
International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

 

DOI : 10.5121/ijaia.2014.5402                                                                                                                       15 

 

OPTIMISED RANDOM MUTATIONS FOR 

EVOLUTIONARY ALGORITHMS 

 

Sean McGerty and Frank Moisiadis
 

 

 University of Notre Dame , Australia 

 

ABSTRACT 

 
To demonstrate our approaches we will use Sudoku puzzles, which are an excellent test bed for 

evolutionary algorithms. The puzzles are accessible enough for people to enjoy. However the more complex 

puzzles require thousands of iterations before an evolutionary algorithm finds a solution. If we were 

attempting to compare evolutionary algorithms we could count their iterations to solution as an indicator 

of relative efficiency. Evolutionary algorithms however include a process of random mutation for solution 

candidates. We will show that by improving the random mutation behaviours we were able to solve 

problems with minimal evolutionary optimisation. Experiments demonstrated the random mutation was at 

times more effective at solving the harder problems than the evolutionary algorithms. This implies that the 

quality of random mutation may have a significant impact on the performance of evolutionary algorithms 

with Sudoku puzzles. Additionally this random mutation may hold promise for reuse in hybrid evolutionary 

algorithm behaviours. 

 

KEYWORDS 

 
Attention, adaption, artificial intelligence, evolution, exploitation, exploration, satisficing, Sudoku, particle 

swarm, genetic algorithm, simulated annealing, mutation. 

 

1. INTRODUCTION 

 
Evolutionary algorithms attempt to iteratively improve a population of candidate solutions. Each 

solution is randomly mutated. Random mutations are applied to each solution, and a fitness 

function is used to assess if an improvement has occurred. Evolutionary algorithms may then 

attempt to replicate attributes of the more successful candidates to the others. In this way weaker 

solutions become more like the better solutions and the cycle continues. This behaviour can be 

seen in both particle swarm optimisation and genetic algorithm heuristics [1] [2]. 

 

The optimisation in this approach can be seen as an accumulating behaviour for solution 

candidates around optimal points in the namespace. The forces of random mutation and fitness 

function assessment bring more candidates close to the best solution found so far. Diversification 

within the candidate population is being transferred into specificity. This accumulation of 

candidates can be seen as an exploitation strategy, which needs balancing against exploration 

[3][4]. We can describe non-optimal behaviours in evolutionary algorithms in these terms [5]. 

 

At higher levels of namespace complexity is inefficient to scan every possible candidate to know 

definitively which is the best. Doing so would be the ultimate in exploration, and in relational 

terms very little optimisation exploitation would be occurring. The strength in a heuristic is in the 

expectation of being ample to find a good solution and potentially the best solution without 

checking all possible solutions. 

 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

16 

 

 

2. EXPLORATION VS. EXPLOITATION 

 
Evolutionary algorithms face the same problems that people often do. Should we continue to try 

and solve a problem from where we are at the moment? Or should we diversify in case we are not 

making enough progress in the hope that there are better opportunities elsewhere? 

 

The reality with most evolutionary algorithms is that they will only support one of these modes. 

For the most part evolutionary algorithms have their random mutation options for exploration 

inline with the rest of the optimisation. This means that the optimisation has to be held in balance 

with optimisation. The act of sharing successful attributes makes the candidates look more 

similar, while the actions of random mutation push them further apart. If we take the assumption 

that we are working towards an achievable solution in a logical way then the exploitative action 

of optimisation will have to overpower the explorative desire of randomisation to move apart. 

 

This balance may work well in most cases. However where there is little change occurring 

because we have reached a local maximum, we have a problem. Those forces making the 

candidates exploit the incorrect but best solution so far hamper the ability of the randomisation to 

escape and find other better solutions. 

 

Strengths in exploitation may lead to weaknesses in exploration. By replicating attributes among 

the solution candidates it is entirely possible that they may accumulate around a local maximum. 

In this case the desire to exploit has overpowered the entropy of the randomisation function, 

which now lacks the ability to break from the local maximum. 

 

At this point the algorithm may relatively prioritise a repulsion factor between candidate 

neighbours [6]. The algorithm may de-prioritise the optimisation component allowing more 

random mutation. In either case the algorithm requires awareness that relative improvement is no 

longer occurring. There is also the question of how to parameterise these exploration modes, 

preferably in a non-namespace specific way. 

 

This hybrid behaviour between exploration and exploitation is also seen when different 

evolutionary algorithms are combined [5]. If we compare particle swarm optimisation and 

simulated annealing we might consider particle swarm optimisation to be a relatively strong 

exploiter [7]. In the same terms simulated annealing may rely more on random mutation and 

therefore be a relatively strong explorer. If our implementation allowed each algorithm to share 

the same solution candidate population, then we would be able to swap between the two 

algorithms as needed. We would then be able to rebalance between exploitation and exploration 

at will. 

 

The ideal partner for a normal evolutionary algorithm is therefore a randomisation algorithm that 

we optimised in such a way to preferentially find better solution candidates without traditional 

optimisation. 

 

3. BROAD BASED ATTENTION 

 
We draw many similarities between human vision and evolutionary algorithms. Much of the 

processing power at the back of your eye is devoted to peripheral vision. The right hemisphere of 

your brain is most likely dedicated to qualitative processing and broad based attention. 

 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

17 

 

In these modes coverage and efficiency of operation appear to be primary concerns. Your 

peripheral vision is optimised to detect unexpected motion and changes in light intensity. This 

allows the majority of your left hemisphere and the central aspects of your vision to focus on 

specific tasks while not losing the bigger picture. If nothing else, consider it a survival mechanism 

where autonomic processing can save you while you think about something else. 

