
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

DOI : 10.5121/ijaia.2013.4501 1

DOUBLE FOUR-BAR CRANK-SLIDER MECHANISM

DYNAMIC BALANCING BY META-HEURISTIC

ALGORITHMS

Habib Emdadi
1
, Mahsa Yazdanian

2
, Mir Mohammad Ettefagh

3
 and Mohammad-

Reza Feizi-Derakhshi
4

1,4

Department of Computer Engineering, University of Tabriz, Tabriz, Iran
2,3

Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran

ABSTRACT

In this paper, a new method for dynamic balancing of double four-bar crank slider mechanism by meta-

heuristic-based optimization algorithms is proposed. For this purpose, a proper objective function which is

necessary for balancing of this mechanism and corresponding constraints has been obtained by dynamic

modeling of the mechanism. Then PSO, ABC, BGA and HGAPSO algorithms have been applied for

minimizing the defined cost function in optimization step. The optimization results have been studied

completely by extracting the cost function, fitness, convergence speed and runtime values of applied

algorithms. It has been shown that PSO and ABC are more efficient than BGA and HGAPSO in terms of

convergence speed and result quality. Also, a laboratory scale experimental doublefour-bar crank-slider

mechanism was provided for validating the proposed balancing method practically.

KEYWORDS

Mechanism; balancing; BGA; PSO algorithm; ABC algorithm; HGAPSO algorithm

1. INTRODUCTION

Dynamic balancing is one of the important concerns in high speed mechanisms such as crank

slider mechanism, a special attention should paid to the inertia-induced force (shaking force) and

moment (shaking moment) transmitted to the frame in order to reduce vibration amplitude. The

methods of balancing linkages are well developed and documented in [1]. These techniques

mostly are based on mass redistribution, addition of counterweights to the moving links, and

attachment of rotating disks or duplication of the linkages [2]. In these methods, the shaking

forces and shaking moments should be minimized. One of these methods is “Maximum recursive

dynamic algorithm” that published by Chaudhary and Saha [3]. Another method which is

documented by QI and Pennestrlis [4] is called “refined algorithm”. It presents a numerically

efficient technique for the optimum balancing of linkages. In this approach, instead of solving

directly the dynamic equations, a technique is introduced to solve the linked dynamic equations in

a “shoe string” fashion. The comprehensive mass distribution method, for an optimum balancing

of the shaking force and shaking moment is used by Yu [5] to optimal balancing of the spatial

RSSR mechanism.

In recent years, optimization techniques have received widespread interest in the engineering

sciences. These techniques were initiated, primarily, by the advent of high speed digital

computers which give a practical, economical and accurate means of obtaining solutions to

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

2

meaningful problems in the optimization of static and dynamic systems. Dynamic balancing

inherently constitutes an optimization problem. For instance, CWB (counterweight balancing)

involves a trade-off between minimizing the different dynamic re-actions. Therefore, determining

the counterweights’ mass parameters is an optimization problem. Also, Alici and Shirinzadeh [6]

considered “Sensitivity analysis”. In this technique they formulated the dynamic balancing as an

optimization problem such that while the shaking force balancing is accomplished through

analytically obtained balancing constraints, an objective function based on the sensitivity analysis

of shaking moment with respect to the position, velocity and acceleration of the links is used to

minimize the shaking moment. Evolutionary algorithms such as GA and PSO are useful in

optimization problems, because they are easy to implement for the complex real-world problems.

In some cases that objective function could not expressed as an explicit function of design

variables, using these evolutionary algorithms is more suitable for optimization than the

traditional deterministic optimization methods. Wen-Yi Lin proposed a GA-DE hybrid algorithm

for application to path synthesis of a four-bar linkage [7]. Acharyya and Mandal[8]applied BGA

with multipoint crossover, the PSO with the CFA (constriction factor approach) and the DE to the

path synthesis of a four-bar linkage. Jaamiolahmadi and Farmani [9] proposed another related

work. They described the application of GA to force and moment-balance of a four bar linkage.

The aim of present work is applying new artificial intelligent based optimization methods for

balancing double four-bar crank slider mechanism which is a special case of four-bar mechanism,

but it has its own specification in dynamic balancing. Ettefagh and Abbasidoust [10] applied

BGA for balancing of a crank slider mechanism, however in present work a comprehensive study

of different algorithms proposed for balancing of a crank slider mechanism was carried out. The

major objective of this paper is to compare the computational effectiveness and efficiency of

BGA (Binary Genetic Algorithm), PSO (Particle Swarm Optimization), ABC (Artificial Bee

Colony) and HGAPSO (Hybrid GA and PSO) algorithms. The performance of the optimization

techniques in terms of computational time and convergence rate is compared in the results

section. After kinematics formulating of the mechanism and extracting the object function with

its’ constraints, results of the proposed method on a simulated mechanism will be reported.

Finally, for experimentally validation of the method, a laboratory scale experimental crank slider

mechanism will be considered and the proposed optimization method will be applied for its

balancing.

