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ABSTRACT 

 

In this paper, a new method for dynamic balancing of double four-bar crank slider mechanism by meta-

heuristic-based optimization algorithms is proposed. For this purpose, a proper objective function which is 

necessary for balancing of this mechanism and corresponding constraints has been obtained by dynamic 

modeling of the mechanism. Then PSO, ABC, BGA and HGAPSO algorithms have been applied for 

minimizing the defined cost function in optimization step. The optimization results have been studied 

completely by extracting the cost function, fitness, convergence speed and runtime values of applied 

algorithms. It has been shown that PSO and ABC are more efficient than BGA and HGAPSO in terms of 

convergence speed and result quality. Also, a laboratory scale experimental doublefour-bar crank-slider 

mechanism was provided for validating the proposed balancing method practically. 
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1. INTRODUCTION 
 

Dynamic balancing is one of the important concerns in high speed mechanisms such as crank 

slider mechanism, a special attention should paid to the inertia-induced force (shaking force) and 

moment (shaking moment) transmitted to the frame in order to reduce vibration amplitude. The 

methods of balancing linkages are well developed and documented in [1]. These techniques 

mostly are based on mass redistribution, addition of counterweights to the moving links, and 

attachment of rotating disks or duplication of the linkages [2]. In these methods, the shaking 

forces and shaking moments should be minimized. One of these methods is “Maximum recursive 

dynamic algorithm” that published by Chaudhary and Saha [3]. Another method which is 

documented by QI and Pennestrlis [4] is called “refined algorithm”. It presents a numerically 

efficient technique for the optimum balancing of linkages. In this approach, instead of solving 

directly the dynamic equations, a technique is introduced to solve the linked dynamic equations in 

a “shoe string” fashion. The comprehensive mass distribution method, for an optimum balancing 

of the shaking force and shaking moment is used by Yu [5] to optimal balancing of the spatial 

RSSR mechanism.  

 

In recent years, optimization techniques have received widespread interest in the engineering 

sciences. These techniques were initiated, primarily, by the advent of high speed digital 

computers which give a practical, economical and accurate means of obtaining solutions to 
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meaningful problems in the optimization of static and dynamic systems. Dynamic balancing 

inherently constitutes an optimization problem. For instance, CWB (counterweight balancing) 

involves a trade-off between minimizing the different dynamic re-actions. Therefore, determining 

the counterweights’ mass parameters is an optimization problem. Also, Alici and Shirinzadeh [6] 

considered “Sensitivity analysis”. In this technique they formulated the dynamic balancing as an 

optimization problem such that while the shaking force balancing is accomplished through 

analytically obtained balancing constraints, an objective function based on the sensitivity analysis 

of shaking moment with respect to the position, velocity and acceleration of the links is used to 

minimize the shaking moment. Evolutionary algorithms such as GA and PSO are useful in 

optimization problems, because they are easy to implement for the complex real-world problems. 

In some cases that objective function could not expressed as an explicit function of design 

variables, using these evolutionary algorithms is more suitable for optimization than the 

traditional deterministic optimization methods. Wen-Yi Lin proposed a GA-DE hybrid algorithm 

for application to path synthesis of a four-bar linkage [7]. Acharyya and Mandal[8]applied BGA 

with multipoint crossover, the PSO with the CFA (constriction factor approach) and the DE to the 

path synthesis of a four-bar linkage. Jaamiolahmadi and Farmani [9] proposed another related 

work. They described the application of GA to force and moment-balance of a four bar linkage.  

The aim of present work is applying new artificial intelligent based optimization methods for 

balancing double four-bar crank slider mechanism which is a special case of four-bar mechanism, 

but it has its own specification in dynamic balancing. Ettefagh and Abbasidoust [10] applied 

BGA for balancing of a crank slider mechanism, however in present work a comprehensive study 

of different algorithms proposed for balancing of a crank slider mechanism was carried out. The 

major objective of this paper is to compare the computational effectiveness and efficiency of 

BGA (Binary Genetic Algorithm), PSO (Particle Swarm Optimization), ABC (Artificial Bee 

Colony) and HGAPSO (Hybrid GA and PSO) algorithms. The performance of the optimization 

techniques in terms of computational time and convergence rate is compared in the results 

section. After kinematics formulating of the mechanism and extracting the object function with 

its’ constraints, results of the proposed method on a simulated mechanism will be reported. 