 

We can achieve many of the same goals in an heuristic if we first notice that simulated 

annealing’s optimisation modes are a bit different from the others. Rather than replicate attributes 

from solution candidates with better fitness function scores to weaker ones, simulated annealing 

has a random mutation step that discards it if the result is a net loss. This is an example of being 

able to direct changes in a beneficial way. You can also see that not needing to select or correlate 

solution candidates might have efficiencies over normal processing modes. Efficiency is the main 

consideration for an exploration mode broad-based attention agent. The most comprehensive 

mechanism of this type would be scanning every possibility in the namespace, but as we 

mentioned earlier this rapidly becomes unworkable for large namespaces. 

 

A broad-based attention algorithm expects that we can disperse candidates through a data 

namespace and in so doing gain a better view. Each solution candidate is a mapping between 

causal input variables and a resulting fitness scalar. By varying these inputs as much as possible 

we gain a broader view of the distribution of this fitness curve. 

 

Note too that the simplex algorithm is a use case for a select type of problem that evolutionary 

algorithms would be able to solve. The simplex algorithm understands that the best values will be 

the boundary values of one or more variables. This then leads to checks where correlated 

variables are set to boundary values and transitions between these combinations will maximise 

the fitness function. In a topographical sense we navigate the boundary of an n-dimensional 

object for a corner value we prefer. 

 

In the same way we could, for example, recognise that we could add more values than we remove 

during random mutation. This is similar to saying that we expect a solution to be more likely with 

cells added than removed, and as we are solving Sudoku puzzles this is the case. 

 

Using these ideas we will create a population of randomly mutating solution candidates that will 

move about sampling the namespace in a directed way. With optimising mechanisms these 

candidates will disperse, giving an aggregated view of a subsection of the problem. Note that we 

should be able to direct this mutator towards more interesting parts of the namespace without 

using evolutionary algorithm style optimisations. Visualise this as being more interested in the 

surface of a bubble than the air inside. We are beginning to make a case that there is benefit to 

thinking of random mutation as having a lifecycle.  

 

We can also optimise the fitness function to our needs. We will always need to check that any 

solution is valid and consistent. Also if we accept that we may find an endpoint solution through 

random change then we want to know if we have reached the endpoint solution. We do not need 

the fitness scalar for comparing the solution candidates within this population, as we do not 

optimise by exchanging attributes. We are interested in the scalar sometimes, but only when we 

are interested to know if we have found a better solution via random change if we are running a 

separate random mutation solution candidate population. For the most part though, our processing 

for broad attention modes is simplified with respect to optimisation. 

 

Take for example Sudoku puzzles, which are completed when all cells have been filled [8]. We 

are restricted to adding digits such that each digit can only occur once with in a row or column or 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

18 

 

a region. We can separate these considerations: we are attempting to add digits, and solutions 

cannot be invalid. 

 

The check for validity of the solution is a subset of the fitness function. Rather than returning a 

fitness score we can simply return true or false. We can combine our simplified fitness function 

with a random mutation agent with a bias for addition. We call this mechanism the greedy 

random. 

 

Solution candidates are spread through the namespace by the greedy random. This behaviour 

attempts to fill as many cells as possible. If we correlate to human vision, the greedy random 

moves around the boundaries of what a human can see flagging changes. Note as well that the 

greedy random uses less resources as a subset of an evolutionary algorithm, so we can run more 

of them with less effort. 

 

4. ATTENTION ADAPTION 

 
Darwin was asked what he considered to be the most important attribute for continued success in 

his model of evolution. He avoided factors like strength, or speed, and instead suggested it was 

far more important to be able to adapt [9]. When an evolutionary algorithm collects around a local 

maximum we could see this specificity as a failure to adapt. Any candidate undergoing random 

mutation does not have the entropy to produce a candidate better than the current population. In 

these cases these insufficiently adapted mutations are removed or assimilated. We suggest that is 

need is a mechanism for being aware of candidates sufficiently outside the local maximum to 

allow us to adapt and escape.  

 

Think of this as an attention mechanism, which allows the adaptation away from the local 

maximum to occur. By implementing this ability we gain understanding of a mechanism that has 

been known to plant sciences for most of a century. It is entirely possible to be able to separate 

changes into those based on internal factors from those that occur in response to their 

environment. 

 

By being able to notice beneficial change in candidates undergoing random mutation we can 

adopt that change, even when it is outside the realm of experience for the evolutionary algorithm. 

 

5. FITNESS FUNCTION 

 
Evolutionary algorithms work by attempting to maximise a scalar fitness function by changing 

values within constraints [10]. For example we may attempt to maximise the sum of two numbers 

greater than zero but less than five. The constraints place acceptable input values from one to 

four. We may start the process with values of one, and a fitness of two. Over time we randomly 

change values and remember those pairs that lead to improved fitness function scalars. Eventually 

as a result of random changes and using the best candidates so far as a reference, our paired 

values improve. Eventually we reach a stable solution with four and four equalling eight, and we 

no longer see improvement with any random change. 

 

A random mutation component capable of integrating with evolutionary heuristics will need to 

inter-operate with this evolutionary algorithm lifecycle. As previously mentioned we do not 

include optimisation, but the question remains how much of the fitness remains relevant to 

random change function. 