2. MODELLING

The selected mechanism in this paper is shown in Figure 1, which is a benchmark double four-bar

mechanism and this mechanism is applied in different machines [10]. Therefore the proposed

balancing method in this paper may be easily applied to other mechanisms in different machines

for balancing. As shown in Figure 1, the mechanism contains two cranks-sliders and four rotating

disks. Each rode is attached to disk 1 and disk 4. All disks are connected to a shaft which is

rotating with an electromotor. When the mechanism is working, shaking force and moments

cause frame to vibrate. Our goal is to minimize shaking forces and moments according to the

regarded constraints. The mechanism is modeled as shown in Figure 2 by computing shaking

forces of the mechanism on all four planes.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

3

Figure 1.Schematic diagram of the considered double four-bar crank-slider mechanism [10]

Figure 2.Shaking forces of the mechanism on all four plans [10]

In this paper, the method used for balancing is the addition of two counterweights on disks 2 and

3. In addition, system has an unbalance mass on disk 2. Shaking forces in crank slider as the

dynamical forces of mechanism are formulated as:

2
f m R
c c

ω= (1)

2
(cos cos 2)

R
f m R
p p L

ω θ θ= +

(2)

Where c
m is the eccentric mass and pm is the equal mass of the slider, R is corresponding radius

and ω is mechanism rotating speed. Also, θindicates the angular position of the disk and L is the

connecting rod’s length. Equilibrium on x and y axes due to the acting forces are described by:

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

4

0)cos())(2cos)(cos(

)cos()cos()cos(cos)2cos(cos

0

0

2

00

2

2

2

221

2

11

2

00

22

=+++++

+++++++++

→=∑

θθωθθθθω

ϕθωϕθωαθωθωθθω

Rm
L

R
Rm

rmrmRmRm
L

R
Rm

F

cp

cp

x

 (3)

0)sin(

)sin()sin()sin(sin

0

0

2

2

2

221

2

11

2

00

2

=+

+++++++

→=∑

θθω

ϕθωϕθωαθωθω

Rm

rmrmRmRm

F

c

c

y

 (4)

Also Momentum equilibrium equations are written as:

[] []

[] 0)2()cos()2())(2cos)(cos(

)()cos()cos()cos(

0

210

2

2100

2

212

2

2211

2

11

2

00

=++++





+++

+++++++

→=∑

aaRmaa
L

R
Rm

aarmarmRm

M

cp

y

θθωθθθθω

ϕθωϕθωαθω

 (5)

[] []
[] 0)2()sin(

)()sin()sin()sin(

0

210

2

212

2

2211

2

11

2

00

=++

+++++++

→=∑

aaRm

aarmarmRm

M

c

x

θθω

ϕθωϕθωαθω

 (6)

m0 is the constrain mass on disk 2, R0 and �	are corresponding radius and angular position of the

mass, respectively.

In construction of optimization problems, as described before, some parameters of system is

applies as the variables of cost function to minimize it. In our method, m1, m2, φ1, φ2, r1 and r2 are

counterweights parameters that are unknown. We take r1 and r2 as known parameters. So we

define the cost function as below. The cost function is consisting of forces equations and the

constraints are considered by moment equations. For this purpose, we define some parameters as

P1, P2, P3 and P4 as below:

()
1

P Fxθ ∑= , ()
2

P Fyθ ∑= (7)

()
3

P M xθ ∑= , ()
4

P M yθ ∑=

(8)

These parameters are the sum of forces and moments in x, y direction. Consequently, the cost

function is:

Cost function: f(m1,m2,φ1,φ2) = { () ()}1 2P P dAθ θ+∫ (9)

The cost function is a function of the parameters m1, m2, φ1 and φ2, which should be found. In

other words, the cost function is the area that { () ()}1 2P Pθ θ+ makes in polar system. Our goal is

to minimize this area. Additionally, by defining C1 and C2 as follows:

C1(m1,m2,φ1,φ2) = ()3P dAθ∫ (10)

C2(m1,m2,φ1,φ2) = ()4P dAθ∫ (11)

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

5

Constraints are considered such that C1 and C2 to be less than predefined values which

determined by searching among the maximum value of them during running the Meta-Heuristic

Algorithms.

3. APPLYING META-HEURISTIC ALGORITHMS

PSO, ABC and HGAPSO algorithms, which is introduced in summary in following section, are

applied for minimizing the mentioned cost function with defined constraints as it was described in

previous section.

3.1. Particle Swarm Optimization algorithm

The PSO method introduced for the first time in 1995 by Kennedy and Eberhart [11]. This

method based on social behavior of organisms such as fish schooling and bird flocking. Because

of its simple concept and quick convergence, PSO can be applied to various applications in

different fields. The approach uses the concept of population and a measure of performance like

the fitness value used with other evolutionary algorithms. Similar to other evolutionary

algorithms, the system is initialized with a population of random solutions, called particles.

Each particle maintains its own current position, its present velocity and its personal best position

explored so far. The swarm is also aware of the global best position achieved by all its members.