Finally, for experimentally validation of the method, a laboratory scale experimental crank slider 

mechanism will be considered and the proposed optimization method will be applied for its 

balancing. 

 

2. MODELLING 
 

The selected mechanism in this paper is shown in Figure 1, which is a benchmark double four-bar 

mechanism and this mechanism is applied in different machines [10]. Therefore the proposed 

balancing method in this paper may be easily applied to other mechanisms in different machines 

for balancing. As shown in Figure 1, the mechanism contains two cranks-sliders and four rotating 

disks. Each rode is attached to disk 1 and disk 4. All disks are connected to a shaft which is 

rotating with an electromotor. When the mechanism is working, shaking force and moments 

cause frame to vibrate. Our goal is to minimize shaking forces and moments according to the 

regarded constraints. The mechanism is modeled as shown in Figure 2 by computing shaking 

forces of the mechanism on all four planes. 
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Figure 1.Schematic diagram of the considered double four-bar crank-slider mechanism [10]  

 

 

 
 

Figure 2.Shaking forces of the mechanism on all four plans [10] 

 

In this paper, the method used for balancing is the addition of two counterweights on disks 2 and 

3. In addition, system has an unbalance mass on disk 2. Shaking forces in crank slider as the 

dynamical forces of mechanism are formulated as: 

2
f m R
c c

ω=                                                                                                                (1) 

2
(cos cos 2 )

R
f m R
p p L

ω θ θ= +
                                                                   

(2) 

Where c
m is the eccentric mass and pm is the equal mass of the slider, R is corresponding radius 

and ω  is mechanism rotating speed. Also, θindicates the angular position of the disk and L is the 

connecting rod’s length. Equilibrium on x and y axes due to the acting forces are described by: 
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Also Momentum equilibrium equations are written as: 
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m0 is the constrain mass on disk 2, R0 and �	are corresponding radius and angular position of the 

mass, respectively.  

 

In construction of optimization problems, as described before, some parameters of system is 

applies as the variables of cost function to minimize it. In our method, m1, m2, φ1, φ2, r1 and r2 are 

counterweights parameters that are unknown. We take r1 and r2 as known parameters. So we 

define the cost function as below. The cost function is consisting of forces equations and the 

constraints are considered by moment equations. For this purpose, we define some parameters as 

P1, P2, P3 and P4 as below: 

 

( )
1

P Fxθ ∑=    , ( )
2

P Fyθ ∑=                                                                                          (7) 

( )
3

P M xθ ∑=  ,  ( )
4

P M yθ ∑=
                                                                            

(8) 

 

These parameters are the sum of forces and moments in x, y direction. Consequently, the cost 

function is: 

 

Cost function: f(m1,m2,φ1,φ2) = { ( ) ( )}1 2P P dAθ θ+∫                                                        (9) 

 

The cost function is a function of the parameters m1, m2, φ1 and φ2, which should be found. In 

other words, the cost function is the area that { ( ) ( )}1 2P Pθ θ+ makes in polar system. Our goal is 

to minimize this area. Additionally, by defining C1 and C2 as follows: 

 

C1(m1,m2,φ1,φ2) = ( )3P dAθ∫                                                                                        (10) 

C2(m1,m2,φ1,φ2) = ( )4P dAθ∫                                                                                         (11) 
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Constraints are considered such that C1 and C2 to be less than predefined values which 

determined by searching among the maximum value of them during running the Meta-Heuristic 

Algorithms. 

 

3. APPLYING META-HEURISTIC ALGORITHMS 

 
PSO, ABC and HGAPSO algorithms, which is introduced in summary in following section, are 

applied for minimizing the mentioned cost function with defined constraints as it was described in 

previous section. 

