
International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

DOI : 10.5121/ijaia.2012.3607 57

SINGLE VS HIERARCHICAL POPULATION-BASED
MEMETIC ALGORITHM FOR SAT-ENCODED

INDUSTRIAL PROBLEMS:
A STATISTICAL COMPARISON

Noureddine Bouhmala, Karina Hjelmervik, and Kjell Ivar Øvergård

Department of Maritime Technology and Innovation
Vestfold University College, Norway

{noureddine.bouhmala, karina.hjelmervik, kjell.oevergaard}@hive.no

ABSTRACT

In this work, a hierarchical population-based memetic algorithm for solving the satisfiability problem is
presented. The approach suggests looking at the evolution as a hierarchical process evolving from a coarse
population where the basic unit of a gene is composed of cluster of variables that represent the problem to
a fine population where each gene represents a single variable. The optimization process is carried out by
letting the converged population at a child level serve as the initial population to the parent level. A
benchmark composed of industrial instances is used to compare the effectiveness of the hierarchical
approach against its single-level counterpart.

KEYWORDS

Satisfiability problem, Memetic algorithm, Hierarchical algorithm,

1. INTRODUCTION

Complex optimization problems arise in several areas of artificial intelligence and computer
science. In their full generality, these problems are NP-complete and consequently
algorithmically intractable. With the growing popularity of artificial intelligence (AI), several
researchers have applied AI techniques in extensive various fields such as expert systems, neural
network, genetic algorithms, supervised learning methods, Multi-agent systems, and fuzzy set
theory to various problems. AI methods have been applied in the field of high energy physics
where the goal is to discover the fundamental properties of the physical universe [62], predicting
hard drive failures to allow users to back up their data [40]. The field of software engineering
turns out to be a fertile ground where many software development tasks could be formulated as
learning problems and approached in terms of AI learning algorithms [66]. AI methods have
proven to provide better accuracy than statistical methods for the prediction of tumour behaviour
[45]. AI techniques have shown their superiority compared to logistic regression when predicting
the childhood obesity [65] by over 10%. In the field of logistics, travel-time information is
essential to reduce the delivery costs, increase the reliability of delivery, and improve the service
quality. Many research studies revealed the good capacity of AI techniques to estimate and
predict travel-time. The expected travel time prediction error with AI methods is approximately
4% of practical travel time [36]. Predicting energy production and consumption is an elusive task
since it has a major impact to policy and high-stakes decision making. Artificial neural networks
were used for the first time to build a predictive model to forecast United States natural gas

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

58

production [38]. In recent years, artificial intelligence, in its many integrated flavors from
artificial neural networks to memetic algorithms to fuzzy logic, has been making solid steps
toward becoming more and more accepted in the field of oil and gas industry such as reservoir
characterization [13], production engineering issues [1], and drilling [3].

Memetic algorithms (MAs) algorithms like other metaheuristics offer the advantage of being
flexible. They can be applied to any problem (discrete or continuous) whenever there is a
possibility for encoding a candidate solution to the problem, and a mean of computing the quality
of any candidate solution through the so-called objective function. MAs are among the most
successful hybrid approaches that were proposed to improve the performance of genetic
algorithms. While the combination of a population of solutions and genetic operators constitutes
the main component of MAs that act as diversification factor on the search space, the use of local
search methods helps to quickly identify better solutions in a localized region of the search space.
Nevertheless, even MAs may still suffer from either slow or premature convergence [52]. The
performance of MAs as well as other available optimization techniques deteriorates very rapidly
mostly due to two reasons. First, the complexity of the problem usually increases with its size,
and second, the solution space of the problem increases exponentially with the problem size.
Because of these two issues, optimization search techniques tend to spend most of the time
exploring a restricted area of the search space preventing the search to visit more promising areas,
and thus leading to solutions of poor quality.

In this paper, we present a hierarchical population-based memetic algorithm for SAT encoded
industrial problems. The concept suggests looking at the evolution of the population as a
multilevel process operating in a coarse-to-fine strategy (evolving from a coarse population where
each gene is composed of a cluster of variables to a fine population where each gene represents a
single variable). The experimental results are provided to demonstrate the efficiency of the
hierarchical paradigm at improving the asymptotic convergence of the single level memetic
algorithm.

The paper is organized as follows. Section 2 describes the satisfiability problem. Section 3
reviews some of the metaheuristics used with the hierarchical paradigm. Section 4 describes the
hierarchical memetic algorithm. In Section 5 we report the experimental results. Finally Section 6
discusses the main conclusions and provides some guidelines for future work.

2. THE SATISFIABILITY PROBLEM

The Satisfiability (SAT) problem which is known to be NP-complete [11] plays a central problem
in many applications in the fields of Very Large Scale Integration (VLSI) Computer-Aided
design, Computing Theory, and Artificial Intelligence. Generally, an instance of the SAT problem
is defined by a set of Boolean variables V = {v1, ... , vn} and a Boolean formula Φ : {0, 1}n → {0,
1}. The formula Φ is in conjunctive normal form (CNF) if it is a conjunction of clauses. Each
clause in turn is a disjunction of literals and a literal is a variable or its negation. The task is to
determine whether there exists an assignment of values to the variables under which Φ evaluates
to True. Such an assignment, if it exists, is called a satisfying assignment for Φ, and Φ is called
satisfiable. Otherwise, Φ is said to be unsatisfiable.

Since we have two choices for each of the n Boolean variables, the size of the search space S
becomes |S| = 2n. That is, the size of the search space grows exponentially with the number of
variables. Since most known combinatorial optimization problems can be reduced to SAT [14],
the design of special methods for SAT can lead to general approaches for solving combinatorial
optimization problems. Most SAT solvers use a Conjunctive Normal Form (CNF) representation
of the formula Φ. In CNF, the formula is represented as a conjunction of clauses, with each clause

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

59

being a disjunction of literals, and a literal being a Boolean variable or its negation. For example,
P ˅ Q is a clause containing the two literals P and Q. The clause P ˅ Q is satisfied if either P is
True or Q is True. When each clause in Φ contains exactly k literals, the resulting SAT problem
is called k-SAT.