The iterative appliance of update rules leads to stochastic manipulation of velocities and flying

courses. During the process of optimization the particles explore the D-dimensional space,

whereas their trajectories can probably depend both on their personal experiences, on those of

their neighbors and the whole swarm, respectively. In every iteration, each particle is updated by

following the best solution of current particle achieved so far (�����) and the best of the

population (�����). When a particle takes part of the population as its topological neighbours, the

best value is a local best. The particles tend to move to good areas in the search space by the

information spreading to the swarm. The particle is moved to a new position calculated by the

velocity updated at each time step t. This new position is calculated as the sum of the previous

position and the new velocity by equation (12).

	
��
 = �	
� + �
�����0,1�������
 − �
�� + �
�����0,1�������� − �
�� (12)

The velocity updated as following equation:

�
��
 = �
� + 	
��
 (13)

The parameter w is called the inertia weight and controls the magnitude of the old velocity 	
� in

the calculation of the new velocity which is	
��
		, whereas the acceleration factors C1and

C2determine the significance of ����� and ����� respectively. In the present work we selected

C1=0.25 and C2 =0.15. Furthermore,�
�is the current particle position and �
��
is the new position

of the particle.	�����0,1�	is the random number uniformly distributed. In general, the inertia

weight w is set according to the following equation:

� = �� ! − "#$%&'#$()
*+$%&

, × .���			 (14)

Where wmax is initial weight, wmin is final weight, Irmax is the maximum number of iteration

(generation) and .���is current iteration number.

Main steps of the procedure are:

1. Position and initial velocity of particles are generated randomly.

2. The objective function value i calculated for each particle.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

6

3. ����� For each particle is considered equal to its initial position (In the first iteration).

Also ����� determined.

4. Modify position and velocity of each particle using the equations (12) and (13).

5. Calculate the overall objective function for each particle.

6. If the value of new overall objective function is better than the value of each particle in P-

best, then it would be replaced in P-best and if in whole new population gets found which

is better fitting in objective function would be replaced by g-best.

7. Repeat steps 4 to 7 to reach the maximum number specified .The final answer is obtained

from the �����in the last iteration.

Figure 3 shows the flowchart of the developed PSO algorithm [11].

Figure 3. Flowchart of the PSO algorithm

3.2. Artificial Bee Colony algorithm

The artificial bee colony (ABC) algorithm is a new population-based stochastic heuristic

approach which was introduced for the first time by Karaboga in 2005 [12]. This algorithm is

very simple and flexible, which does not require external parameters like crossover rates,

especially suitable for engineering application. The colony of artificial bees consists of three

groups of bees to search foods generally, which includes employed bees, onlookers and scouts.

The first half of colony consists of the employed artificial bees and the second half includes the

onlookers. The employed bees search the food around the food source in their memory. They

perform waggle dance upon returning to the hive to pass their food information to the other of the

colony (the onlookers). The onlookers are waiting around the dance floor to choose any of the

employed bees to follow based on the nectar amount information shared by the employed bees.

The employed bee whose food source has been exhausted by the bees becomes a scout who must

find new food source. For every food source, there is only one employed bee. In other words, the

number of employed bees is equal to the number of food sources around the hive. The onlooker

bee chooses probabilistically a food source depending on the amount of nectar shown by each

employed bee, see equation (15).

�
 = /
�(
∑ /
�(12
)34

 (15)

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

7

Where	56�
 is the fitness value of the solution i and SN is the number of food sources which are

equal to the number of employed bees.

Each bee searches for new neighbor food source near of their hive. After that, employed bee

compares the food source against the old one using equation 16. Then, it saves in their memory

the best food source [13-14].

7
89:# = �
8;<= + >
8��
8;<= − �?8;<=� (16)

Where	@ ∈ {1,2,3,… , F�} and H ∈ {1,2,3,… , �} are chosen randomly. φIJ is a random number

between [-1, 1]. In ABC, Providing that a position cannot be improved further through a

predetermined number of cycles, then that food source is assumed to be abandoned. The value of

predetermined number of cycles is an important control parameter of the ABC algorithm, which

is called “limit” for abandonment. Assume that the abandoned source is �
 and j= {1, 2… N} then

the scout discovers a new food source to be replaced with�
. This operation can be defined using

equation 17.

xI
J = xJLIM + rand�0,1��xJLRS − xJLIM� (17)

ABC implementation stages of the algorithm:

1. Initialization

2. Place employed bees on the food sources

3. Place onlookers on the food sources

4. Send scout to carry out the global search

Flowchart of the ABC algorithm is shown in figure4 [12].

Figure 4. Flowchart of the ABC algorithm

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

8

3.3. Hybrid of Genetic Algorithm and Particle Swarm Optimization (HGAPSO)

Concept of GA:

Genetic algorithm was introduced by John Holland in 1967. Later, in1989, by Goldberg’s

attempts got accepted. And today, due to its capability, it has prosperous place among other

methods. Routine optimization in genetic algorithm bases on random- directed procedure. In this

way depending on Darwin’s theory of evolution and fundamental ideas the method has been

firmed. First of all, for some constants which are called population, a swarm of main parameters,

eventually get produced. After performing scalar simulator program, a number that is attributed as

standard deviation or set fitness data, impute as a member of that population. Fitness process is

done for all created members then by summoning genetic algorithm operators such as succession

(crossover), mutation and next generation selection (selection) are formed. This routine continues

till satisfying convergence [15].