 

3.1. Particle Swarm Optimization algorithm 

 
The PSO method introduced for the first time in 1995 by Kennedy and Eberhart [11]. This 

method based on social behavior of organisms such as fish schooling and bird flocking. Because 

of its simple concept and quick convergence, PSO can be applied to various applications in 

different fields. The approach uses the concept of population and a measure of performance like 

the fitness value used with other evolutionary algorithms. Similar to other evolutionary 

algorithms, the system is initialized with a population of random solutions, called particles. 

Each particle maintains its own current position, its present velocity and its personal best position 

explored so far. The swarm is also aware of the global best position achieved by all its members. 

The iterative appliance of update rules leads to stochastic manipulation of velocities and flying 

courses. During the process of optimization the particles explore the D-dimensional space, 

whereas their trajectories can probably depend both on their personal experiences, on those of 

their neighbors and the whole swarm, respectively. In every iteration, each particle is updated by 

following the best solution of current particle achieved so far (�����) and the best of the 

population (�����). When a particle takes part of the population as its topological neighbours, the 

best value is a local best. The particles tend to move to good areas in the search space by the 

information spreading to the swarm. The particle is moved to a new position calculated by the 

velocity updated at each time step t. This new position is calculated as the sum of the previous 

position and the new velocity by equation (12). 

 

	
��
 = �	
� + �
�����0,1�������
 − �
�� + �
�����0,1�������� − �
��                              (12) 

The velocity updated as following equation: 

�
��
 = �
� + 	
��
                                                                                                                      (13) 

 

The parameter w is called the inertia weight and controls the magnitude of the old velocity 	
� in 

the calculation of the new velocity which is	
��
		, whereas the acceleration factors C1and 

C2determine the significance of ����� and  ����� respectively. In the present work we selected 

C1=0.25 and C2 =0.15. Furthermore,�
�is the current particle position and �
��
is the new position 

of the particle.	�����0,1�	is the random number uniformly distributed. In general, the inertia 

weight w is set according to the following equation: 

 

� = �� ! − "#$%&'#$()
*+$%&

, × .���			                                                                                         (14) 

 

Where wmax is initial weight, wmin is final weight, Irmax is the maximum number of iteration 

(generation) and .���is current iteration number.  

 

Main steps of the procedure are: 

1. Position and initial velocity of particles are generated randomly. 

2. The objective function value i calculated for each particle. 
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3. ����� For each particle is considered equal to its initial position (In the first iteration). 

Also ����� determined. 

4. Modify position and velocity of each particle using the equations (12) and (13). 

5. Calculate the overall objective function for each particle. 

6. If the value of new overall objective function is better than the value of each particle in P-

best, then it would be replaced in P-best and if in whole new population gets found which 

is better fitting in objective function would be replaced by g-best. 

7. Repeat steps 4 to 7 to reach the maximum number specified .The final answer is obtained 

from the �����in the last iteration. 

 

Figure 3 shows the flowchart of the developed PSO algorithm [11]. 

 

 
 

Figure 3.  Flowchart of the PSO algorithm 

 

3.2. Artificial Bee Colony algorithm 

 
The artificial bee colony (ABC) algorithm is a new population-based stochastic heuristic 

approach which was introduced for the first time by Karaboga in 2005 [12]. This algorithm is 

very simple and flexible, which does not require external parameters like crossover rates, 

especially suitable for engineering application. The colony of artificial bees consists of three 

groups of bees to search foods generally, which includes employed bees, onlookers and scouts. 

The first half of colony consists of the employed artificial bees and the second half includes the 

onlookers. The employed bees search the food around the food source in their memory. They 

perform waggle dance upon returning to the hive to pass their food information to the other of the 

colony (the onlookers). The onlookers are waiting around the dance floor to choose any of the 

employed bees to follow based on the nectar amount information shared by the employed bees. 

The employed bee whose food source has been exhausted by the bees becomes a scout who must 

find new food source. For every food source, there is only one employed bee. In other words, the 

number of employed bees is equal to the number of food sources around the hive. The onlooker 

bee chooses probabilistically a food source depending on the amount of nectar shown by each 

employed bee, see equation (15). 

 

�
 = /
�(
∑ /
�(12
)34

                                                                                                                              (15) 
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Where	56�
 is the fitness value of the solution i and SN is the number of food sources which are 

equal to the number of employed bees. 