3. A SHORT SURVEY OF HIERARCHICAL APPROACHES

Hierarchical approaches are special techniques that aim at producing produce smaller and smaller
problems that are easier to solve than the original one. These techniques were first introduced
when dealing with the graph partitioning problem (GPP) [4][20][24][30] [31][58] and have
proved to be effective in producing high quality solutions at a lower cost than single level
techniques. Recently, a memetic algorithm integrating a new hierarchical crossover operator and
a perturbation-based tabu algorithm has been introduced in [5] for GPP. Experimental studies
showed that the proposed approach performs far better than any of the existing graph partitioning
algorithms in terms of solution quality. The traveling salesman problem (TSP) was the second
combinatorial optimization problem to which the hierarchical paradigm was applied [59][60] and
has shown a clear improvement in the asymptotic convergence of the solution quality. When the
hierarchical paradigm was applied to the graph coloring problem [46], the results did not seem to
be in line with the general trend observed in GPP and TSP as its ability to enhance the
convergence behavior of the local search algorithms was rather restricted to some class of
problems. Graph drawing is another area where such techniques gave a better global quality to the
drawing and is suggested to both accelerate and enhance force drawing placement algorithms
[57]. A tabu search operating in a hierarchical context has been developed for the feature
selection problem in biomedical data [41]. The empirical results showed that the approach
obtained more accurate and stable classification than those obtained by using the other feature
selection techniques. The hierarchical paradigm has been combined with the greedy GSAT
algorithm [9] for the satisfiability problem and the broad conclusions drawn from this work was
that the multilevel context can either speed up GSAT or improve its asymptotic convergence. A
recent survey over existing hierarchical techniques can be found in [61][6][43].

4. THE HIERARCHICAL APPROACH

4.1. General Strategy

The hierarchical strategy involves recursive coarsening to create a hierarchy of increasingly
smaller and coarser versions of the original problem. The reduction phase works by grouping the
variables representing the problem into clusters. This phase is repeated until the size of the
smallest problem falls below a specified reduction threshold. Then, a solution for the problem at
the coarsest level is generated, and then successively projected back onto each of the intermediate
levels in reverse order. The solution at each child level is improved before moving to the parent
level. The hierarchical memetic algorithm is described in Algorithm 1.

4.2. Reduction Phase

Let P0 (the subscript represents the level of problem scale) be the set of literals. The next coarser
level P1 is constructed from P0 by merging literals. The merging is computed using a randomized
algorithm similar to [24]. The literals are visited in a random order. If a literal li has not been
matched yet, then a randomly unmatched literal lj is selected, and a new literal lk (a cluster)
consisting of the two literals li and lj is created. Unmerged literals are simply copied to the next
level. The new-formed literals are used to define a new and smaller problem and recursively
iterate the reduction process until the size of the problem reaches some desired threshold (lines 3-
5 of Alg.1).

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

60

Algorithm 1: The Hierarchical Memetic Algorithm
input: Problem P0

output: Solution Sfinal(P0)
1 Begin
2 level := 0 ;
3 while Not reached the desired number of levels do
4 Plevel+1:= Reduce (Plevel) ;
5 level := level + 1 ;
6 /* Proceed with Memetic algorithm */ ;
7 Sstart(Plevel) = Initial-Assignment (Plevel) ;
8 Sfinal(Plevel) = MA-Refinement (Plevel);
9 while (level > 0) do

10 Sstart(Plevel-1): = Project (Sfinal (Plevel)) ;
11 Sfinal (Plevel-1) := MA-Refinement (Sstart (Plevel-1)) ;
12 level := level - 1 ;
13 End

4.3. Initial Solution

The reduction phase ceases when the problem size shrinks to a desired threshold. Initialization is
then trivial and consists of generating an initial solution for the population of the problem (Pm)
using a random procedure. The clusters of every individual in the population are assigned the
value of true or false in a random manner (line 7 of Alg. 1).

4.4. Projection Phase

The Projection phase refers to the inverse process followed during the reduction phase. Having
improved the assignment on levelm+1, the assignment must be extended on is parent levelm. The
extension algorithm is simple; if a cluster ci ∈ Sm+1 is assigned the value of true then the merged
pair of clusters that it represents, cj, ck ∈ Sm are also assigned the true value (line 10 of Alg.1).

4.5. Improvement Phase

The idea behind the improvement phase is to use the projected population at levelm+1 as the initial
population for levelm for further refinement using MA described in the next subsections. Even
though the population at the levelm+1 is at a local minimum, the projected population may not be
at a local optimum with respect to levelm. The projected population is already a good solution and
contains individuals with high fitness value, MA will converge quicker within a few generation to
a better assignment (line 8,11 of Alg.1). As soon as the population tends to lose its diversity,
premature convergence occurs and all individuals in the population tend to be identical with
almost the same fitness value. During each level, the memetic algorithm is assumed to reach
convergence when no further improvement of the best solution has been made during five
consecutive generations.

4.5.1 Memetic Algorithms (MAs)

Memetic algorithms (MAs) represent the set of hybrid algorithms that combine Genetic
algorithms (GAs) and local search. In general the genetic algorithm improves the solution while
the local search fine-tunes the solution. They are adaptive based search optimizations algorithms
that take their inspiration from genetics and evolution process. Memetic algorithms
simultaneously examine and manipulate a set of possible solution. Given a specific problem to
solve, the input MAs is an initial population of solutions called individuals or chromosomes. A
gene is part of a chromosome, which is the smallest unit of genetic information. Every gene is

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

61

able to assume different values called allele. All genes of an organism form a genome that affects
the appearance of an organism called phenotype. The chromosomes are encoded using a chosen
representation and each can be thought of as a point in the search space of candidate solutions.
Each individual is assigned a score (fitness) value that allows assessing its quality. The members
of the initial population may be randomly generated or by using sophisticated mechanisms by
means of which an initial population of high quality chromosomes is produced. The reproduction
operator selects (randomly or based on the individual’s fitness) chromosomes from the population
to be parents and enters them in a mating pool. Parent individuals are drawn from the mating pool
and combined so that information is exchanged and passed to offsprings depending on the
probability of the cross-over operator. The new population is then subjected to mutation and
entered into an intermediate population. The mutation operator acts as an element of diversity into
the population and is generally applied with a low probability to avoid disrupting crossover
results. The individuals from the intermediate population are then enhanced with a local search
and evaluated. Finally, a selection scheme is used to update the population giving rise to a new
generation. The individuals from the set of solutions that is called population will evolve from
generation to generation by repeated applications of an evaluation procedure that is based on
genetic operators and a local search scheme. Over many generations, the population becomes
increasingly uniform until it ultimately converges to optimal or near-optimal solutions.