 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

19 

 

At its simplest the fitness function returns a scalar value, which increases as our solution 

candidate improves if we are attempting maximisation. However there is also an expectation that 

candidate solutions that violate the problem constraints are invalid. In this case the fitness 

function may return a value equal to or less than zero to mark that this candidate is less valuable 

than any other current candidate. If we were to realise that we had produced an invalid candidate 

we could then choose to discard it, or to revert to the most recent valid version. 

 

If we are not optimising, then we are not necessarily comparing candidates by fitness. It remains a 

serious issue if a candidate should receive random mutations that render it invalid. Therefore we 

still have interest in a subset of the fitness function outcomes. The assumption is that in most 

cases it should require less processing to validate a candidate than produce the complete fitness 

scalar. 

 

6. RANDOM MUTATION 

 
We have used the phrase random mutation, however not all random changes have equal effect 

[11]. If our fitness function is linear then we may prefer boundary conditions to our input values. 

If we are attempting to fill a region we may prefer adding cells than removing them. In any case, 

we have an opportunity to favour some types of random changes over others. 

 

This leads to the idea of the greedy random. The greedy random understands in general terms that 

either setting values or removing values is preferential to the fitness function. For example we 

may set a probability to add as 0.8, and a probability to remove at 0.2. In this case before 

performing an operation we first choose whether we are in addition or removal mode. The net 

effect of this bias is to produce candidate solutions with as many added cells as possible. We call 

this process the greedy random because of this perspective of attempting to fill as many cells as it 

can before removal. 

 

In this case the relative fitness function assessment of any candidate is less important than 

knowing if the candidate remains valid. So we can perform these greedy operations more 

efficiently as a result. In testing, this represented an opportunity for more random mutation cycles 

to each evolutionary algorithm cycle. 

 

The risk of course is that a candidate solution may rapidly fill and lose degrees of freedom. This 

problem replicates the issue experienced by evolutionary algorithms around a local maximum. 

This was an important design consideration during testing. The solution to this problem became 

apparent during attempts to integrate with the evolutionary algorithm lifecycle. For iterations, the 

candidates in the population are assessed by the fitness function. In the case of attempting to 

maximise the process of filling a board such as Sudoku puzzle, performance was greatly 

improved by ensuring that the last change before fitness function assessment was a removal. 

 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

20 

 

 
Figure 1.  The modified heuristic iteration lifecycle 

 

We realised a further implication of the fitness function lifecycle. In one respect the fitness 

function tells us when we have reached a global maximum. In the case of a Sudoku puzzle we 

may have a valid candidate with all the cells occupied by digits. If not there is a subtle difference 

between asking which candidate is the best, and which candidate has the best chance of 

improving with more random mutations. It seems that a strong candidate with additional degrees 

of freedom can be as valuable as a stronger candidate with more cells filled. 

 

It is important to check fitness with as many cells as possible filled in order to find completed 

solutions. However if we are attempting to measure potential for improvement in a process where 

we are filling as many cells is possible, testing showed it was more meaningful to rank the 

candidates after a single removal. Doing so concentrates the random mutation entropy around the 

boundary conditions of the solution. Once again we have a collection pressure, but while 

evolutionary heuristics concentrate around local maxima the greedy random collects the 

candidates around input boundary values. 

 

We can also better conform to the problem namespace by prioritising changes with fewer degrees 

of freedom. In this way additions are validated against the cells that are already filled in this 

solution candidate. If we were to choose a more empty part of the namespace we could choose 

from more values for a cell, however we may be introducing a combinatorial issue with later 

additions. 

 

Therefore we reduce rework by using a fitness function that can be thought of as the count of 

neighbours that each filled cell has. For Sudoku we are checking each row, cell and region, so we 

are looking for 8x8x3x9 = 2781 as the score for a solved board and 0 for an empty one. 

 

7. COMPARING DIFFERENT EVOLUTIONARY ALGORITHMS 

 
Consider the situation in which we are attempting to evaluate the suitability of different 

evolutionary algorithms for the same problem. If we were simply reusing algorithms then we 

would find a way of encoding the problem in a format that each algorithm could recognise. This 

would give us a time to completion for each of the algorithms, but we would not be able to 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

21 

 

differentiate the performance factors within each algorithmic lifecycle. This would leave us less 

capable of classifying performance by problem type, and less capable of predicting performance 

with other problems in the future. Finally we are also at the mercy of the quality of the 

implementation of each component. What might be a specialised optimisation for a given 

example of a problem may be suboptimal in the more general case. We argue that when 

comparing the performance of evolutionary algorithms we need to separate those components that 

are less related to optimisation and more likely to be shared between implementations. 

 

We would argue that a fitness function that is better suited to the namespace topology has better 

alignment to the data than the optimisation. In this case it would make more sense to rework the 

fitness function to each problem data type than to attempt to re-use the fitness function between 

different problem types. If we separate these shared functions from the optimisation then we can 

better evaluate the efficiency of the optimisations in isolation.  All we need to do is create an 

encapsulating lifecycle, which accepts differentiated optimisation components in the data 

management, and fitness functions should be reusable. 

 

In the same way that we have managed to isolate the fitness function from the optimisations we 

can also isolate random mutation. As mentioned the reasons for differentiating random mutation 

are less obvious. When we look at randomisation it soon becomes apparent that not all random 

variations are the same. We have stated that in the middle time period of solving the problem it 

may make sense to add as many cells as we remove during random mutation. However as we fill 

more of the board we encounter reduced degrees of freedom and so more cell additions will fail 

consistency checks. In effect it will be more successful removing cells than adding cells and 

random mutation may be detrimental to optimisation in that case. To remediate we may decide to 

bias in favour of cell additions rather than cell deletions, or we may retry additions until 

successful. 