 

Each bee searches for new neighbor food source near of their hive. After that, employed bee 

compares the food source against the old one using equation 16. Then, it saves in their memory 

the best food source [13-14]. 

 

7
89:# = �
8;<= + >
8��
8;<= − �?8;<=�                                                                                             (16) 

 

Where	@ ∈ {1,2,3,… , F�} and H ∈ {1,2,3,… , �} are chosen randomly. φIJ is a random number 

between [-1, 1]. In ABC, Providing that a position cannot be improved further through a 

predetermined number of cycles, then that food source is assumed to be abandoned. The value of 

predetermined number of cycles is an important control parameter of the ABC algorithm, which 

is called “limit” for abandonment. Assume that the abandoned source is �
 and j= {1, 2… N} then 

the scout discovers a new food source to be replaced with�
. This operation can be defined using 

equation 17. 

 

xI
J = xJLIM + rand�0,1��xJLRS − xJLIM�                                                                                      (17) 

 

ABC implementation stages of the algorithm: 

1. Initialization 

2. Place employed bees on the food sources 

3. Place onlookers on the food sources 

4. Send scout to carry out the global search 

 

Flowchart of the ABC algorithm is shown in figure4 [12]. 

 

 
 

Figure 4.  Flowchart of the ABC algorithm  
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3.3. Hybrid of Genetic Algorithm and Particle Swarm Optimization (HGAPSO) 
 

Concept of GA: 

 

Genetic algorithm was introduced by John Holland in 1967. Later, in1989, by Goldberg’s 

attempts got accepted. And today, due to its capability, it has prosperous place among other 

methods. Routine optimization in genetic algorithm bases on random- directed procedure. In this 

way depending on Darwin’s theory of evolution and fundamental ideas the method has been 

firmed. First of all, for some constants which are called population, a swarm of main parameters, 

eventually get produced. After performing scalar simulator program, a number that is attributed as 

standard deviation or set fitness data, impute as a member of that population. Fitness process is 

done for all created members then by summoning genetic algorithm operators such as succession 

(crossover), mutation and next generation selection (selection) are formed. This routine continues 

till satisfying convergence [15].  

 

Concepts of PSO: 

 

Initially, velocity and position of each particle randomly select and direct all particles gradually to 

the best answer. PSO has high speed in local and total search. Applying PSO takes to dominate 

rapid and untimely convergence of GA that is achieved with elitism operations. Also, PSO can fit 

particles of each generation whereas GA is seeking for an answer generation to generation. 

Depending on these points, GA and PSO are good supplements of each other [16].  

 

The HGAPSO algorithm is following as bellow: 

1. A population randomly should be selected, initially, which is parameters of GA and 

particles of PSO. 

2. The fitness of concluding is calculating. 

3. Half of population with high fitness would be selected and then PSO function would be 

performed. But a factor breeding ratio was presented with φsymbol [17]. The factor 

determines the percentage of population on which the PSO operation is done. 

4. Enhanced elites would be transmitted to the next generation directly and mutation and 

remixing functions would be done on the rest population. 

 

Figure 5 shows all the above steps and flowchart of the HGAPSO algorithm is shown in Figure6 

[16]. 

 
 

Figure5.  Steps of HGAPSO algorithm [16] 
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Figure 6.  Flowchart of the HGAPSO algorithm  

 

4. RESULTS AND DISCUSSION 

 
In this section the results of mentioned algorithms implementation in our optimization problem 

for minimizing cost function will be presented and discussed. Table 1 expresses the results of 

dynamic balancing optimization with PSO, ABC, BGA and HGAPSO algorithms for 200 and 300 

iterations. Also programming is done with MATLAB12, with 2.8 GHZ computer system 

processor and 1024MB memory. By these tables, best and worst average results are shown in 

bold. Results comparison indicates that PSO algorithm is more efficient than other algorithms, as 

the average cost of objective function for 20 iterations is 29853.35062, and for 300 iterations is 

29853.30955 that is less than three other algorithms. 
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Table 1. Results of dynamic balancing optimization with PSO, ABC, BGA and HGAPSO algorithms for 