4.5.2. Implementation Issues

• Fitness function:

The notion of fitness is fundamental to the application of memetic algorithms. It is a
numerical value that expresses the performance of an individual (solution) so that
different individuals can be compared. The fitness function used by our memetic
algorithm is simply the minimization of the number of unsatisfied clauses.

• Representation:

A representation is a mapping from the state space of possible solutions to a state of
encoded solutions within a particular data structure. Given a set Sm at level m and an
integer l, an individual I of length l corresponds to a truth assignment of Sm such that all
the literals that make the cluster Ci, i ∈ {1, …, l} are assigned the same value as Ci. The
values True and False are represented by 1 and 0 respectively. In this representation, an
individual X corresponds to a truth assignment and the search space is the set
S = {0, 1}n.

• Initial population:

The initial population consists of individuals generated randomly in which each gene’s
allele is assigned randomly the value 0 or 1.

• Cross-over:

The task of the cross-over operator is to reach regions of the search space with higher
average quality. New solutions are created by combining pairs of individuals in the
population and then applying a crossover operator to each chosen pair. Combining pairs
of individuals can be viewed as a matching process. The individuals are visited in random
order. An unmatched individual ik is matched randomly with an unmatched individual il.
Thereafter, the two-point crossover operator is applied using a cross-over probability to
each matched pair of individuals. The two-point crossover selects two randomly points
within a chromosome and then interchanges the two parent chromosomes between these
points to generate two new offspring. Recombination can be defined as a process in

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

62

which a set of configurations (solutions referred as parents) undergoes a transformation to
create a set of configurations (referred as offsprings). The creation of these descendants
involves the location and combinations of features extracted from the parents. The reason
behind choosing the two-point crossover, are the results presented in [56] where the
difference between the different crossovers are not significant when the problem to be
solved is hard. The work conducted in [53] shows that the two-point crossover is more
effective when the problem at hand is difficult to solve.

• Mutation:

The purpose of mutation, which is the secondary search operator used in this work, is to
generate modified individuals by introducing new features in the population. By
mutation, the alleles of the produced child individuals have a chance to be modified,
which enables further exploration of the search space. The mutation operator takes a
single parameter pm, which specifies the probability of performing a possible mutation.
Let C = c1, c2,…, cm be a chromosome represented by a binary chain where each of whose
gene ci is either 0 or 1. In our mutation operator, each gene ci is mutated through flipping
this gene’s allele from 0 to 1 or vice versa if the probability test is passed. The mutation
probability ensures that, theoretically, every region of the search space is explored. If on
the other hand, mutation is applied to all genes, the evolutionary process will degenerate
into a random search with no benefits of the information gathered in preceding
generations. The mutation operator prevents the searching process from being trapped
into local optima while adding to the diversity of the population and thereby increasing
the likelihood that the algorithm will generate individuals with better fitness values.

• Selection:

The selection operator acts on individuals in the current population. During this phase,
the search for the global solution gets a clearer direction, whereby the optimization
process is gradually focused on the relevant areas of the search space. Based on each
individual quality, it determines the next population. In the roulette method, the selection
is stochastic and biased towards the best individuals. The first step is to calculate the
cumulative fitness of the whole population through the sum of the fitness of all
individuals. After that, the probability of selection is calculated for each individual as
being PSelectioni = fi/∑1

N fi.

Algorithm 2: local-refinement
input: Chromosomei
output: A possibly improved Chromosomei

1 begin
2 PossFlips ← a randomly selected variable with the largest decrease (or smallestincrease) in unsatisfied clauses ;
3 v ← Pick (PossFlips); Chromosomei ← Chromosomei with v flipped ;
4 if Chromosomei satisfies Φ then
5 return Chromosomei;
6 end

• Local search:

Finally, the last component for MAs is the use of local improvers. Algorithm 2 shows the
pseudo-code of the local search. By introducing local search at this level, the search
within promising areas is intensified. This local search should be able to quickly improve

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

63

the quality of a solution produced by the crossover operator, without diversifying it into
other areas of the search space. In the context of optimization, this rises a number of
questions regarding how best to take advantage of both aspects of the whole algorithm.
With regard to local search there are issues of which individuals will undergo local
improvement and to what degree of intensity. However care should be made in order to
balance the evolution component (exploration) against the local search component
(exploitation). Bearing this thought in mind, the strategy adopted in this regard is to let
each chromosome go through a low rate intensity local improvement. A fast and simple
heuristic is used for one iteration during which it seeks for the new variable-value
assignment which best decreases the numbers of unsatisfied clauses is identified.

5. EXPERIMENTAL RESULT

5.1. Benchmark Instances

We evaluated the performance of the hierarchical memetic algorithm (MLVMA) against its single
variant (MA) using a set of instances taken from real industrial problems. This set is taken from
the SATLIB website (http://www.informatik.tu-darmstadt.de/AI/SATLIB).