Concepts of PSO:

Initially, velocity and position of each particle randomly select and direct all particles gradually to

the best answer. PSO has high speed in local and total search. Applying PSO takes to dominate

rapid and untimely convergence of GA that is achieved with elitism operations. Also, PSO can fit

particles of each generation whereas GA is seeking for an answer generation to generation.

Depending on these points, GA and PSO are good supplements of each other [16].

The HGAPSO algorithm is following as bellow:

1. A population randomly should be selected, initially, which is parameters of GA and

particles of PSO.

2. The fitness of concluding is calculating.

3. Half of population with high fitness would be selected and then PSO function would be

performed. But a factor breeding ratio was presented with φsymbol [17]. The factor

determines the percentage of population on which the PSO operation is done.

4. Enhanced elites would be transmitted to the next generation directly and mutation and

remixing functions would be done on the rest population.

Figure 5 shows all the above steps and flowchart of the HGAPSO algorithm is shown in Figure6

[16].

Figure5. Steps of HGAPSO algorithm [16]

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

9

Figure 6. Flowchart of the HGAPSO algorithm

4. RESULTS AND DISCUSSION

In this section the results of mentioned algorithms implementation in our optimization problem

for minimizing cost function will be presented and discussed. Table 1 expresses the results of

dynamic balancing optimization with PSO, ABC, BGA and HGAPSO algorithms for 200 and 300

iterations. Also programming is done with MATLAB12, with 2.8 GHZ computer system

processor and 1024MB memory. By these tables, best and worst average results are shown in

bold. Results comparison indicates that PSO algorithm is more efficient than other algorithms, as

the average cost of objective function for 20 iterations is 29853.35062, and for 300 iterations is

29853.30955 that is less than three other algorithms.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

10

Table 1. Results of dynamic balancing optimization with PSO, ABC, BGA and HGAPSO algorithms for

200 and 300 iterations

Statistical Results Obtained by the BGA algorithm for 200 Generation
Experiment M1 M2 Fi1 Fi2 Cost CPU Time

#1 425.2199 770.088 2.260227 4.907395 29917.7403 27.816430

#2 200 312.61 3.144664 4.710854 30037.9671 29.935968

#3 425.2199 648.6804 2.395349 4.944247 29982.0926 28.821098

#4 305.5718 374.1935 3.722004 5.220633 29854.0986 28.366290

#5 312.61 648.6804 2.352356 4.876685 29914.4407 32.985386

#6 368.915 789.4428 1.228384 4.391474 29928.107 32.076005

#7 1183.5777 1099.1202 2.9419802 5.7979735 30043.6419 28.184769

#8 555.4252 310.8504 3.924688 6.04365 29876.8727 28.312547

#9 425.2199 873.9003 1.959273 4.802982 29867.9256 31.578058

#10 536.0704 407.6246 5.312762 3.138522 29895.7188 30.211240

Average 29931.86 29.82878

Best 29854.1 27.81643

Worst 30043.64 32.98539

Statistical Results Obtained by the ABC algorithm for 200 Iterations
Experiment M1 M2 Fi1 Fi2 Cost CPU Time

#1 957.917 878.0169 9.631981 4.870459 29853.8571 24.515309

#2 458.3323 857.7992 8.598309 5.188452 29854.7879 24.497529

#3 1131.1942 1101.4885 9.2855979 1.8518603 29856.3607 25.638495

#4 217.0502 221.4425 10.7222 13.26839 29854.8753 25.814662

#5 260.4993 623.3153 8.486066 11.19885 29855.1337 26.448376

#6 677.15 321.5682 10.37823 6.049843 29854.5122 28.761479

#7 1237.6854 960.86413 10.019323 5.8620878 29856.5621 27.566192

#8 746.1877 749.8799 6.339937 9.548391 29854.274 27.581421

#9 639.2974 315.6203 7.741611 12.66076 29855.4856 27.869337

#10 683.5569 888.9545 2.799224 3.648658 29854.6395 27.622605

Average 29855.04881 26.6315405

Best 29853.8571 24.497529

Worst
 29856.5621 28.761479

Statistical Results Obtained by the BGA algorithm for 300 Generation
Experiment M1 M2 Fi1 Fi2 Cost CPU Time

#1 585.3372 416.4223 3.777281 5.94538 29860.512 69.617549

#2 537.8299 845.7478 0.393083 3.881694 29979.2346 75.797888

#3 363.6364 536.0704 3.040251 5.208349 29900.57 70.299023

#4 620.5279 0.7861659 4.121229 256.305 29988.9287 61.185702

#5 397.0674 648.6804 2.745439 5.128504 29896.1839 67.436636

#6 321.4076 529.0323 5.920812 3.90012 29866.535 73.210396

#7 228.1525 690.9091 1.940847 4.710854 29866.4603 85.515155

#8 200 564.2229 1.670603 4.465177 29976.0744 67.414340

#9 268.6217 310.8504 3.924688 5.067085 29864.7926 65.666551

#10 485.044 423.4604 3.531605 5.650567 29900.5253 77.981415

Average 29909.98 71.41247

Best 29860.51 61.1857

Worst 29988.93 85.51516

Statistical Results Obtained by the ABC algorithm for 300 Iterations
Experiment M1 M2 Fi1 Fi2 Cost CPU Time

