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ABSTRACT 
 

It is important to find optimal solutions for structural errors in rule-based expert systems .Solutions to 

discovering such errors by using model checking techniques have already been proposed, but these 

solutions have  problems such as state space explosion. In this paper, to overcome these problems, we 

model the rule-based systems as finite state transition systems and express confliction and 

unreachabilityas Computation Tree Logic (CTL) logic formula and then use the technique of model 

checking to detect confliction and unreachability in rule-based systems with the model checker UPPAAL.  
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1.INTRODUCTION 

 
A rule base is the central part of an expert system that extracts the knowledge from domain 

experts in the form of inference rules. Structural errors usually appear by augmenting the 

knowledge base rules. According to [1] , the typical types of structural errors include 

confliction(conflict rules),unreachability(unreachable rules),subsumption (subsumed rules) , 

redundancy (redundant rules), and circularity (circular depending rules).But we just focus on the 

confliction and unreachability in this paper. 

 

Model checking is an automatic method for studying the properties given to a system and their 

verification [2]. In [3] a solution by using model checking is presented, but it has the following 

problems: 

 

1) State space explosion: with the increase of rules, the number of states of the model checker 

increases exponentially, and this makes the model checker is unable to continue his work 

(out of memory). 

 
2) The model checker has been used in this solution is textual and it makes the importing of 

rules to the model checker become complicated. 

 

In this paper, to overcome these problems, we model the rule-based systems as finite state 

transition systems and express confliction and unreachabilityas Computation Tree Logic (CTL) 

logic formula and then use the technique of model checking to detect confliction and 

unreachability in rule-based systems with the model checker UPPAAL.  
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The rest of the paper is organized as follows. In section 2, related works is presented. In section 

3, we briefly introduce the required background.. Section 4 presents our proposed method to 

detect confliction and unreachability in rule-based systems with the model checker UPPAAL. 

Finally, we conclude the paper and highlight the future works in section 5. 

 

2. RELATED WORKS 
 

Many different techniques have been proposed to detect the structural errors in rule-based 

systems [4]. Initial works mostly concentrated on the detection of structural errors by checking 

rules pair-wisely. Recent works focused on detecting  structural errors made  by implementing 

multiple rules in longer inference chains. Using  some graphical notation such as Petri nets and 

graphs is approach in  the majority of the recent verification techniques [5].Some of the 

mentioned approaches  cannot discover structural errors exactly. The approach in [6] could only 

detect structural errors matching a set of pre-defined syntactic patterns. The approaches in [7,8] 

did not detect inconsistency errors. The approach in [4] used an adjacency matrix technique, 

which has a greater computational cost in space and time. 

 

3. PRELIMINARIES 
 

In this section, we briefly present the required preliminaries, i.e., Model Checking and 

UPPAAL. 

 

3.1. Model Checking 

 
Model checking is an automatic method for examining the properties given to a system and their 

verification[9,10-14]. This verification is done by software tools as a model checkers. A model 

checker  thoroughly explores the state space to decide whether the system satisfies the property. 

The approach is depicted in Figure 1. In a first step, which is called modeling, the system 

description is converted into the system model. A system description is, for example, a program 

written in C, Java or Assembly language. A system model is, for example, a Kripke structure, a 

labeled transition system, or a finite automaton. The requirements have to be manually 

formalized because they are mostly given in natural language. The result of this formalization is 

the formal specification given as formulas in a temporal logic such as CTL (Computation Tree 

Logic). 
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Figure 1: Model checking process [2] 

 

CTL is a common logic for model checking, that develops propositional logic with specific 

temporal operators.  

 

The model and the specification are inputs given to the model checker. The model checker uses 
an exhaustive search over all reachable states of the model to check whether the model satisfies 

the formula. In the end, it returns a result. The result may be that the model satisfies the formula 

or that the model does not satisfy the formula together with a counterexample. Due to the state-

explosion problem, it may happen that the model checker runs out of memory and does not 

return a result. 

 

3.2. UPPAAL 

 
One of the best tools for the modeling, simulation  and verification of real-time systems is 

UPPAAL [14].UPPAAL can verify systems that have the following property: they can be 

modeled as networks of timed automata (TA) expanded with structured data types, integer 

variables, and channel synchronization. A finite-state machine expanded with clock variables is 

a TA. UPPAAL expands the definition of TA with extra characteristics. Below are some of 

these characteristics that are pertinent to our aim [15]: 

 

• Templates: A TA is defined as template with optional parameters. Parameters are 

local variables that are initialized during template instantiation in system declaration. 

 

• Global variables: In global declaration section, global variables and user defined 

functions can be introduced. All templates can access global variables and user defined 

functions. 

 

• Expressions: Three main types of expressions can be existed: (1) Guard expressions, 

which are evaluated to Boolean and used to limit transitions, they may contain clocks 

and state variables, (2) Assignment expressions, which are used to set values of clocks 
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and variables, (3) Invariant expressions, which are defined for locations and used to 

indicate conditions that should be always true in a location. 

 

• Edges: Transitions between locations are marked with edges. Each edge specification 

can consist of four expressions: (1) Select, which assigns a value from a given range to 

a defined variable, (2) Guard, is a logical expression that if its value is evaluated  to 

true, the corresponding edge is enabled for a location, (3) Synchronization, which 

describes the synchronization  channel and its direction for an edge, and (4) Update, an  

assignment statements that reset variables and clocks to required values. However, in 

our paper, we only use two expressions Guard and Update in edges.  Figure 2 shows an 

example: we assume that the system is in a location loc0, if the value of x is 2, then its 
value will be equal to 4 and the system location will be loc1. Otherwise, its value will 

not be changed, but the system location will be loc2. Sometimes the edges may not 

have any expressions. 