Table 1. Benchmark set of the SAT Competition Beijing

Table 1 show the instances used in the experiment. IBM SPSS Statistics version 19 was used for
statistical analysis. Due to the randomization nature of the algorithms, each problem instance was
run 100 times with a cut–off parameter (max–time) set to 15 minute. The 100 runs where chosen
because pilot runs had shown the size of the difference to be so large that 100 runs where enough
for an acceptable statistical power (power > .95), this is in accordance with the suggestions given
in a recent report on statistical testing of randomized algorithms [2].

The tests were carried out on a DELL machine with 800 MHz CPU and 2 GB of memory. The
code was written in C and compiled with the GNU C compiler version 4.6. The following
parameters have been fixed experimentally and are listed below:

http://www.informatik.tu-darmstadt.de/AI/SATLIB

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

64

• Crossover probability = 0.85
• Mutation probability = 0.1
• Population size = 50
• Stopping criteria for the reduction phase: The reduction process stops as soon as the size

of the coarsest problem reaches 100 variables (clusters). At this level, MA generates an
initial population.

• Convergence during the refinement phase: If there is no observable improvement of the
fitness function of the best individual during 10 consecutive generations, MA is assumed
to have reached convergence and moves to a higher level.

6. RESULTS

6.1. Observed Trends

The time development of the hierarchical memetic algorithm against its single variant in solving
the instances is shown in Figs. 1–8. The plots show the 100 runs of both algorithms with a cut-off
at 15 minutes as well as the mean of these runs. The curves suggest that problem solving with the
hierarchical variant happens in two phases. In the first phase, which corresponds to the early part
of the search, MLVMA behaves as a hill-climbing method. The best assignment improves rapidly
at first, and then flattens off as we reach the plateau region, marking the start of the second phase.
The plateau region spans a region in the search space where flips typically leave the best
assignment unchanged, and occurs more specifically once the refinement reaches the finest level.
It is clear from the plots that MLVMA offers a better asymptotic convergence compared to MA
especially for large instances. The instances where both algorithms reach approximately the same
solution quality (with MLVMA being marginally better), the hierarchical variant offers a cost
effective solution strategy considering the amount of time required. In our view, the efficiency of
the hierarchical approach relies on coupling the refinement process across different levels. This
paradigm offers two main advantages which enables the memetic algorithm to become much
more powerful in the hierarchical context. During the refinement phase the memetic algorithm
applies a local transformation (i.e. a move) within the neighbourhood (i.e. the set of solutions that
can be reached from the current one) of the current solution to generate a new one. The
coarsening process offers a better mechanism for performing diversification (i.e. the ability to
visit many and different regions of the search space) and intensification (i.e. the ability to obtain
high quality solutions within those regions). By allowing the gene of each individual representing
a cluster of variables at different levels, the search becomes guided and restricted to only those
configurations in the solution space in which the variables grouped within a cluster are assigned
the same value. As the size of the clusters varies from one level to another, the size of the
neighbourhood becomes adaptive and allows the possibility for both cross-over and mutation
operators of exploring different regions in the search space while intensifying the search by
exploiting the solutions from previous levels in order to reach better solutions.

6.2. Statistical Analysis

The results showing the statistical comparison of the two algorithms are presented in Table 2. We
report the mean (M) and the standard deviation (SD) of unsolved clauses for the MLVMA and
MA algorithms. The range of solutions from each algorithm is also presented in order to show the
overlap between solution spaces for any given instance. Statistical inferential analysis was done
with an independent samples t-test that compares the difference in means between the two groups.
Comparison using the non-parametric Mann-Whitney U-test gave identical results. The non-
parametric effect size measure Â12 [55] was used to evaluate the relative dominance of one
algorithm over the other. The Â12 effect size measure is calculated using the rank sum which

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

65

T
ab

le
2:

C
om

pa
ri

so
n

of
m

ul
ti-

le
ve

l(
M

L
V

M
A

)
an

d
si

ng
le

-l
ev

el
(M

A
)

m
em

et
ic

al
go

ri
th

m
s

M
L
V
M
A

M
A

In
st
an
ce

M
(S
D

)
R

an
ge

M
(S
D

)
R

an
ge

M
di

ff
.

95
%
C
Io

f
M

di
ff

.
p

O
bs

.
Â 1

2

A
12

[9
5%
C
Io

f
Â 1

2]
a

2b
it

ad
d_

10
2.

0
(.

7]
[1

-3
]

16
.3

(2
.8

)
[1

1-
25

]
14

.4
[1

3.
8,

14
.9

]
**

*
1

c
2b

it
ad

d_
11

1.
7

(.
7)

[1
-4

]
16

.3
(3

.2
)

[8
-2

4]
14

.5
[1

3.
9,

15
.2

]
**

*
1

c
2b

it
ad

d_
12

1.
5

(.
7)

[1
-3

]
1.

6
(.

7)
[1

-4
]

0.
1

[-
0.

1,
0.

3]
.2

47
.5

48
.5

47
[.

47
6,

.6
22

]
2b

it
co

m
p_

5b
1.

0
(0

)
1.

0
(0

)
0

.5
c

2b
it

m
ax

_6
1.

0
(.

2)
[1

-2
]

1.
0

(0
.1

)
[1

-2
]

0
[-

0.
1,

0.
3]

.6
53

.4
95

.4
95

[.
47

5,
.5

15
]

3b
it

ad
d_

31
13

2.
6

(1
0.

9)
[1

22
-2

16
]

11
06

.2
(1

42
.1

)
[9

23
-2

62
0]

97
3.

6
[9

45
.5

,1
00

1.
7]

**
*

1
c

3b
it

ad
d_

32
13

5.
7

(1
1.

9)
[1

23
-1

86
]

13
66

.9
(1

79
.1

)
[1

12
5-

19
74

]
12

31
.2

[1
19

5.
8,

12
66

.6
]

**
*

1
c

3b
lo

ck
s

4.
0

(1
.8

)
[2

-9
]

7.
2

(1
.0

)
[4

-9
]

3.
2

[2
.8

,3
.6

]
**

*
.9

18
.9

20
[.

87
7,

.9
58

]
4b

lo
ck

s
8.