#1 889.97288 1026.2293 6.8552951 13.822746 29856.0266 40.422035

#2 374.24233 1405.1666 7.839461 10.87474 29859.7044 42.796960

#3 260.895 501.8795 7.752119 10.27209 29854.4018 40.764053

#4 1624.3941 1153.022 10.633852 7.5664349 29855.7171 43.498866

#5 843.7006 359.6281 11.00391 8.106481 29854.1593 45.076684

#6 772.2693 653.4779 5.531582 9.657654 29854.0499 48.079070

#7 2632.9495 1494.202 4.5137612 7.6742805 29854.0659 48.203408

#8 1440.1067 1182.0524 10.868796 9.1406666 29854.8792 47.887119

#9 782.1371 569.479 9.691396 6.195521 29855.4519 49.274214

#10 655.3956 612.1464 9.454865 5.618574 29853.7587 45.614997

Average 29855.22148 45.1617406

Best 29853.7587 40.422035

Worst
 29859.7044 49.274214

Statistical Results Obtained by the PSO algorithm for 200 Iterations
Experiment M1 M2 Fi1 Fi2 Cost CPU Time

#1 945.7894 457.6034 4.413292 7.388778 29853.3719 13.877018

#2 464.4661 715.8224 9.17736 5.266925 29853.3846 13.174372

#3 83.58313 483.6949 5.854242 10.68152 29853.3894 12.264391

#4 142.892 479.2902 6.42547 11.13792 29853.4599 12.552338

#5 190.3871 344.1711 7.216235 11.11191 29853.3813 12.357725

#6 112.7041 583.2056 6.888962 10.70696 29853.305 13.300798

#7 156.9876 467.6164 5.76949 10.52967 29853.2973 13.855493

#8 1201.8414 738.00028 4.2686516 10.352361 29853.2971 14.755708

#9 527.3684 161.494 10.53725 6.146666 29853.3101 13.943058

#10 766.8097 318.9964 11.13244 8.445869 29853.3096 12.585938

Average 29853.35062 13.2666839

Best 29853.2971 12.264391

Worst 29853.4599 14.755708

Statistical Results Obtained by the HGAPSO algorithm for 200 Generation
Experiment M1 M2 Fi1 Fi2 Cost CPU Time

#1 1319.7893 1775.2657 6.7011554 6.7630704 30080.102 32.479893

#2 352.3594 690.4537 9.285448 9.868578 29960.9037 34.840757

#3 476.5722 573.7634 9.527518 9.562658 30036.1098 34.614229

#4 828.16894 1221.9607 8.309838 9.2001952 29943.6233 34.057494

#5 1841.2912 1609.2847 6.4433827 9.4164658 29994.6861 33.216922

#6 1508.8175 772.7226 7.3714832 7.1583033 30080.1051 33.737740

#7 1036.9438 1116.5328 7.1023018 9.321701 30033.1305 35.140728

#8 1494.2831 632.94301 9.5999394 9.6251599 30069.7696 34.970999

#9 763.2089 318.8483 7.74299 7.563557 30040.2645 34.003678

#10 1129.1558 619.2222 9.6453097 6.6337606 30060.2337 35.567686

Average 30029.89283 34.2630126

Best 29943.6233 32.479893

Worst 30080.1051 35.567686

Statistical Results Obtained by the PSO algorithm for

300 Iterations.

Experiment M1 M2 Fi1 Fi2 Cost CPU Time

#1 393.2882 107.7893 7.67673 14.09963 29853.3602 21.686771

#2 244.4886 443.838 9.758278 8.21717 29853.297 21.145141

#3 388.6466 160.5542 11.11079 7.028177 29853.2968 20.927836

#4 384.6346 115.9811 10.82956 7.769524 29853.3014 20.836519

#5 262.538 702.0516 5.413787 7.99123 29853.3227 21.101022

#6 360.6737 355.9938 8.498214 6.902059 29853.3127 20.567431

#7 428.9131 143.0469 7.97523 6.787767 29853.2976 22.235461

#8 349.7185 152.8699 10.91113 10.70469 29853.2995 21.991660

#9 1370.8073 960.25814 10.353903 6.9624157 29853.2968 22.241028

#10 493.1262 83.99186 83.99186 5.966398 29853.3108 21.751784

Average 29853.30955 21.4484653

Best 29853.2968 20.567431

Worst 29853.3602 22.241028

Statistical Results Obtained by the HGAPSO algorithm

for 300 Generation.
Experiment M1 M2 Fi1 Fi2 Cost CPU Time

#1 772.9007 595.1176 6.86203 7.937233 30073.0299 51.955371

#2 882.80336 1896.9992 7.2606345 9.959396 29955.7353 55.753747

#3 375.9766 405.99 7.360915 9.92088 30037.4567 55.435066

#4 355.42156 1227.6115 9.7068992 9.2411975 29982.7794 55.902381

#5 1572.9019 874.43037 7.0439925 8.9360977 30068.9326 55.842394

#6 398.9521 827.0116 7.097475 8.669514 30007.8626 54.642494

#7 1411.5414 574.13944 8.6237598 6.9623394 29936.2702 56.950295

#8 1856.2111 871.64681 7.7394652 9.7647663 30046.7941 56.097725

#9 1827.0208 321.74463 8.1571052 9.2847123 29968.9997 56.730746

#10 770.12423 1724.5737 9.4666394 8.4071409 29951.5584 55.731429

Average 30002.94189 55.5041648

Best 29936.2702 51.955371

Worst 30073.0299 56.950295

Also, above mentioned results in the table are illustrated in Figures7 and 8 in bar chart which

show the comparison of objective function cost. By observing these figures, it may be concluded

that the cost order is as following: PSO<ABC<BGA<HGAPSO.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