200 and 300 iterations 

 

 
Statistical Results Obtained by the BGA algorithm for 200 Generation 
Experiment M1 M2 Fi1 Fi2 Cost  CPU Time 

#1 425.2199 770.088 2.260227 4.907395 29917.7403 27.816430 

#2 200 312.61 3.144664 4.710854 30037.9671 29.935968 

#3 425.2199 648.6804 2.395349 4.944247 29982.0926 28.821098 

#4 305.5718 374.1935 3.722004 5.220633 29854.0986 28.366290 

#5 312.61 648.6804 2.352356 4.876685 29914.4407 32.985386 

#6 368.915 789.4428 1.228384 4.391474 29928.107 32.076005 

#7 1183.5777 1099.1202 2.9419802 5.7979735 30043.6419 28.184769 

#8 555.4252 310.8504 3.924688 6.04365 29876.8727 28.312547 

#9 425.2199 873.9003 1.959273 4.802982 29867.9256 31.578058 

#10 536.0704 407.6246 5.312762 3.138522 29895.7188 30.211240 

Average     29931.86 29.82878 

Best     29854.1 27.81643 

Worst     30043.64 32.98539 
 

 

Statistical Results Obtained by the ABC algorithm for 200 Iterations 
Experiment M1 M2 Fi1 Fi2 Cost  CPU Time 

#1 957.917 878.0169 9.631981 4.870459 29853.8571 24.515309 

#2 458.3323 857.7992 8.598309 5.188452 29854.7879 24.497529 

#3 1131.1942 1101.4885 9.2855979 1.8518603 29856.3607 25.638495 

#4 217.0502 221.4425 10.7222 13.26839 29854.8753 25.814662 

#5 260.4993 623.3153 8.486066 11.19885 29855.1337 26.448376 

#6 677.15 321.5682 10.37823 6.049843 29854.5122 28.761479 

#7 1237.6854 960.86413 10.019323 5.8620878 29856.5621 27.566192 

#8 746.1877 749.8799 6.339937 9.548391 29854.274 27.581421 

#9 639.2974 315.6203 7.741611 12.66076 29855.4856 27.869337 

#10 683.5569 888.9545 2.799224 3.648658 29854.6395 27.622605 

Average     29855.04881 26.6315405 

Best     29853.8571 24.497529 

Worst 
    29856.5621 28.761479 

 

 

Statistical Results Obtained by the BGA algorithm for 300 Generation 
Experiment M1 M2 Fi1 Fi2 Cost  CPU Time 

#1 585.3372 416.4223 3.777281 5.94538 29860.512 69.617549 

#2 537.8299 845.7478 0.393083 3.881694 29979.2346 75.797888 

#3 363.6364 536.0704 3.040251 5.208349 29900.57 70.299023 

#4 620.5279 0.7861659 4.121229 256.305 29988.9287 61.185702 

#5 397.0674 648.6804 2.745439 5.128504 29896.1839 67.436636 

#6 321.4076 529.0323 5.920812 3.90012 29866.535 73.210396 

#7 228.1525 690.9091 1.940847 4.710854 29866.4603 85.515155 

#8 200 564.2229 1.670603 4.465177 29976.0744 67.414340 

#9 268.6217 310.8504 3.924688 5.067085 29864.7926 65.666551 

#10 485.044 423.4604 3.531605 5.650567 29900.5253 77.981415 

Average     29909.98 71.41247 

Best     29860.51 61.1857 

Worst     29988.93 85.51516 
 

 

Statistical Results Obtained by the ABC algorithm for 300 Iterations 
Experiment M1 M2 Fi1 Fi2 Cost  CPU Time 

