases was adequate. The first set contained 1117 images, where the second
one contained 1333 images. They have got 99.11% and 92.87% accuracy for the first and second
set of images, respectively. Although good accuracy has been achieved for the first set of images,
the accuracy achieved for the second one is modest.

NNs have been deployed as classifiers in a number of articles, where none has performed a
detailed investigation of the feasibility of NNs they used in the context of textile defect
classification. Habib and Rokonuzzaman [1] have trained their CPN in order to classify defects

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

148

commonly occurring in knitted fabrics. They used four types of defects and two types of features.
Their sample consisted of 100 images. Their CPN had 4, 12 and 6 computing units in the input,
hidden and output layers respectively. It took 191 cycles for the CPN to be trained. A 100%-
accuracy has been found. Although the accuracy and model complexity (number of computing
units) have been good and medium respectively, the training time has been long.

Backpropagation learning algorithm has been used in [8], [11], [14] and [15]. Saeidi et al. [8]
have worked with knitted fabrics. They have first performed off-line experiments and then
performed on-line implementation. In case of off-line experiments, the sample size was 140. They
have employed a three-layer feedforward NN, which had 15, 8 and 7 computing units in the input,
hidden and output layers respectively. It took 7350 epochs for the NN to be trained. An accuracy
of 78.4% has been achieved. The model complexity (number of computing units) has been
modest. Moreover, the training time has been long and the accuracy has been poor. In case of on-
line implementation, the sample size was 8485. An accuracy of 96.57% has been achieved by
employing a feedforward NN. The accuracy has been good although the model complexity and
training time have not been mentioned. Karayiannis et al. [11] have worked with web textile
fabrics. They have used a three-layer NN, which had 13, 5 and 8 computing units in the input,
hidden and output layers respectively. A sample of size 400 was used. A 94%-accuracy has been
achieved. Although the accuracy and model complexity have been good and small respectively,
nothing has been mentioned about the training time. Kuo and Lee [14] have used plain white
fabrics and have got accuracy varying from 95% to 100%. The accuracy has been modest.
Moreover, the model complexity and training time have not been reported. Mitropulos et al. [15]
have used web textile fabrics for their work. They have used a three-layer NN, which had 4, 5 and
8 computing units in the input, hidden and output layers respectively. They have got an accuracy
of 91%, where the sample size was 400. The accuracy has been modest although the model
complexity has been small. Nothing has been mentioned about the training time. Resilient
backpropagation learning algorithm has been used in [9] and [23]. Islam et al. [9] have used a
fully connected four-layer NN, which contained 3, 40, 4, and 4 computing units in the input, first
hidden, second hidden and output layers respectively. They have worked with a sample of over
200 images. They have got an accuracy of 77%. The accuracy has been poor and the model
complexity has been large. Moreover, the training time has not been given. Islam et al. [23] have
employed a fully connected three-layer NN, which had 3, 44 and 4 computing units in the input,
hidden and output layers, respectively. 220 images have been used as sample. An accuracy of
76.5% has been achieved. The accuracy and model complexity have been poor and large
respectively. Moreover, nothing has been mentioned about the training time. Shady et al. [16]
have separately worked on both spatial and frequency domains in order to extract features from
images of knitted fabric. They have used the LVQ algorithm in order to train the NNs for both
domains. A sample of 205 images was used. In case of spatial domain, they employed a two-layer
NN, which contained 7 computing units in the input layer and same number of units in the output
layer. They achieved a 90.21%-accuracy. The accuracy has been modest although the model
complexity has been small. Moreover, the training time has not been reported. In case of
frequency domain, they employed a two-layer NN, which had 6 and 7 computing units in the
input and output layers respectively. An accuracy of 91.9% has been achieved. Although the
model complexity has been small, the accuracy has been modest. Moreover, nothing has been
mentioned about the training time.