11

Figure7. Comparing cost function value for 200 Iterations

Figure8 . Comparing cost function value for 300 Iterations

In addition, the runtime comparison shows that PSO algorithm finds the optimal solution in

shorter time than the others. Also the average runtime for this algorithm for 200 iterations is

13.2666839 seconds and for 300 iterations is 21.4484653 seconds. According to numerical results

PSO algorithm is 3.84 times faster than BGA and 2.56 times faster than HGAPSO and 2.21 times

faster than ABC. Figures 9 and 10 indicate the runtime of these algorithms for one performance

with 200 and 300 iterations, respectively. By observing these figures, it maybe found that the

runtime order is as following: PSO<ABC<HGAPSO<BGA. It should be mentioned that the

runtime for Hybrid algorithm of BGA and PSO algorithm is 1.5 times faster than BGA algorithm

in reaching optimal solution.

PSO ABC HGAPSO BGA

Average Cost 29853.35062 29855.04881 30029.89283 29931.86

Best Cost 29853.2971 29853.8571 29943.6233 29854.1

Worst Cost 29853.4599 29856.5621 30080.1051 30043.64

29700
29750
29800
29850
29900
29950
30000
30050
30100

C
o

st

Compareing cost function value for 200 Iterations

PSO ABC HGAPSO BGA

Average Cost 29853.30955 29855.22148 30002.94189 29909.98

Best Cost 29853.2968 29853.7587 29936.2702 29860.51

Worst Cost 29853.3602 29859.7044 30073.0299 29988.93

29700
29750
29800
29850
29900
29950
30000
30050
30100

C
o

st

Compareing cost function value for 300 Iterations

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

12

Figure 9. Comparing runtime for 200 iterations

Figure 10. Comparing runtime for 300 iterations

Figure 11 indicates the time order of these algorithms for one performance with 100 and 200

repetitions. In this chart, the implementation of time progress of these algorithms is in term of

seconds.

PSO ABC HGAPSO BGA

Average CPU Time 13.2666839 26.6315405 34.2630126 29.82878

Best CPU Time 12.264391 24.497529 32.479893 27.81643

Worst CPU Time 14.755708 28.761479 35.567686 32.98539

0

5

10

15

20

25

30

35

40

T
im

e

Compareing cost function value for 200 iterations

PSO ABC HGAPSO BGA

Average CPU Time 21.4484653 45.1617406 55.5041648 71.41247

Best CPU Time 20.567431 40.422035 51.955371 61.1857

Worst CPU Time 22.241028 49.274214 56.950295 85.51516

0

10

20

30

40

50

60

70

80

90

T
im

e

Compareing cost function value for 300 iterations

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, Sep

Figure 11. Computation time variation versus generation for 100 iterations

Figure 12 shows fitness functions

fluctuation of fitness value for

while this range for BGA and HGAPSO is approximately

difference between the best and worst result of the BGA and HGAPSO algorithms indicates the

weakness and dependence of these two algorithms and

while PSO and ABC solution range is around the mean

them. Also, the PSO and ABC algorithms are close

stability of these two algorithms.

Figure12. Fitness functions fluctuation for 100 runs for

Figure 13 and 14 display the four algorithms convergence

300 iterations). According to the minimization target,

considered is that the charts are descending.

objective function. As comparing of these two

algorithms get convergence approximately

solution in high speed rather than HGAPSO and GA.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

Computation time variation versus generation for 100 iterations

(Left) and 200 iterations (right)

fitness functions of four algorithms in 100 runs. In this figure

for BGA and HGAPSO algorithms is between 29853 an

BGA and HGAPSO is approximately between 29853 and 30200.

difference between the best and worst result of the BGA and HGAPSO algorithms indicates the

weakness and dependence of these two algorithms and their sensitivity to the initial population

while PSO and ABC solution range is around the mean values, so it indicates the stability of

the PSO and ABC algorithms are close to average result that this matter indicates

.