#1 889.97288 1026.2293 6.8552951 13.822746 29856.0266 40.422035 

#2 374.24233 1405.1666 7.839461 10.87474 29859.7044 42.796960 

#3 260.895      501.8795      7.752119      10.27209 29854.4018 40.764053 

#4 1624.3941 1153.022 10.633852 7.5664349 29855.7171 43.498866 

#5 843.7006 359.6281 11.00391 8.106481 29854.1593 45.076684 

#6 772.2693 653.4779 5.531582 9.657654 29854.0499 48.079070 

#7 2632.9495 1494.202 4.5137612 7.6742805 29854.0659 48.203408 

#8 1440.1067 1182.0524 10.868796 9.1406666 29854.8792 47.887119 

#9 782.1371 569.479 9.691396 6.195521 29855.4519 49.274214 

#10 655.3956 612.1464 9.454865 5.618574 29853.7587 45.614997 

Average     29855.22148 45.1617406 

Best     29853.7587 40.422035 

Worst 
    29859.7044 49.274214 

 

 

Statistical Results Obtained by the PSO algorithm for 200 Iterations 
Experiment M1 M2 Fi1 Fi2 Cost  CPU Time 

#1 945.7894 457.6034 4.413292 7.388778 29853.3719 13.877018 

#2 464.4661 715.8224 9.17736 5.266925 29853.3846 13.174372 

#3 83.58313 483.6949 5.854242 10.68152 29853.3894 12.264391 

#4 142.892 479.2902 6.42547 11.13792 29853.4599 12.552338 

#5 190.3871 344.1711 7.216235 11.11191 29853.3813 12.357725 

#6 112.7041 583.2056 6.888962 10.70696 29853.305 13.300798 

#7 156.9876 467.6164 5.76949 10.52967 29853.2973 13.855493 

#8 1201.8414 738.00028 4.2686516 10.352361 29853.2971 14.755708 

#9 527.3684 161.494 10.53725 6.146666 29853.3101 13.943058 

#10 766.8097 318.9964 11.13244 8.445869 29853.3096 12.585938 

Average     29853.35062 13.2666839 

Best     29853.2971 12.264391 

Worst     29853.4599 14.755708 
 

 

Statistical Results Obtained by the HGAPSO algorithm for 200 Generation 
Experiment M1 M2 Fi1 Fi2 Cost  CPU Time 

#1 1319.7893      1775.2657      6.7011554      6.7630704 30080.102 32.479893 

#2 352.3594      690.4537      9.285448      9.868578 29960.9037 34.840757 

#3 476.5722      573.7634      9.527518      9.562658 30036.1098 34.614229 

#4 828.16894      1221.9607       8.309838      9.2001952 29943.6233 34.057494 

#5 1841.2912      1609.2847      6.4433827      9.4164658 29994.6861 33.216922 

#6 1508.8175       772.7226      7.3714832      7.1583033 30080.1051 33.737740 

#7 1036.9438      1116.5328      7.1023018       9.321701 30033.1305 35.140728 

#8 1494.2831      632.94301      9.5999394      9.6251599 30069.7696 34.970999 

#9 763.2089      318.8483       7.74299      7.563557 30040.2645 34.003678 

#10 1129.1558       619.2222      9.6453097      6.6337606 30060.2337 35.567686 

Average     30029.89283 34.2630126 

Best     29943.6233 32.479893 

Worst     30080.1051 35.567686 
 

 

Statistical Results Obtained by the PSO algorithm for 

300 Iterations. 

Experiment M1 M2 Fi1 Fi2 Cost  CPU Time 

#1 393.2882 107.7893 7.67673 14.09963 29853.3602 21.686771 

#2 244.4886 443.838 9.758278 8.21717 29853.297 21.145141 

#3 388.6466 160.5542 11.11079 7.028177 29853.2968 20.927836 

#4 384.6346 115.9811 10.82956 7.769524 29853.3014 20.836519 

#5 262.538 702.0516 5.413787 7.99123 29853.3227 21.101022 

#6 360.6737 355.9938 8.498214 6.902059 29853.3127 20.567431 

#7 428.9131 143.0469 7.97523 6.787767 29853.2976 22.235461 

#8 349.7185 152.8699 10.91113 10.70469 29853.2995 21.991660 

#9 1370.8073 960.25814 10.353903 6.9624157 29853.2968 22.241028 

#10 493.1262 83.99186 83.99186 5.966398 29853.3108 21.751784 

Average     29853.30955 21.4484653 

Best     29853.2968 20.567431 

Worst     29853.3602 22.241028 
 

 