2
(3

.1
)

[2
-1

4]
13

.0
(1

.0
)

[1
1-

18
]

4.
8

[4
.1

,5
.4

]
**

*
.9

16
.9

17
[.

87
8,

.9
53

]
4b

lo
ck

sb
5.

2
(1

.8
)

[2
-8

]
7.

3
(0

.7
)

[5
-8

]
2.

1
[1

.7
,2

.4
]

**
*

.8
47

.8
40

[.
78

0,
.8

91
]

e0
dd

r2
-1

0-
by

-5
-1

34
3.

4
(1

19
.0

)
[2

61
-6

97
]

10
87

1.
1

(3
24

.5
)

[9
89

5-
11

52
7]

10
52

7.
7

[1
04

59
.5

,1
05

95
.8

]
**

*
1

c
e0

dd
r2

-1
0-

by
-5

-4
32

0.
6

(8
0.

8)
[2

71
-7

18
]

10
96

9.
1

(3
60

.1
)

[1
01

90
-1

17
84

]
10

64
8.

5
[1

05
75

.8
,1

07
21

.3
]

**
*

1
c

en
dd

r2
-1

0-
by

-5
-1

37
1.

9
(1

44
.0

)
[2

81
-1

02
1]

12
04

2.
9

(3
78

.1
)

[1
10

64
-1

28
79

]
11

67
1.

0
[1

15
91

.2
,1

17
50

.8
]

**
*

1
c

en
dd

r2
-1

0-
by

-5
-8

35
8.

9
(1

36
.1

)
[2

78
-9

67
]

12
24

1.
3

(4
00

.0
)

[1
11

69
-1

34
46

]
11

88
2.

4
[1

17
99

.1
,1

19
65

.7
]

**
*

1
c

ew
dd

r2
-1

0-
by

-5
-1

39
9.

8
(1

66
.9

)
[2

89
-1

12
4]

12
93

9.
7

(4
07

.9
)

[1
19

60
-1

38
35

]
12

53
9.

9
[1

24
53

.0
,1

26
26

.8
]

**
*

1
c

ew
dd

r2
-1

0-
by

-5
-8

35
4.

6
(1

07
.0

)
[2

93
-7

10
]

13
53

7.
5

(4
23

.8
)

[1
23

93
-1

47
36

]
13

18
2.

9
[1

30
96

.7
,1

32
69

.1
]

**
*

1
c

N
ot

e:
M

=
M

ea
n,
SD

=
S

ta
nd

ar
d

D
ev

ia
ti

on
,M

di
ff

=
M

ea
n

D
if

fe
re

nc
e,
C
I=

C
on

fi
de

nc
e

In
te

rv
al

,O
bs

.=
O

bs
er

ve
d

V
al

ue
,p

=
p-

va
lu

e.
a
B

as
ed

up
on

10
00

0
bo

ot
st

ra
pp

ed
sa

m
pl

es
,d

ev
ia

ti
on

s
fr

om
bo

ot
st

ra
pp

ed
Â 1

2
is

du
e

to
st

oc
ha

st
ic

va
ri

an
ce

.b
A

ll
ru

ns
fo

un
d

an
op

ti
m

al
so

lu
ti

on
,f

or
th

is
in

st
an

ce
,h

en
ce

no
in

fe
re

nt
ia

ls
ta

ti
st

ic
s

is
co

m
pu

te
d.

c
E

ff
ec

ts
iz

e
Â 1

2
ca

nn
ot

be
co

m
pu

te
d

be
ca

us
e

th
er

e
is

no
ov

er
la

p
be

tw
ee

n
M

L
V

M
A

an
d

M
A

fo
r

th
es

e
in

st
an

ce
s.

**
*

=
p

<
.0

01
.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

66

is a common component in any non-parametric analysis such as the Mann-Whitney U-test [2].
Calculating Â12 is done according to the following formula

Â12 = (R1/m − (m + 1)/2)/n. (1)

where R1 is the rank sum of algorithm MLVMA, m is the number of observations in the first data
sample, and n is the number of observations in the second data sample. Calculating Â12 results in
a number between 0 and 1 that represent the probability that MLVMA will yield a better solution
than MA. If the two algorithms are equivalent then Â12 = .5, while a complete dominance of
algorithm MLVMA over MA would entail Â12 = 1.

Â12 is more easily interpreted than the more common parametric Cohen’s d [10] that represents
the mean difference between two groups in standard deviations for several reasons. First, Cohen’s
d assumes that the observed samples are normally distributed [2]. Second, when dealing with
solutions to optimization problems, a researcher or practitioner would only be interested in the
single best solution given a sample of different solutions from one or more algorithms. Hence,
using an effect size measure that indicates the probability that one algorithm would lead to a
better solution than another (given the same amount of time) would be more informative and
more easily interpretable for an optimization practitioner. The 95% confidence intervals of Â12

shown in Table 2 (where applicable) are calculated using a bootstrapping procedure [39] that is
used to estimate the 95% confidence interval of Â12. The procedure uses a computer intensive
step-by-step process that consists of the following three steps:

1. Random resampling with replacement from the original observations to create new
data sets.

2. Calculation of the rank sum of MLVMA for each new data set.
3. Using the rank sum to calculate Â12 with the equation 1. The three steps are then

repeated 1000 times and the resulting statistic Â12 is saved to create a sampling
distribution of the statistic Â12

The results indicate that MLVMA is always better than MA in 10 out of the 16 instances.
MLVMA dominates MA in three instances (for the 3blocks, 4blocks and 4blocksb-instances, Â12

is .918, .916 and .847 respectively).

For the remaining three problems (2bitadd_10, 2bitadd_11 and 2bitadd_12) there is no
statistically identifiable difference between the two algorithms after 900 seconds run time.
However, when inspecting the time series for these instances it is clear that MLVMA reaches a
solution much faster than MA.