 

If we follow this path we introduce another anti-pattern in that we may leave the solution 

candidates with no degrees of freedom entering the optimisation component processing. During 

experimentation we had greater success when we left deletion steps at the end of the process. We 

expect there are two factors for the observed behaviours. Firstly it may be preferential to leave a 

degree of combinatorial flexibility for the process of attribute replication during optimisation to 

occur. Secondly the question arises of the optimal time to evaluate fitness in the optimisation 

lifecycle. 

 

If we accept that producing a scalar for comparison and evaluating the possibility of an end point 

solution are different questions then we open the possibility that it may make sense to check for 

these conditions at different times in the life-cycle. Consider waves at a beach. Our endpoint 

condition may be a wave reaching a distant point along the shore. However the fitness of any 

wave might be better measured by the height of the swell before the wave approaches the beach 

as an indicator of future success. In these terms the fitness is the height of the swell and the 

endpoint condition is achieving the required distance up the beach as a Boolean consistent with a 

causal relationship. Increase the swell and the waves drive further up the beach. So if we are 

attempting to solve a Sudoku problem then it may be more valuable to rank candidate solutions 

with better fitness and degrees of freedom than fitness alone. 

 

In any case if we are complicating the random mutation, particularly if we are doing so to suit 

conditions in the data namespace, then it also makes sense to separate the random mutation from 

the evolutionary algorithm component. We can see by a process of optimisation that we have 

extracted reusable components and encapsulated complexity to the point where optimisation 

components have become more specialised. The fitness function and random mutations have 

become more specialised to the namespace topologies of the data. These components are 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

22 

 

orchestrated by an extensible component lifecycle. We can now test different evolutionary 

algorithms by implementing their optimisations within the shared component framework. 

 

At this point we have evolved a component framework that allows us to differentially optimise 

and orchestrate discrete components: 

 

• We have identified a common lifecycle among evolutionary algorithms 

• We argue that the fitness function can be better suited to the data namespace than the 

optimisation. The fitness function is modal as the checks for consistency, endpoint 

solution and fitness scalar have different processing and usage modes. 

• We argue that random mutation can be a collection of different random action types. We 

argue that differentiating these modes leads to performance optimisations and further that 

these can be orchestrated in their own lifecycle to optimise degrees of freedom. 

• If we follow this path we come to the conclusion that optimisation may be best 

implemented as a component within a framework that uses a fitness function and a 

random mutation that are detailed to each data namespace. 

• A framework of this type allows us to compare and contrast the suitability and 

performance of different evolutionary algorithms. 

• If we accept that random mutation can reach solutions then a subset of fitness function 

modes will allow bypassing of optimisation if an endpoint solution has been reached. 

 

Most interestingly we have also gained the ability to test the efficiency of the random mutation in 

isolation by deactivating the optimisation components entirely. We have already made an 

argument that the random mutation can be better suited to the data than the optimisation, and so it 

makes sense that the random mutation be optimised independently for each dataset before 

integration with evolutionary optimisations. It was during this optimisation that we realised 

random mutation is capable of solving Sudoku puzzles without an optimisation component. 

The question of the optimising component is an intriguing one. Sudoku has regularly been used to 

demonstrate the ability of evolutionary algorithms. On various occasions particle swarm, genetic 

algorithms and hybrid Meta heuristics have been shown to be capable of solving Sudoku 

problems. Using the component framework above we managed to confirm that indeed particle 

swarm, genetic algorithms and simulated annealing could solve these problems. 

 

However as noted each of these heuristics has a random mutation component which is separately 

optimisable. Our aim therefore was to improve this function in isolation, which would then 

improve the baseline performance of each of the evolutionary algorithms. Doing so involves 

operating lifecycle with out the optimisation components. At this point it became apparent that 

the random mutation is capable of solving the problems. 

 

This of course implies that all of the optimisations within this lifecycle may be able to solve the 

same problems as the random mutation, as long as they do not sufficiently overpower the random 

mutation function. 

 

This also implies that an inability to solve Sudoku problems may be implementation specific. 

Results indicated a benefit in using evolutionary algorithms for most problems, for which 

evolutionary algorithms received lower main iteration counts to the endpoint solution. However, 

in the same way that some problems are more difficult for humans, the evolutionary algorithms 

also seem to struggle by concentrating around local maxima. In these cases the optimised random 

mutation lacked concentrating behaviour and achieved faster solution times. This result seemed 

counterintuitive. We would have hoped that by applying focused attention we should be more 

capable of solving problems in all conditions. Yet we appear to see evidence that a broader 

solution mode can lead to answers for more difficult problems in a shorter time frame. 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

23 

 

 

Consider too that the value of each solution candidate is a sample of the fitness of that point in the 

namespace. Aggregating the population of candidate solutions might be considered as analogous 

to an awareness of the solution candidates so far. 

 

This brings an intriguing correlation to the anatomy of human vision, and the implications of 

having too narrow a focus. Split brain theory shows the left hemisphere has a predilection for 

focused mono-procedural tools based processing, much like the way optimisation acts as a 

concentrating force for solution candidates around the best solution found so far. The longer an 

evolutionary algorithm spends around a maximum the more attributes are copied from the better 

solutions to the weaker, the more similar the population becomes. We can see this as a 

concentration of attention focus around the best solution so far. 