With respect to such observation, our obtained accuracy of more than 91% and model complexity
of (4-26-6) appear to be promising enough. If maximum amount of training time were much more
than 5 hours, much good accuracy and model complexity could have been found. As we have
mentioned before, due to the lack of uniformity in the image data set, performance evaluation and
the nature of intended application, it is not prudent to explicitly compare merits of our approach
with other works. Therefore, it may not be unfair to claim that GA has enough potential to
classify textile defects with very encouraging accuracies.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

149

8. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the feasibility of GA-trained NN model in the context of
textile defect classification. We have observed and justified the impact of tuning different
network parameters. We have attempted to find proper GA model in the context of textile defect
classification by tuning these parameters. Finally, we have compared the performance of the GA
model with that of the classification models described in different articles in terms of the
performance metrics - accuracy and model complexity.

Due to small sample size, our finding is not comprehensive enough to make conclusive comment
about the merits of our implemented GA model. There remains work with GA to successfully
classify commonly occurring all types of textile defects for a sample of a very large number of
high quality images.

REFERENCES

[1] M. T. Habib and M. Rokonuzzaman, “A Set of Geometric Features for Neural Network-Based Textile
Defect Classification”, ISRN Artificial Intelligence , Volume 2012, Article ID 643473, 2012.

[2] R. Rojas, “Neural Networks: A Systematic Introduction,” Springer-Verlag, 1996.
[3] D. Anderson and G. McNeill, “Artificial Neural Networks Technology,” Contract Report, for Rome

Laboratory, contract no. F30602-89-C-0082, August 1992.
[4] Y. Shu and Z. Tan, “Fabric Defects Automatic Detection Using Gabor Filters,” World Congress on

Intelligent Control and Automation (WCICA 2004), Hangzhou, China, vol. 4, pp. 3378 – 3380, June
2004.

[5] M. Salahudin and M. Rokonuzzaman, “Adaptive Segmentation of Knit Fabric Images for Automated
Defect Detection in Semi-structured Environments,” Proceedings of the 8th ICCIT, pp. 255-260,
2005.

[6] W. Jasper, J. Joines, and J. Brenzovich, “Fabric Defect Detection Using a Genetic Algorithm Tuned
Wavelet Filter,” Journal of the Textile Institute, vol. 96, Issue 1, pp. 43 – 54, January 2005.

[7] R. Stojanovic, P. Mitropulos, C. Koulamas, Y.A. Karayiannis, S. Koubias, and G. Papadopoulos,
“Real-time Vision based System for Textile Fabric Inspection,” Real-Time Imaging, vol. 7, no. 6, pp.
507–518, 2001.

[8] R. G. Saeidi, M. Latifi, S. S. Najar, and A. Ghazi Saeidi, “Computer Vision-Aided Fabric Inspection
System for On-Circular Knitting Machine,” Textile Research Journal, vol. 75, No. 6, 492-497 (2005).

[9] M. A. Islam, S. Akhter, and T. E. Mursalin, “Automated Textile Defect Recognition System using
Computer Vision and Artificial Neural Networks,” Proceedings World Academy of Science,
Engineering and Technology, vol. 13, pp. 1-7, May 2006.

[10] V. Murino, M. Bicego, and I. A. Rossi, “Statistical Classification of Raw Textile Defects,”
icpr,pp.311-314, 17th International Conference on Pattern Recognition (ICPR'04) – vol. 4, 2004.

[11] Y. A. Karayiannis, R. Stojanovic, P. Mitropoulos, C. Koulamas, T. Stouraitis, S. Koubias, and G.
Papadopoulos, “Defect Detection and Classification on Web Textile Fabric Using Multiresolution
Decomposition and Neural Networks,” Proceedings on the 6th IEEE International Conference on
Electronics, Circuits and Systems, Pafos, Cyprus, September 1999, pp. 765-768.

[12] A. Kumar, “Neural Network based detection of local textile defects,” Pattern Recognition, vol. 36, pp.
1645-1659, 2003.