To test possible causes for the difference in solution quality the relationship between the number
of clauses and the quality of solutions provided by the two algorithms was analyzed. The
relationship between the mean percentage of unsolved clauses and the number of clauses in each
instance was estimated using a linear regression. The relationship between the mean percentage
of unsolved clauses and the number of clauses for the MLVMA was much lower (t(15) = 3.059, b =
2.041-8, 95% CI [1.163-8, 2.714-8], p = .008, r = .633) than for the MA (t(15) = 10.067, b = 9.341-7,
95% CI [8.232-7, 1.04-6], p < .001, r = .937) indicating that the hierarchical paradigm is less
affected by the size of the problem than the standard single level memetic algorithm (see Figure 9
for a graphical representation).

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

67

Figure 1:
MLVMA Vs MA: (left) 2bitadd10.cnf, (right) 2bitadd11.cnf - Time development for 100 runs in 15

minutes.

Figure 2:
MLVMA Vs MA: (left) 2bitadd12.cnf,(right) 2bitcomp5.cnf - Time development for 100

runs in 15 minutes.

Figure 3:
MLVMA Vs MA: (left) 2bitmax6.cnf,(right) 3bitadd31.cnf - Time development for 100 runs

in 15 minutes.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

68

Figure 4:
MLVMA Vs MA: (left) 3bitadd32.cnf, (right) 3block.cnf - Time development for 100 runs

in 15 minutes.

Figure 5:
MLVMA Vs MA: (left) 4blocks.cnf, (right) 4blocksb.cnf - Time development for 100 runs

in 15 minutes.

Figure 6:
MLVMA Vs MA: (left) e0ddr2-10-by-5-1.cnf, (right) e0ddr2-10-by-5-4.cnf - Time

development for 100 runs in 15 minutes.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

69

Figure 7:
MLVMA Vs MA: (left) enddr2-10-by-5-1.cnf, (right) enddr2-10-by-5-8.cnf- Time

development for 100 runs in 15 minutes.

Figure 8:
MLVMA Vs MA: (left) ewddr2-10-by-5-1.cnf, (right) ewddr2-10-by-5-8.cnf - Time

development for 100 runs in 15 minutes.

7. CONCLUSION

A new approach for solving the satisfiability problem based on a hierarchical memetic algorithm
is presented. The approach permits the population to go through several optimization levels,
where the converged population at the previous level will serve as the starting population for the
next level. A set of industrial instances was used to get a comprehensive picture of the
performance of the new approach. The results obtained ensure that the hierarchical paradigm
greatly improves MA and always returns a better solution for the equivalent runtime compared to
MA. Our future work aims at investigating other reduction schemes and identifying other
parameters that may influence the interaction between the memetic algorithm and the hierarchical
paradigm.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

70

Figure 9: Scatterplot with regression lines showing the relationship between number of clauses per instance
for the multi-level (MLVMA) and the single-level (MA) algorithms.

REFERENCES

[1] C. Alimonti and G. Falcone, (2002) “Knowledge Discovery in Databases and Multiphase Flow
Metering: The Integration of Statistics, Data Mining, Neural Networks, Fuzzy Logic, and Ad Hoc
Flow Measurements Towards Well Monitoring and Diagnosis”, SPE 77407, Proc., SPE Annu.
Technical Conf. and Expo. held in San Antonio, Texas.

[2] A. Arcuri and L. Briand, (2011) “A Hitchhiker’s Guide to Statistical Tests for Assessing Randomized
Algorithms in Software Engineering”, Technical report, Simula research lab- oratory, number
13/2011.

[3] R. S. Balch, D. M. Hart, W. W. Weiss, and R. F. Broadhead, (2002) ”Regional Data Analysis to
Better Predict Drilling Success. “Brushy Canyon Formation, Delaware Basin, New Mexico. SPE
75145, Proc., SPE/DOE Improved Oil Recovery Symp. held in Tulsa, Oklahoma.

[4] S.T. Barnard and H.D. Simon, (1994) “A fast multilevel implementation of recursive spectral
bisection for partitioning unstructured problems”, Concurrency: Practice and Experience, Vol. 6, No.
2, pp101-117.

[5] U. Benlik and J-K. Hao, (2011) ”A Multilevel Memetic Approach for Improving Graph k- Partitions”.
IEEE Trans. Evol. Comput., , vol.15, no.5, pp624-642.

[6] C. Blum, J. Puchinger, G. R. Raidl, and A. Roli, (2011) ”Hybrid metaheuristics in combinatorial
optimization: A survey”, Applied Soft Computing, Vol. 11, pp4135-4151.

[7] D. Boughaci, B. Benhamou, and H. Drias, (2008) “Scatter Search and Genetic Algorithms for MAX-
SAT Problems”, J. Math. Model. Algorithms, Vol. 7, No. 2, pp101-124.

[8] D. Boughaci and H. Drias, (2005) “Efficient and experimental meta-heuristics for MAX-SAT
problems”, In S. E. Nikoletseas (ed.) Lecture Notes in Computer Sciences, Experimental and Efficient
Algorithms, vol. 3503, pp501-512.

[9] N. Bouhmala and O.C. Granmo, (2011) ”GSAT Enhanced with Learning Automata and Multilevel
Paradigm”, International Journal of Computer Science Issues, Vol. 8, No. 3., pp.38-54.

[10] J. Cohen, (1988) ”Statistical Power Analysis for the Behavioral Sciences 2nd ed.”, Hillsdale, NJ:
Lawrence Erlbaum.

[11] S.A. Cook, (1971) ”The complexity of theorem-proving procedures”, Proc. of the 3rd ACM Symp. on
Theory of Computing, pp151-158.

[12] B. Efron, (1982) ”The Jacknife, the Bootstrap and Other Resampling Plans”, Philadelphia, PA:
Society for Industrial and Applied Mathematics.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

71

[13] J. Finol., C. Romero., and P. Romero, (2002) ”An Intelligent Identification Method of Fuzzy Models
and Its Applications to Inversion of NMR Logging Data”, SPE 77605, Proc., SPE Annu. Technical
Conf. and Exhibition held in San Antonio.

[14] M. R. Gary and D. S. Johnson, (1979) ”Computers and intractability: A guide to the theory of NP-
completeness”, W.H. Freeman and Company, New York.