Statistical Results Obtained by the HGAPSO algorithm 

for 300 Generation. 
Experiment M1 M2 Fi1 Fi2 Cost  CPU Time 

#1 772.9007 595.1176 6.86203 7.937233 30073.0299 51.955371 

#2 882.80336 1896.9992 7.2606345 9.959396 29955.7353 55.753747 

#3 375.9766 405.99 7.360915 9.92088 30037.4567 55.435066 

#4 355.42156 1227.6115 9.7068992 9.2411975 29982.7794 55.902381 

#5 1572.9019 874.43037 7.0439925 8.9360977 30068.9326 55.842394 

#6 398.9521 827.0116 7.097475 8.669514 30007.8626 54.642494 

#7 1411.5414 574.13944 8.6237598 6.9623394 29936.2702 56.950295 

#8 1856.2111 871.64681 7.7394652 9.7647663 30046.7941 56.097725 

#9 1827.0208 321.74463 8.1571052 9.2847123 29968.9997 56.730746 

#10 770.12423 1724.5737 9.4666394 8.4071409 29951.5584 55.731429 

Average     30002.94189 55.5041648 

Best     29936.2702 51.955371 

Worst     30073.0299 56.950295 
 

 

Also, above mentioned results in the table are illustrated in Figures7 and 8 in bar chart which 

show the comparison of objective function cost. By observing these figures, it may be concluded 

that the cost order is as following: PSO<ABC<BGA<HGAPSO. 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013 

11 

 
 

Figure7.  Comparing cost function value for 200 Iterations 

 

 

 
 

Figure8 .  Comparing cost function value for 300 Iterations 

 

In addition, the runtime comparison shows that PSO algorithm finds the optimal solution in 

shorter time than the others. Also the average runtime for this algorithm for 200 iterations is 

13.2666839 seconds and for 300 iterations is 21.4484653 seconds. According to numerical results 

PSO algorithm is 3.84 times faster than BGA and 2.56 times faster than HGAPSO and 2.21 times 

faster than ABC. Figures 9 and 10 indicate the runtime of these algorithms for one performance 

with 200 and 300 iterations, respectively. By observing these figures, it maybe found that the 

runtime order is as following: PSO<ABC<HGAPSO<BGA. It should be mentioned that the 

runtime for Hybrid algorithm of BGA and PSO algorithm is 1.5 times faster than BGA algorithm 

in reaching optimal solution. 
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Figure 9.  Comparing runtime for 200 iterations 

 

 
 

Figure 10.  Comparing runtime for 300 iterations 

 

Figure 11 indicates the time order of these algorithms for one performance with 100 and 200 

repetitions. In this chart, the implementation of time progress of these algorithms is in term of 

seconds. 
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Figure 11. Computation time variation versus generation for 100 iterations 

Figure 12 shows fitness functions

fluctuation of fitness value for 

while this range for BGA and HGAPSO is approximately 

difference between the best and worst result of the BGA and HGAPSO algorithms indicates the 

weakness and dependence of these two algorithms and

while PSO and ABC solution range is around the mean 

them. Also, the PSO and ABC algorithms are close 

stability of these two algorithms.

 

Figure12.  Fitness functions fluctuation for 100 runs for

Figure 13 and 14 display the four algorithms convergence 

300 iterations). According to the minimization target, 

considered is that the charts are descending. 

objective function. As comparing of these two 

algorithms get convergence approximately

solution in high speed rather than HGAPSO and GA.
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Computation time variation versus generation for 100 iterations  

(Left) and 200 iterations (right) 

 

fitness functions of four algorithms in 100 runs. In this figure 

for BGA and HGAPSO algorithms is between 29853 an

BGA and HGAPSO is approximately between 29853 and 30200.

difference between the best and worst result of the BGA and HGAPSO algorithms indicates the 

weakness and dependence of these two algorithms and their sensitivity to the initial population

while PSO and ABC solution range is around the mean values, so it indicates the stability of 

the PSO and ABC algorithms are close to average result that this matter indicates

. 