 
 

Figure 2: An example  in UPPAAL 

 

We use UPPAAL to describe a checking  formula that contains a set of properties [16]. The 

checking formula can be a union of the following (see Figure  3): 
 

• A[]  � , which means �  will invariantly happen 

• E<> , which means �  will possibly happen 

• A<> , which means �  will always happen eventually 

• E[]   � , which means �  will potentially always happen 

• �-->�, which means   will always lead to � 

 

Which   and�  are Boolean expressions defined on locations, integer variables, and clocks 

constraints. 

 

 

 

 

 

 
 

 

Figure 3: Path Formulae Supported in Uppaal. The Filled States Are Those for Which a 

Given State Formulae is True [14]. 
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4. OUR PROPOSED METHOD 
 

4.1 Explanation of a rule 

 
A rule has the following general form [15]: P → Q , where P and Q are called proposition and 

deduction respectively. P (or Q) can be an atomic propositional logic formula (a proposition or 

its negation) or a combined  propositional logic formula containing multiple propositions and 

logical connectives: ˄ and ˅). 

 

For example, a rule base R is defined as follows: 

R={ 
r0: p0 →  p1˄ p4  

r1: p1 → ~ p4 

r2: ~p2 → p0 ˄ p1 

r3: p0 ˅ p3 → p4 

r4: p4 → p3 

       } 

 

4.2  Implementation of rules in the UPPAAL 

 
It is assumed that the number of rules in R is m and the number of propositions is n. Each 

proposition can take three values: 0 (false) , 1 (true) and 2 (nothing). We define an array p with 

size n to keep the values of propositions, and an array with size m to show that what rules are 

used. We consider a rule base R as a template. This template consists of the following locations: 

start (the initial location), rs, rf and ri (i=0..m-1). The corresponding template of the rule base R 

in the section 4.1 is displayed in Figure 4. When the system goes from location start to location 

rs, the initp() procedure is called in the local declaration  of the template. In this procedure, all 

entries of array p are set with value 2 (nothing), but the value of p[0] is set 1 because  the left- 

hand  side of r0 is p0. However, this  procedure is written such that all entries of array p  to be 

initialized only once.  For implementing of rule r0: p0 →  p1 ˄ p4 , an edge is drawen from 

location rs to location r0 that its guard expression is p[0]==1 and update expression is p[1]=1 , 

p[4]=1. Also, an edge is drawen from location r0 to location rf that its update expression is 

r[0]=true. This edge means that rule r0 is used. 
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Figure 4: The corresponding template of the rule base R in section 4.1 

 

 

4.3 Verification of confliction 

 
To verify the confliction, it is considered two instances es1 and es2 (also, are called processes  ) 

of  the defined template in the section 4.2. Then, we find two rules rx and ry of rule base R that 

they have the proposition pi and ~pi  on their right-hand sides respectively (regardless of the 

left-hand sides) . For example, in the rule base R of section 4.1, two rules r0 and r1have the 

proposition p4 and ~p4  on their right-hand sides respectively.  In the verifier section of 

UPPALL, we insert the following query:  

 

E<>es1.r0  and es2.r1 

 

this means that: eventually, is there the state of the system in which process es1 is in the location 

r0 and process es2 is in the location r1? If this query is satisfied, two rules r0 and r1 are in 

conflict with each other, otherwise, two rules mentioned aren’t in conflict with each other. In 

this example, the verifier produces the following response: 

 

property is satisfied. 

 

this means that: two rules r0 and r1 are in conflict with each other. 

 

4.4 Verification of unreachability 

 
Similar to the previous section, to verify the unreachability, it is considered two instanceses1and 

es2 (also, are called processes ) of  the defined template in the section 4.2. Provided that all rules 
in the rule base R have been used at least once therefore: r[i]=true  ( i=1..m ). So, in the verifier 

section of UPPALL, we insert the following query (typem is a new type of  integer type in the 

range of 1 to m ):  

 

E<>forall (i:typem)  r[i]==true  
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this means that: eventually, is there the state of the system in which all r[i] (i:1..m) are true ? If 

this query is satisfied, all rules in the rule base R have been used at least once, otherwise, some 

of them are not being used. 

In this case, to find out the rule ri is not used, we must check the following query: 

 

E<> es1.ri 

 
this means that: eventually, is there the state of the system in which process es1 is in the location 

ri? If this query is satisfied, the rule ri has been used at least once, otherwise, this rule has not 

been used. In this example, the query  E<> es1.r2has not been satisfied, this means that the rule 

r2 is unreachable and must be removed from base rule R. 

 

In the end of this section, we want to calculate the total number of system states. Since the 

defined template in section 4.2 has 3+m locations (the start, rs and rf locations plus m locations 

ri’s ) and our system have two processes, so the total number of system states for a rule base R 
with m rules is: 

 

 N=(3+m)*(3+m)=O(m
2
) 

 

this means that : the total number of system states is linear. 

 

5. CONCLUSION AND  FUTURE WORKS 
 

In this paper, we have modeled the rule-based system as finite state transition system and 

expressed confliction and unreachabilityas Computation Tree Logic (CTL)logic formula and 

then used the technique of model checking to detect confliction and unreachability in rule-based 

systems with the model checker UPPAAL. Our technique has the following advantages: 

 

1) The total number of system states is O(m
2
), so the total number of system states is linear. 

2) The model checker has been used in this solution is graphical and it makes the importing 

of rules to the model checker become easy. 

An open problem is, we find solutions to detect the other structured errors such as subsumption, 

redundancy, and circularity. 
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