[15] I. Gent and T. Walsh, (1995) ”Unsatisfied Variables in Local Search”, In J. Hallam, (ed.), Hybrid
Problems, Hybrid Solutions, pp73-85, IOS Press.

[16] L.P. Gent and T. Walsh, (1993) ”Towards an Understanding of Hill-Climbing Procedures for SAT”,
Proc. of AAAI’93, pp.28-33, MIT Press.

[17] F. Glover, (1989) ”Tabu Search-Part 1”, ORSA Journal on Computing, Vol. 1, No. 3, pp190-206.
[18] J. Gottleib, E. Marchiori, and C. Rossi, (2002) ”Evolutionary Algorithms for the satisfiability

problem”, Evolutionary Computation, Vol. 10, No. 1, pp35-50.
[19] O.C. Granmo and N. Bouhmala, (2007) ”Solving the Satisfiability Problem Using Finite Learning

Automata”, International Journal of Computer Science and Applications, Vol. 4, No. 3, pp15-29.
[20] R. Hadany and D. Harel, (2001) ”A multi-scale algorithm for drawing graphs nicely”, Discrete

Applied Mathematics, Vol. 113, No. 1, pp3-21.
[21] P. Hansen and B. Jaumand, (1990) ”Algorithms for the Maximum Satisfiability Problem”,

Computing, Vol. 44, pp279-303.
[22] K. R. Hassnain, (2011) ”Soft Computing Approaches to DPLL SAT Solver Optimization”, Phd

Thesis, TU Darmstadt.
[23] J. S. Haukoos and R. J. Lewis, (2005) “Advanced statistics: Bootstrapping confidence intervals for

statistics with difficult distributions”, Academy of Emergency Medicine, Vol. 12, No. 4, pp360-365.
[24] B. Hendrickson and R. Leland, (1995) ”A multilevel algorithm for partitioning graphs”, In S. Karin

(ed.), Proc. Supercomputing’95, San Diego.
[25] H. Hoos, (1999) ”On the run-time behavior of stochastic local search algorithms for SAT”, Proc. of

AAAI-99, pp661-666.
[26] H. Hoos, (2002) “An adaptive noise mechanism for Walksat”, Proc. of the 18th Nat. Conf. in

Artificial Intelligence (AAAI-02), pp655-660.
[27] F. Hutter, D. Tompkins, and H. Hoos, (2002) ”Scaling and probabilistic smoothing: Efficient dynamic

local search for SAT”, In P. van Hentenryck (ed.) Lecture notes in computer science: Principles and
Practice of Constraint Programming, vol. 2470, pp233-248.

[28] A. Ishtaiwi, J. Thornton, A. Sattar, and D. N. Pham, (2005) ”Neighborhood clause weight re-
distribution in local search for SAT”, In P. van Beek (ed.) Lecture Notes in Computer Science:
Principles and Practice of Constraint Programming, vol. 3709, pp772-776.

[29] H. Jin-Kao, F. Lardeux, and F. Saubion, (2003) ”Evolutionary computing for the satisfiability
problem”, In G. R. Raidl et al., (Eds.), Lecture Notes in Computer Science: Applications of
Evolutionary Computing, vol. 2611, pp258-267.

[30] G. Karypis and V. Kumar, (1998) ”A fast and high quality multilevel scheme for partitioning irregular
graphs”, SIAM J. Sci. Comput., Vol. 20, No. 1, pp359-392.

[31] G. Karypis and V. Kumar, (1998) ”Multilevel k-way partitioning scheme for irregular graphs”, J. Par.
Dist. Comput., Vol. 48, No. 1, pp96-129.

[32] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-Brown, (2009) ”SATenstein: Automatically
Building Local Search SAT Solvers From Components”, Proc. 25th Intl. Joint Conf. Artificial
Intelligence (IJCAI-09).

[33] F. Lardeux, F. Saubion, and Jin-Kao, (2006) ”GASAT: A Genetic Local Search Algorithm for the
Satisfiability Problem”, Evolutionary Computation, Vol. 14, No. 2, pp223-253.

[34] C. M. Li, W. Wei, and H. Zhang, (2007) ”Combining adaptive noise and look-ahead in local search
for SAT”, In J. Marques-Silva and K.A. Sakallah (eds.), Lecture Notes in Computer Science: Theory
and Applications of Satisfiability Testing (SAT-07), vol. 4501, pp121-133.

[35] C. M. Li, and W. Q. Huang, (2005) ”Diversification and determinism in local search for
satisfiability”, In F. Bacchus and T. Walsh (eds.), Lecture Notes in Computer Science: Theory and
Applications of Satisfiability Testing (SAT-05), vol. 3569, pp158-172.

[36] H. Lin, M. Taylor, and R. Zito, (2005) ”A Review Of Travel-Time Prediction in Transport and
Logistics”, Proc. of the Eastern Asia Society for Transportation Studies, Vol. 5, pp1433-1448.

[37] D. McAllester, B. Selman, and H.Kautz(1997), ”Evidence for Invariants in Local Search”, Proc. of
AAAI’97, pp321-326, MIT Press.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

72

[38] S.D. Mohaghegh, (2000) ”Virtual Intelligence Applications in Petroleum Engineering: Part 1-
Artificial Neural Networks”, Journal of Petroleum Technology, Distinguished Author Series, pp64-
73.

[39] C. Z. Mooney and R. D. Duval, (1993) ”Bootstrapping - A Nonparametric Approach to Statistical
Inference”, Sage University Press.

[40] J. F. Murray, G. F. Huges, and K. K. Delgado, (2005) ”Machine Learning Methods for Predicting
Failures in Hard Drives: A Multiple-Instance Application”, Journal of Machine Learning Research,
Vol. 6, pp783-816.

[41] I. O. Oduntan, M. Toulouse, R. Baumgartner, C. Bowman, R. Somorjai, and T. G. Crainic, (2008) ”A
multilevel tabu search algorithm for the feature selection problem in biomedical data”, Computers &
Mathematics with Applications, Vol.55, No. 5, pp1019-1033.