 

The human brain uses both strategies at the same time. The left hemisphere has a preference for 

focused attention, much in the way evolutionary algorithms concentrate solution candidates 

around local maxima. The right hemisphere prefers a broader attention mode. Human vision in 

particular has peripheral perception modes, which have strengths in motion detection and changes 

in light intensity. These modes benefit from the widest possible distribution of attention, which 

correlates to the idea of reduced optimisation for solution candidates, and more of a bias towards 

random mutation. In the same way that optimisation concentrates candidates, random mutation 

distributes them through the namespace topology. This matches how we look for something 

we’ve lost. The way we attempt to remember where we have left an object is dealt with as though 

it were a problem to solve, while we were also broadly paying attention by looking around, as we 

look in case we have forgotten something or someone else may have moved the object in 

question. 

 

8. PARALLELISATION 

 
Consider the approaches we would take if we were intending to parallelise heuristic or iterative 

approaches across many processor cores. We would be intending to balance the workload across 

the cores to minimise aggregated execution time. This might typically be achieved by the 

introduction of a queuing mechanism whereby each thread of execution requests the next piece of 

work. Or we may ‘shard’ the problem into discrete domains that each core can then work on in 

isolation. There are multitudes of successful implementations of these types, particularly with the 

advent of software as a service and cloud computing.  

 

Along with implementations of this type we also assume the anti-patterns required for 

synchronisation and delegation. There is an overhead required for multi core processes that share 

cached information. There are overheads for delegation processes whereby the client acquires the 

next piece of work. There are inefficiencies in sharing approaches, which may lack the 

adaptability to devote more processes to current interval areas of attention. If we look at 

implementations of this type then our random mutation has some distinct advantages. 

 

Most evolutionary algorithms represent with challenges to parallelisation. The optimisation 

process uses the results of the fitness calculation to replicate attributes from stronger candidates to 

the weaker, which implies identifying differences between the two and changing attributes where 

possible. There are some exceptions to this process as in the case of simulated annealing where 

optimisation represents more as a backtracking mechanism against retrograde fitness changes. In 

general though, the processes we see in genetic algorithms and particle swarm optimisation 

require granulated comparisons and replications between candidates in the same logical group. 

Parallelisation therefore implies attribute comparisons and replications between different 

processing groups. 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

24 

 

 

A possible remediation to this granulation problem can be seen in some of the swarm grouping 

behaviours in particle swarm optimisation. Rather than have the entire population follow the 

generic population wide candidate we instead break the population into separate groups, which 

allows for each group to move separately. We then track the global best solution as the best of the 

lead candidates in each swarm. 

 

Mapping this consideration to multiple cores of execution in multiple domains we use the fitness 

check to identify best candidates in local populations that can be copied into other groups of 

optimisers. At that point the best candidate across any of the processing groups us accessible to 

the local optimisation processing and granular processing can continue within this core 

processing group. 

 

For random mutation processing to participate in this style of processing we can simply reuse the 

results of the fitness function check that we are already performing to see if we have reached and 

endpoint solution. If we have improved our candidate beyond any other population then we can 

replicate this candidate to other optimiser populations. We have noted hover that we do not need 

to replicate candidates between the randomisation populations, so there is little incremental effort 

to their participation in the scheme. 

 

9. ADAPTIVE SHARDING OF SURFACES 

 
These behaviours also serve to illustrate the advantages of random mutation as a sharding 

strategy. A natural consequence of parallelisation is the segmentation of the namespace into more 

than one population. An evolutionary algorithm identifies the best solution candidate so far and 

replicates its attributes. When we segregate the populations this behaviour maps to the best 

candidate in that population. As we have mentioned particle swarm optimisation can vary this 

behaviour by maintaining multiple parallel swarms. In general however we rarely see large 

numbers of small swarms. 

 

The random mutation population does not replicate attributes in this manner. So if we argue that 

the best solution candidate for an evolutionary algorithm is the focus of attention, then we might 

also argue that each candidate in a random mutation population is a separate focus of attention.  

By this metric each of the random mutation solution candidates works like a focus of attention 

implemented in a green thread time-sharing scheme. 

 

Additionally the random mutation life cycle is a subset of the evolutionary algorithm life cycle 

and so more iterations are achieved through random mutation for the same resource spends. The 

optimisers and the random mutator life cycles are decoupled by the introduction of a push 

mechanism towards the optimisers, which allows inclusion of new best candidates at the 

commencement of the next optimiser life-cycle iteration. This removes more common 

parallelisation strategies such as queuing or synchronisation between processes. 

 

10. QUESTIONS OF HOMOGENEITY 

 
Evolutionary algorithms work in part because changes in the fitness function are not large for 

small changes in the input variables. More gradual differentials allow for more predictable results 

and help remediate the possibility of spike maxima that we might not find, or might have 

difficulty escaping from. 

 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

25 

 

The extreme of this condition where fitness function deltas become too radical might be where 

the set of combinatorially permissible inputs are not contiguous. If we were to randomly start in a 

region not connected to the global maximum then no degree of optimisation may lead us to it. 

Using a population of random mutators helps reduce these occurrences by placing hundreds of 

candidates throughout the input namespace. Initially we place them in a uniformly random 

manner, which implies that the percentage of random mutators starting in each region is related to 

the ratios of their volumes. In testing we often use populations of 500 or more greedy random 

candidates. By weight of numbers we would expect a workable number of candidates to fall into 

most non-contiguous regions. 

 

We also start evolutionary algorithms in the name space. When they start they begin with they 

identify their best candidate so far and from that point the population receives attributes from this 

candidate. Time passes, and with each iteration the dispersed candidates make an attempt to 

acquire the attributes of this candidate. With time, where possible, candidates may achieve the 

entropy required to make the jump between regions and join the best candidates' region. 