[13] D. A. Karras, S. A. Karkanis, and B. G. Mertzios, “Supervised and Unsupervised Neural Network
Methods applied to Textile Quality Control based on Improved Wavelet Feature Extraction
Techniques,” International Journal on Computer Mathematics, vol. 67, pp. 169-181, 1998.

[14] C.-F. J. Kuo and C.-J. Lee, “A Back-Propagation Neural Network for Recognizing Fabric Defects,”
Textile Research Journal, vol. 73, no. 2, pp. 147-151, 2003.

[15] P. Mitropoulos, C. Koulamas, R. Stojanovic, S. Koubias, G. Papadopoulos, and G. Karayiannis,
“Real-Time Vision System for Defect Detection and Neural Classification of Web Textile Fabric,”
Proceedings SPIE, vol. 3652, San Jose, California, pp. 59-69, January 1999.

[16] E. Shady, Y. Gowayed, M. Abouiiana, S. Youssef, and C. Pastore, “Detection and Classification of
Defects in Knitted Fabric Structures,” Textile Research Journal, vol. 76, No. 4, 295-300 (2006).

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

150

[17] J. G. Campbell, C. Fraley, D. Stanford, F. Murtagh, and A. E. Raftery, “Model-Based Methods for
Textile Fault Detection,” International Journal of Imaging Systems and Technology, vol. 10 Issue 4,
pp. 339 – 346, 2 Jul 1999.

[18] F. S. Cohen, Z. Fan, and S. Attali, “Automated Inspection of Textile Fabrics Using Textural Models,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 8, no. 13, pp. 803–808, Aug. 1991.

[19] J. G. Campbell, A.A. Hashim, T.M. McGinnity, and T.F. Lunney. “Flaw Detection in Woven Textiles
by Neural Network,” in Fifth Irish Neural Networks Conference, St. Patrick's College, Maynooth, ,
pp. 92-99, Sept. 1995.

[20] K. L. Mak, P. Peng, and H. Y. K. Lau, “A Real-Time Computer Vision System for Detecting Defects
in Textile Fabrics,” IEEE International Conference on Industrial Technology, Hong Kong, China, 14-
17, pp. 469-474, December 2005.

[21] A. Baykut, A. Atalay, A. Erçil, and M. Güler, “Real-Time Defect Inspection of Textured Surfaces,”
Real-Time Imaging, vol. 6, no. 1, pp. 17–27, Feb. 2000.

[22] F. S. Cohen and Z. Fan, “Rotation and Scale Invariant Texture Classification,” in Proc. IEEE Conf.
Robot. Autom., vol. 3, pp. 1394–1399, April 1988.

[23] M. A. Islam, S. Akhter, T. E. Mursalin, and M. A. Amin, “A Suitable Neural Network to Detect
Textile Defects,” Neural Information Processing, SpringerLink, vol. 4233, pp. 430-438, October
2006.

[24] A. Abouelela, H. M. Abbas, H. Eldeeb, A. A. Wahdan, and S. M. Nassar, “Automated Vision System
for Localizing Structural Defects in Textile Fabrics,” Pattern Recognition Letters, vol. 26, Issue 10,
pp. 1435-1443, July 2005.

[25] A. Kumar, “Computer-Vision-Based Fabric Defect Detection: A Survey,” IEEE Transactions On
IndustrialElectronics, vol. 55, no. 1, pp. 348-363, January 2008.

[26] Dwayne Phillips, “Image Processing in C”, 2nd Edt, R & D Publications, Kansas, USA.
[27] K. Mehrotra, C. K. Mohan, and S. Ranka, “Elements of Artificial Neural Netwroks,” Penram

International Publishing (India), 1997.
[28] P.-N. Tan, M. Steinbach, and V. Kumar, “Introduction to Data Mining,” Addison-Wesley, 2006.
[29] R. O. Duda, P. E. Hart, and D. G. Stork, “Pattern Classification,” 2nd ed., John Wiley & Sons, Inc.,

2001.
[30] M. H. Hassoun, “Fundamentals of Artificial Neural Networks,” Prentice_hall of India Private Ltd.,

2002.