Fitness functions fluctuation for 100 runs for four algorithms

the four algorithms convergence in a sample run of them (for 200 and

300 iterations). According to the minimization target, an important point which

considered is that the charts are descending. In addition the scale of 10U is using for measuring of

objective function. As comparing of these two figures, it may be observed that the PSO and ABC

approximately after 30 generations also they achieve the optimized

solution in high speed rather than HGAPSO and GA.

tember 2013

 the range of

29853 and 29855,

29853 and 30200. Also high

difference between the best and worst result of the BGA and HGAPSO algorithms indicates the

their sensitivity to the initial population,

it indicates the stability of

to average result that this matter indicates the

a sample run of them (for 200 and

which should be

is using for measuring of

the PSO and ABC

after 30 generations also they achieve the optimized

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

14

Figure13.Convergence plot for 200 iterations

Figure14.Convergence plot for 300 iterations

Finally, Figure15 indicates cost function diagram in balanced and unbalanced states by mentioned

algorithms in polar plot. This type of plot is a standard plot which applied for illustrating the

ability of the proposed method in balancing of the mechanism in one revolution of the mechanism

driver (0-360
o
). As it was described in previous sections, the main purpose of optimization is

minimizing of the cost function in equation 9 which maybe interpreted as minimizing the limited

area in the mentioned plot. Therefore better balancing method is a method which has minimum

and uniform area in the polar plot. By observing this figure, it maybe concluded that PSO has

better performance than other algorithm, because it contains minimum area in comparing with

other algorithms.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

15

Figure 15. Polar plot of cost function for unbalanced and balanced states by applying different algorithms

5. EXPERIMENTALLY VALIDATION OF THE PROPOSED METHOD

For showing the practicability of the proposed balancing method based on mentioned

optimization algorithms, a laboratory scale experimental double four-bar crank-slider mechanism

was provided as shown in Figure16 [10].By using two accelerometers (type 4507 B&K Co.) and

data acquisition system (PULSE B&K Co.), the acceleration of the right and left bearing of the

mechanism can be extracted. Also a tachometer (Type 0024 MM B&K Co.) is applied for

identifying the one revolution of the crank for estimating the angular acceleration. As a sample,

the acceleration signals of the unbalanced and balanced mechanism, applying BGA, are

illustrated in Figures 17 and 18. By comparing the mentioned linear and angular acceleration

signal of the unbalanced and balanced mechanism, the possibility and accuracy of the proposed

method in balancing of real mechanisms can be observed. In addition the corresponding angular

acceleration signals are illustrated in Figure 19. As it is obvious from these figures, the proposed

method is able to balance the mechanism because the overall amplitude of the linear and angular

acceleration was decreased after balancing. Other similar results may be obtained by applying

other algorithms, which cannot be illustrated in this paper because of the page limitation. By

considering the experimental result, it can be observed that the same conclusion maybe derived as

in previous section while comparing these algorithms.

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

16

Figure16.A laboratory scale experimental double four-bar crank-slider mechanism setup

Figure17. Acceleration signal of the right part of the mechanism for before and after balancing

Figure18.Acceleration signal of the left part of the mechanism for before and after balancing

6 6.2 6.4 6.6 6.8 7 7.2
-15

-10

-5

0

5

10

15

a
R
 (Balanced)

Time (Second)

A
m

p
li
tu

d
e

6.2 6.4 6.6 6.8 7 7.2 7.4
-15

-10

-5

0

5

10

15

a
R
 (Unbalanced)

Time (Second)

A
m

p
li
tu

d
e

rms(a
R
)=1.8056max(a

R
)=11.2423

rms(a
R
)=1.6024max(a

R
)=9.8018

6 6.2 6.4 6.6 6.8 7 7.2
-15

-10

-5

0

5

10

15

a
L
 (Balanced)

Time (Second)

A
m

p
li
tu

d
e

6.2 6.4 6.6 6.8 7 7.2 7.4
-15

-10

-5

0

5

10

15

a
L
 (Unbalanced)

Time (Second)

A
m

p
li
tu

d
e

max(a
L
)=7.5312

rms(a
L
)=1.2614

rms(a
L
)=1.6954

max(a
L
)=7.3131

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

17

Figure 19. Angular acceleration signal of the mechanism for before and after balancing

6. CONCLUSION

In this paper, four Meta-Heuristic algorithms, that are PSO, ABC, BGA and HGAPSO, were

applied for balancing of double four-bar crank slider mechanism. This mechanism is a basic and

benchmark mechanism which is applied in different machine and engines. Therefore proposed

balancing method may be applied for different type of machines for reducing the vibration and

noise because of unbalancing. Kinematic modelling of the mechanism and suitable objective

function which should be minimized and the constraints are derived. In order to comparing the

optimization algorithm, different results based on cost function, fitness, convergence speed and

runtime values were extracted and studied. The results show that the PSO algorithm converges

quickly to the optimum solution, while the optimality of PSO solutions has a higher quality than

other algorithms. Also, reviewing the responses of the four algorithms in several performances

with various primary populations determined that, PSO and ABC are more stable than BGA and

HGAPSO. Therefore PSO and ABC have a good potential in finding optimal solution and its

convergence characteristics are more favourable. In addition, the practicability of the method was

proved by applying the proposed method on a laboratory scale experimental complex crank slider

mechanism.

REFERENCES

[1] A.A. Sherwood & B.A. Hockey, (1968)"The optimization of mass distribution in mechanisms using

dynamically similar systems”, Journal of Mechanisms, Vol. 4, pp. 243–260.