 

At the same time the greedy random continues to mutate in a directed fashion. At some point a 

greedy random candidate may achieve a state better than the evolutionary algorithm has found. 

The greedy random candidate then becomes the lead evolutionary algorithm candidate. If possible 

the evolutionary algorithm will bring other candidates to this new region. This ongoing 

revalidation allows modes of mutation entropy that the evolutionary algorithms lack on their own. 

 

11. ON REVALIDATION AND PROBLEM COMPLETION 

 
The complete model for these interactions includes a number of evolutionary algorithms and two 

populations of random mutators. We use one population as a dispersion agent throughout the 

namespace. The second is a random mutation behaviour applied to the satisficing cache, which 

orchestrates these interactions. 

 

The satisficing cache is a normal population of the greedy random. However if any other 

population of candidates finds a solution candidate better than the current best then this is 

replicated into the cache and a random candidate is removed. This allows each optimising 

population to be able to check at the start of iteration in the satisficing cache to see if a new best 

candidate has evolved. Interactions with segregated parallel models can then occur between these 

caches. 

 

We note in related work that this design is intended to have similarities with split brain theory, 

where the right hemisphere is more aware of the environment you are in and the passing of time, 

while the left hemisphere is more focused, mono-procedural and within the current time frame. In 

this case the satisficing cache works like attention around the most recent region of work. In this 

way the satisficing cache is a good contributor for improving random mutation entropy around 

local maxima. 

 

This idea became highly significant with related work attempting to model human vision 

processing modes into heuristics. Having a central cache allows us to better track when a 

population that are meeting more success supplies the best candidate. When there are few local 

maxima we might see particle swarm optimisation providing more of the best candidates. If we 

have problems with local maxima we might see the particle swarm take the lead and then wait 

until the greedy random finds a new approach. 

 

Most surprisingly we saw that the conditions around final completion represent in a similar way 

to a local maximum. In both cases it seems to the optimiser that there are few opportunities for 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

26 

 

improvement with a lack of combinatorial freedom around the best candidates so far. In these 

conditions we saw the satisficing cache take over more often than not, and finish the solution 

more often than the evolutionary algorithms or cache. 

 

In this work we were attempting to model human decision patterns. The comparison we drew was 

to how humans check to see if they have really finished a job. If a person is engaged in a tool 

based exercise they might check that a nail has been left at the correct depth, or a screw is flush to 

a surface, before deciding if they should continue or correct current work. Continuing to hammer 

or screw until forward progress ends might be successful in the middle scenario but a wider focus 

is required for fine detail. We appear to have heuristically simulated something like this 

validation interaction. 

 

We expect this occurs in the byplay between two behaviours. The first behaviour comes from the 

ability of the random mutation to be able to chain together multiple iterations of change 

uncorrected by optimisation. This gives a decided advantage in such situations. The second 

behaviour comes from the replication of the best candidate into the satisficing cache. The best 

candidate is replicated each iteration into the satisficing cache until a significant number of 

candidates surround the area with random mutation. These accumulate and then diversify in a 

stream of candidates until they probabilistically find the global solution. 

 

12. COMBINATORIALLY ADAPTIVE EFFECTS 

 
The greedy random represents as an optimisation along one or more input variables where we 

have an expectation of a boundary condition leading to higher solution candidate fitness values. If 

we have an expectation that the boundary value of a variable, or the value next to it, represents as 

2 in perhaps 100 possible values for this variable then we have excluded a requirement to 

combinatorially test the remainder of the range for this variable. This leads to as much as a 50x 

efficiency in randomisation across the namespace. 

 

Of course problems of consequence often have complicated combinatorial restrictions. The 

greedy random behaviour adapts to the surface between valid and invalid inputs irrespective of 

the remainder of the input variables. 

 

Perhaps most significantly empowering greedy random behaviours across multiple variables lead 

to a multiplicand efficiency improvement. If for example we were able to apply the greedy 

random behaviour to two different variables similar to our earlier example we would expect a 

50x50 = 2500 speed improvement. We have identified that we do not need to test the majority of 

the namespaces for these two variables, and yet will remain valid across the entire namespace if 

the problem becomes combinatorially difficult.  

 

13. IMPLEMENTATION 

 
We will perform two validations of the framework. The first will be a python-based component 

framework implementation of heuristics for solving Sudoku problems. Sudoku problems are 

defined on a 9 x 9 grid where the digits from 1 to 9 are arranged such that no digit is repeated on 

any column, row or 3 by 3 cell grid of which there are 9. Sudoku puzzles are simple enough to be 

enjoyed as a diversion, and yet the more complex ones can occupy heuristics for thousands of 

iterations [12][13]. 

 

We have collected a sample of 60 or so Sudoku puzzles which were all solved by the evolutionary 

algorithms and greedy random. Most significantly we tested against 4 Sudoku puzzles, which 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

27 

 

have been known as some of the most difficult created: ”The Easter Monster”, the ”Golden 

Nugget”, ”tarek071223170000-052” and ”col-02-08-071”. 

 

Our implementation shows the greedy random acting as the usual random mutation agent for each 

of the evolutionary algorithms. During testing each of the evolutionary algorithms can be selected 

or deselected individually via a command line option. 

 

During initial testing the algorithm was run separately with each evolutionary algorithm selected 

and we verified that all the sample Sudoku puzzles could be solves with each. 

 

It then became apparent that it would be a useful comparison to produce a baseline where no 

optimisation was selected. This would help identify the net benefit of the optimisation action 

above random mutation. 