[42] D. J. Patterson and H. Kautz, (2001) ”Auto-Walksat: A Self-Tuning Implementation of Walk- sat”,
Electronic Notes on Discrete Mathematics, Vol. 9, pp360-368.

[43] S. Pirkwieser and G. R. Raidl, (2010) ”Multilevel variable neighborhood search for periodic routing
problems”,. In. P. I. Cowling and P. Merz, (Eds.), Lecture Notes in Computer Science: Evolutionary
Computation in Combinatorial Optimization, Vol. 6022 of pp226-238, Springer-Verlag, Berlin,
Germany.

[44] S. Prestwich, (2005) ”Random walk with continuously smoothed variable weights”, In F. Bacchus
and T. Walsh (eds.), Lecture Notes in Computer Science: Theory and Applications of Satisfiability
Testing (SAT-05), vol. 3569, pp203-215.

[45] K. N. Qureshi, R. N. G. Naguib, F. C. Hamdy, D. E. Neal and J. K. Mellon, (2000) ”Neural network
analysis of clinicopathological and molecular markers in bladder cancer”, Journal of Urology, Vol.
163, pp630-633.

[46] D. Rodney, A. Soper, and C. Walshaw, (2007) ”The application of multilevel refinement to the
vehicle routing problem”, In D. Fogel et al., eds, Proc. CISChed 2007, IEEE Symp. Computational
Intell. Scheduling, pp212-219.

[47] D. Schuurmans, and F. Southey, (2000) ”Local search characteristics of incomplete SAT procedures”,
In Proc.AAAI-2000, pp297-302.

[48] D. Schuurmans, F. Southey, and R. C. Holte, (2001) ”The exponentiated sub-gradient algorithm for
heuristic Boolean programming”, In Proc. IJCAI-01, pp334-341.

[49] B. Selman, H. Levesque, and D. Mitchell, (1992)” A New Method for Solving Hard Satisfiability
Problems”, In Proc. of AAA’92, pp440-446.

[50] B. Selman, H. A. Kautz, and B. Cohen, (1994) ”Noise Strategies for Improving Local Search”, Proc.
of AAAI’94, pp337-343, MIT Press.

[51] B. Selman, and H. A . Kautz, (1993) ”Domain-Independent extensions to GSAT: Solving large
structured satisfiability problems”, In R.Bajcsy, (ed.), Proc. of the Intl. Joint Conf. on Artificial Intell.,
pp290-295.

[52] W. Sheng, X. Liu, and M. Fairhurst, (2008) ”A Niching Memetic Algorithm for Simultaneous
Clustering and Feature Selection”, IEEE Trans. on Knowledge And Data Engineering, Vol.20, No.7.,
pp868-879.

[53] W. Spears, (1995) ”Adapting Crossover in Evolutionary Algorithms”, Proc 4th Annu. Conf. Evol.
Programming, pp367-384, MIT Press,

[54] J. Thornton, D. N. Pham, S. Bain, and V. Ferreira Jr., (2004) ”Additive versus multiplicative clause
weighting for SAT”, Proc. of the 19th Nat. Conf. of Artificial Intell. (AAAI-04), pp191-196.

[55] A. Vargha, and H.D. Delaney, (2000) ”A critique and improvement of the CL Common Language
Effect Size statistics of McGraw and Wong”, Journal of Educational and Behavioral Statistics, Vol.
25, No. 2, pp101-132.

[56] D. Vrajitoru, (1999) ”Genetic programming operators applied to genetic algorithms”, In Proc. Genetic
and Evol. Computation Conf., pp686-693, Orlando, FL: Morgan Kaufmann Publishers.

[57] C. Walshaw, (2003) ”A multilevel algorithm for Forced-Directed Graph-Drawing”, Journal of Graph
Algorithms and Applications, Vol. 7, No. 3, pp253-285.

[58] C. Walshaw and M. Cross, (2000) ”Mesh partitioning: A multilevel balancing and refinement
algorithm”, SIAM J. Sci. Comput., Vol. 22, No. 1, pp63-80.

[59] C. Walshaw, (2002) ”A multilevel approach to the traveling salesman problem”, Oper. Res., Vol. 50,
No. 5, pp862-877.

[60] C. Walshaw, (2001) ”A Multilevel Lin-Kernighan-Helsgaun Algorithm for the Travel-ling Salesman
Problem”, Tech. Rep. 01/IM/80, Comp. Math. Sci., Univ. Greenwich.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol.3, No.6, November 2012

73

[61] C. Walshaw, (2008) ”Multilevel Refinement for Combinatorial Optimization: Boosting Metaheuristic
Performance”, In C. Blum et al., Hybrid Metaheuristics: Studies in Computational Heuristics, pp261-
289, Springer Verlag, Berlin, Germany.

[62] S. Whiteson and D. Whiteson, (2009) ”Machine learning for event selection in high energy physics”,
Engineering Applications of Artificial Intelligence, Vol. 22, pp1203-1217.

[63] Z.Wu., and B. Wah, (2000) ”An efficient global-search strategy in discrete Lagrangian methods for
solving hard satisfiability problems”, In Proc. of the 17th Nat. Conf. on Artificial Intell. (AAAI-00),
pp310-315.

[64] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown, (2008) ”SATzilla: Portfolio-based Algorithm
Selection for SAT”, Journal of Artificial Intelligence Research (JAIR), Vol. 32, pp565-606.

[65] S. Zhang, C. Tjortjis, X. Zeng, H. Qiao, I. Buchan, and J. Keane, (2009) ”Comparing data mining
methods with logistic regression in childhood obesity prediction”, Journal of information Systems
Frontiers, Vol. 11, No. 4, pp449-460.

[66] D. Zhang, and J. J. P Tsai, (2003) ”Machine Learning and Software Engineering”, Software Quality
Journal, Vol. 11, No. 2, pp87-119.