[2] G.G. Lowen & R.S. Berkof, (1971) “Determination of forced-balance four-bar linkages with optimum

shaking moment characteristics”, ASME Journal of Engineering for Industry, Vol. 93, No. 1, pp. 39–

46.

[3] H. Chaudhary & S. K. Saha, (2007) “Balancing of four-bar linkages using maximum Recursive

dynamic algorithm”, Mechanism and Machine Theory, Vol. 42, pp. 216–232.

[4] N. M. QI & E. Pennestrl, (1991) “Optimum balancing of four-bar linkage, a Refined algorithm,”

Mech. Mach. Theory, Vol. 26, No. 3, pp. 337–348.

6 6.2 6.4 6.6 6.8 7 7.2
-50

0

50

25

-25

αααα (Balanced)

Time (Second)

A
m

p
li
tu

d
e

6.2 6.4 6.6 6.8 7 7.2 7.4
-50

0

50

25

-25

αααα (Unbalanced)

Time (Second)

A
m

p
li
tu

d
e

max(αααα)=45.4369

rms(αααα)=5.6177

rms(αααα)=6.1949

max(αααα)=41.9419

International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 4, No. 5, September 2013

18

[5] Y. YU, (1987) “Optimum shaking force and shaking moment balancing of the RSS'R spatial linkage,”

Mech. Mac& Theory, Vol. 22, No. I, pp. 39–45.

[6] G. Alici & B. Shirinzadeh, (2006) “Optimum dynamic balancing of planar parallel manipulators

based on sensitivity analysis,” Mechanism and Machine Theory, Vol. 41, pp. 1520–1532.

[7] Wen-Yi Lin, (2010) " A GA–DE hybrid evolutionary algorithm for path synthesis of four-bar

linkage, ” Mechanism and Machine Theory, Vol.45, No.8, pp. 1096-1107

[8] S. K. Acharyya & M. Mandal, (2009)”Performance of EAs for four-bar linkage synthesis “,

Mechanism and Machine Theory, Vol.44, pp.1784-1794.

[9] A. Jaamiolahmadi & M. R. Farmani, (2006) “Optimal force and moment balance of a four bar linkage

via genetic algorithm,” 14th Annual (International) Mechanical Engineering Conference-Esfahan -

Iran.

[10] M. M. Ettefagh, F.abbasidust, H.milanchian & M.yazdanian (2011) “Complex Crank-Slider

Mechanism Dynamic Balancing by Binary Genetic Algorithm (BGA)”, symposium in Innovations in

Intelligent Systems and Applications (INISTA2011) - Istanbul, pp.277 – 281.

[11] J. Kennedy & R. Eberhart, (1995). “Particle Swarm Optimization,” Proceeding of IEEE International

Conference on Neural Networks in Perth-WA, Vol.4, pp. 1942-1948.

[12] D. Karaboga & B. Basturk, (2008) “On the performance of artificial bee colony (ABC) algorithm,”

Applied Soft Computing, Vol. 8, pp. 687–697.

[13] S.H. Sishaj & P. Simon, (2010) “Artificial bee colony algorithm for economic load dispatch problem

with non-smooth cost functions,” Electric Power Components and Systems, Vol. 38, No. 7, pp. 786-

803.

[14] F. Kang, J. Li , H. Li, Z. Ma & Q. Xu, (2010) “An improved artificial bee colony algorithm”,

Intelligent Systems and Applications (ISA), pp.1-4.

[15] Z. Michalewicz, (1999) “Genetic Algorithms+ Data Structures=Evolution Programs”, Springer-

Verlag Berlin Heidelberg New York.

[16] Chia-Feng Juang, (2004) “A Hybrid of Genetic Algorithm and Particle swarm Optimization for

Recurrent Network Design”, IEEE Transactions on system, Man and Cybernetics, Vol. 34,No. 2,

pp.997-1006.

[17] M.Settles, P. athan & T. Soule, (2005)” Breeding Swarms: A New Approach to Recurrent Neural

Network Training", Proceedings of the 2005 conference on Genetic and evolutionary computation

(GECCO 2005), pp. 185-192.

Authors

Mir Mohammad Ettefagh received the PhD degree in Mechanical Engineering from the

University of Tabriz in 2007. He is currently an Assistant professor in Mechanical

Engineering department of the University of Tabriz. His research interests include

vibration and dynamic systems, optimization of mechanism, fault diagnosis of machines,

structural health monitoring.

Mohammad-Reza Feizi-Derakhshi, Ph.D. is currently a faculty member at the University

of Tabriz. His research interests include: natural language processing, optimization

algorithms, intelligent methods for fault detection and intelligent databases.

Habib Emdadi received his BS degree in Software Engineering Technology from

University of Tabriz, Iran in 2009. He is currently working toward the MS degree of

Computer Science with Intelligent Systems in Tabriz University, focusing on

Optimization Techniques. His research interests include Evolutionary Computation,

Optimization Techniques, soft computing and Computer Programming.

Mahsa Yazdanian received the BS degree in Mechanical Engineering from University of

Tabriz, Iran in 2010. She is currently working toward the MS Degree in the Department

of Mechanical Engineering. Her research interests include artificial-based optimization of

mechanism and condition monitoring of rotating machinery.