 

 
 

Figure 2.  The four most difficult Sudoku puzzles tested. 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

28 

 

 
 

Figure 3.  The component hierarchy as pseudo-code 

 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

29 

 

The second validation will be an attempt to validate the greedy random behaviours in an 

accessible problem. We will initialise a population of 100 candidates in the (x,y) plane such that -

1 < x < 1, and -1.1 < y < cos(pi *x). We will then perform 100 iterations of random mutation on 

these candidates allowing them free movement, excepting we will enforce y < cos(pi *x) as a 

constraint. We will manage two of these populations. The first will be a control group undergoing 

normal random mutation. The second will be a group undergoing greedy random mutations. 

If the greedy random is successful then we should see more candidates closer to the y = cos(pi *x) 

surface. This action will normalise mutations for greedy random candidates to be along the 

surface. In practice we would have configured the greedy random to attempt to maximise 

expecting this would improve fitness values. 

 

 
 

Figure 4. Greedy random test code 

 

 

 

 

 

 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

30 

 

 

14. TESTING OUTCOMES 

 

 
 

Figure 5. Sudoku Results 

 

The pure random mutation (with no optimisation) and all three evolutionary algorithms were 

shown to be able to solve all 60 Sudoku puzzles. These are the results for the 4 hardest puzzles: 

 

1. The effect of being caught in local maxima had a significant effect on average times. If 

the algorithm catches a local maxima on harder problems in 20% of runs average 

iteration counts can double or triple. The algorithms recover and complete, but at large 

time scales. 

 

2. The genetic algorithm had median performance. This is thought to be of a consequence of 

a relatively higher complexity in the optimiser combined with a slower propagation rate 

for good attributes. This idea is correlated in the genetic algorithm showing less benefit 

from larger population sizes (17280 to 12100 to 3650 to 2655) of thousand boards. 

 

3. Where optimisation outperformed random mutation on the harder problems it was usually 

particle swarm optimisation. If we multiple the size of the population by the number of 

iterations as a number of boards then particle swarm achieves end point solution in less 

than half the number of (1465 to 3138) of thousand boards for populations of 1000. 

 

4. Simulated annealing held the closest correlation to pure random (2920 to 3183) of 

thousand boards for populations of 1000. This is to be expected, as there is no real 

propagation of attributes in this optimisation. Rather there is an additional random 

mutation, which is only significant on improvement. 

 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

31 

 

We now consider the results of the greedy random efficiency testing. The tests show a control 

population of normal random mutators and a greedy random each varying 100 candidates starting 

in the range x=(-1, 1) 100 times each. We impose y < cos(pi *x) as an uneven constraint surface. 

 

 
 

Figure 6. Random mutation efficiency 

 

We can see the random mutator starts in the x=(-1,1) and y>-1.1 range and expands in all 

directions. The candidates near the curve seem relatively compressed and lateral movement past 

the x=-1 and x=1 values seems reduced unless y < -1. The uneven constraint initially appears to 

effect expansion rates in an uneven way. 

 

 
 

Figure 7. Greedy random efficiency 

 

Here we see the greedy random solution candidates adjacent to but just below the constraint 

surface. Movement is forced along the constraint surface consistent with the expectations of a 

simplex algorithm.  



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

32 

 

 

We were not required to set expected optimal or control values. Linear optimisation can show 

preferences for boundary conditions for input values, and we are doing the same. However the 

boundary conditions can vary due to combinatorial restrictions or the behaviours of other input 

variables. While we cannot plan for a specific input boundary value we can ask the greedy 

random to prefer values with a directional bias. In this case, increase values while still remaining 

valid below y=cos(pi *x). In usual terms we would not know this constraint, or how it varies with 

combinations of inputs. The greedy random would adapt. 

 

The net effect is that we are now treating a 2-dimensional area below the curve as more like a 

linear position along the curve itself. We believe improved fitness occurs with these inputs on the 

line, so we randomise along it. We are converting the examination of the larger volume into the 

more specific boundary in a probabilistic way. 

 

 
 

Figure 8. Check for correlating behaviours 

 

These results show the plots of delta between the randomised (x,y) and the y=cos(pi *x) surface 

for 1000 runs. With an R^2 of 9.1E-11 we show there is no appreciable correlation between the 

truly random mutation and the greedy random. We can therefore expect the greedy random is as 

relatively random, just within a smaller range.  

 

If we process 1000 runs of 100 points for the control group and the greedy random we do not find 

a significant correlation (R^2 = 9.1e-11). On average the greedy random was better than 20 times 

more efficient than the test control group at reducing distance to the test function. 

 

Each input variable for a problem can be represented this way, and the effects multiply. 

 

15. DISCUSSION 

 
We have shown that an optimised random mutation is capable of solving Sudoku puzzles on its 

own. We have shown that evolutionary algorithms, which used this random mutation, were also 

capable of solving the puzzles. 

 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

33 

 

The major danger to completion would therefore appear to be in the balance between random 

mutation and optimisation. If the action of copying attributes from the strongest candidates were 

capable of offsetting randomisation then any attempt to break away from a local maximum would 

be lost. 

 

An amenable solution to this problem would appear to be the addition of a separate random 

mutation population to the action of the evolutionary algorithm. In this way one population would 

always be capable of random mutation. Whenever the random mutation population finds a better 

solution than the evolutionary algorithm then this can be replicated across to the evolutionary 

algorithm population. Optimisation will then replicate these new preferable attributes among the 

evolutionary algorithm population. 