 

Fitness functions fluctuation for 100 runs for four algorithms 

 

the four algorithms convergence in a sample run of them (for 200 and 

300 iterations). According to the minimization target, an important point which

considered is that the charts are descending. In addition the scale of 10U is using for measuring of 

objective function. As comparing of these two figures, it may be observed that the PSO and ABC 

approximately after 30 generations also they achieve the optimized 

solution in high speed rather than HGAPSO and GA. 
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Figure13.Convergence plot for 200 iterations 

 

 
 

Figure14.Convergence plot for 300 iterations 

 

Finally, Figure15 indicates cost function diagram in balanced and unbalanced states by mentioned 

algorithms in polar plot. This type of plot is a standard plot which applied for illustrating the 

ability of the proposed method in balancing of the mechanism in one revolution of the mechanism 

driver (0-360
o
).  As it was described in previous sections, the main purpose of optimization is 

minimizing of the cost function in equation 9 which maybe interpreted as minimizing the limited 

area in the mentioned plot. Therefore better balancing method is a method which has minimum 

and uniform area in the polar plot. By observing this figure, it maybe concluded that PSO has 

better performance than other algorithm, because it contains minimum area in comparing with 

other algorithms. 
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Figure 15. Polar plot of cost function for unbalanced and balanced states by applying different algorithms 

 

5. EXPERIMENTALLY VALIDATION OF THE PROPOSED METHOD 

 
For showing the practicability of the proposed balancing method based on mentioned 

optimization algorithms, a laboratory scale experimental double four-bar crank-slider mechanism 

was provided as shown in Figure16 [10].By using two accelerometers (type 4507 B&K Co.) and 

data acquisition system (PULSE B&K Co.), the acceleration of the right and left bearing of the 

mechanism can be extracted. Also a tachometer (Type 0024 MM B&K Co.) is applied for 

identifying the one revolution of the crank for estimating the angular acceleration.  As a sample, 

the acceleration signals of the unbalanced and balanced mechanism, applying BGA, are 

illustrated in Figures 17 and 18. By comparing the mentioned linear and angular acceleration 

signal of the unbalanced and balanced mechanism, the possibility and accuracy of the proposed 

method in balancing of real mechanisms can be observed. In addition the corresponding angular 

acceleration signals are illustrated in Figure 19.  As it is obvious from these figures, the proposed 

method is able to balance the mechanism because the overall amplitude of the linear and angular 

acceleration was decreased after balancing. Other similar results may be obtained by applying 

other algorithms, which cannot be illustrated in this paper because of the page limitation. By 

considering the experimental result, it can be observed that the same conclusion maybe derived as 

in previous section while comparing these algorithms. 
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Figure16.A laboratory scale experimental double four-bar crank-slider mechanism setup 

 

 
 

Figure17.  Acceleration signal of the right part of the mechanism for before and after balancing 

 
 

 
Figure18.Acceleration signal of the left part of the mechanism for before and after balancing  
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Figure 19.  Angular acceleration signal of the mechanism for before and after balancing 

 

6. CONCLUSION 

 
In this paper, four Meta-Heuristic algorithms, that are PSO, ABC, BGA and HGAPSO, were 

applied for balancing of double four-bar crank slider mechanism. This mechanism is a basic and 

benchmark mechanism which is applied in different machine and engines. Therefore proposed 

balancing method may be applied for different type of machines for reducing the vibration and 

noise because of unbalancing. Kinematic modelling of the mechanism and suitable objective 

function which should be minimized and the constraints are derived. In order to comparing the 

optimization algorithm, different results based on cost function, fitness, convergence speed and 

runtime values were extracted and studied. The results show that the PSO algorithm converges 

quickly to the optimum solution, while the optimality of PSO solutions has a higher quality than 

other algorithms. Also, reviewing the responses of the four algorithms in several performances 

with various primary populations determined that, PSO and ABC are more stable than BGA and 

HGAPSO. Therefore PSO and ABC have a good potential in finding optimal solution and its 

convergence characteristics are more favourable. In addition, the practicability of the method was 

proved by applying the proposed method on a laboratory scale experimental complex crank slider 

mechanism. 
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