 

We have also attempted to demonstrate and quantify the strength of optimisation that the greedy 

random represents. We have shown how operating in this way can convert the behaviour of 

candidates from occupying a volume into populating a complex boundary. We have shown this 

operation does not affect the random nature of the mutations, excepting that they now occur in a 

more confined space. Finally we have discussed how these effects multiply by the number of 

participant input variables, which lends hope for major performance improvements in more 

complex problems. 

 

Finally it is worth noting that the greedy random mutator and related optimisations better model 

human broad based attention modes by distributing solution candidates without the attractive 

forces of optimisation. 

 

16. FUTURE WORK 

 
This implementation was created to test optimisation of the evolutionary algorithms. In this case 

the random mutations are inline with the rest of the evolutionary algorithm, and the candidate 

population has one heuristic mode. During the discussion on satisficing behaviours we noted 

possibilities for additional modes. 

 

We have seen that the greedy random has promise with problems that challenge evolutionary 

algorithms. Creating a hybrid with a population for each will allow us to displace the evolutionary 

algorithm from local maxima by replicating better candidates from the mutation population. 

We could also be able to create a secondary population of mutation that was seeded from the 

evolutionary algorithm. This population: 

 

1. Improves randomisation around the best exploitation targets. 

2. Can operate as a satisficing cache [13][14][15] between different algorithms where the 

best candidates can be shared between populations. 

 

Since this work began new evaluations of Sudoku puzzles have emerged and we would enjoy 

retesting against some of the newer higher ranked puzzles. 

 

We see promise in representing combinatorial boundaries as n-dimensional surfaces. In these 

conditions we have shown the greedy random may provide significant performance 

improvements. More than this however, this geometric analogy of problem spaces may yet yield 

more improvements. 

 

 

 

 



International Journal of Artificial Intelligence & Applications (IJAIA), Vol. 5, No. 4, July 2014 

34 

 

REFERENCES 

 
[1] Carlos M Fonseca and Peter J Fleming. Genetic algorithms for multiobjective optimization: 

Formulation, discussion and generalization. 423:416–423, 1993. 

[2] J Kennedy and R Eberhart. Particle swarm optimization. . . . 1995 Proceedings, 1995. 

[3] Sylvain Gelly and Yizao Wang. Exploration exploitation in go: UCT for Monte- Carlo go. 2006. 

[4] Enrique Alba and Bernab ́e Dorronsoro. The exploration/exploitation tradeoff in dynamic cellular 

genetic algorithms. Evolutionary Computation, IEEE Transactions on, 9(2):126–142, 2005. 

[5] Urszula Boryczka and Przemyslaw Juszczuk. Solving the sudoku with the differential evolution. 

Zeszyty Naukowe Politechniki Bialostockiej. Informatyka, pages 5–16, 2012. 

[6] Kyun Ho Lee, Seung Wook Baek, and Ki Wan Kim. Inverse radiation analysis using repulsive 

particle swarm optimization algorithm. International Journal of Heat and Mass Transfer, 

51(11):2772–2783, 2008. 

[7] Scott Kirkpatrick, D Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing. science, 

220(4598):671–680, 1983. 

[8] Rhyd Lewis. Metaheuristics can solve sudoku puzzles. Journal of Heuristics, 13(4):387–401, 2007. 

[9] Charles Darwin. On the origin of the species by natural selection. 1859. 

[10] Dirk Buche, Nicol N Schraudolph, and Petros Koumoutsakos. Accelerating evolutionary algorithms 

with gaussian process fitness function models. Systems, Man, and Cybernetics, Part C: Applications 

and Reviews, IEEE Transactions on, 35(2):183–194, 2005. 

[11] Ajith Abraham, Rajkumar Buyya, and Baikunth Nath. Nature’s heuristics for scheduling jobs on 

computational grids. In The 8th IEEE international conference on advanced computing and 

communications (ADCOM 2000), pages 45–52, 2000. 

[12] Sean McGerty. Solving Sudoku Puzzles with Particle Swarm Optimisation. Final Report, Macquarie 

University, 2009. 

[13] Sean McGerty, Frank Moisiadis. Managing Namespace Topology as a Factor in Evolutionary 

Algorithms. Artificial Intelligence in Computer Science and ICT 2013. 

[14] Herbert A Simon. Theories of bounded rationality. Decision and organization, 1:161–176, 1972. 

[15] Herbert A Simon. Rationality as Process and as Product of Thought. The American Economic 

Review, 68(2):1–16, 1978. 

[16] Francesco Grimaccia, Marco Mussetta, and Riccardo E Zich. Genetical swarm optimization: Self-

adaptive hybrid evolutionary algorithm for electromagnetics. Antennas and Propagation, IEEE 

Transactions on, 55(3):781–785, 2007. 

 

Authors  
 

Sean McGerty is a PhD Research student at the University of Notre Dame Sydney. 

Sean studies relationships between human satisficing behaviour patterns and 

evolutionary algorithms. His current research areas include modelling broad based 

attention modes, namespace topology optimisations and satisficing solution 

behaviours. Using these taxonomies Sean has mapped the anatomy of human vision 

into services architectures. From these he has produced artificial intelligence models, 

which predict observable behaviours. Most recently Sean is working on modalities of 

human task sequence prioritisation. 

 

Dr Frank Moisiadis is the Head of Mathematics and a Senior Lecturer at the University 

of Notre Dame, Sydney. Frank has a PhD in Software Engineering (thesis on 

Prioritisation Algorithms for System Requirements Using Fuzzy Graphical Rating 

Scales., a MSc in Computer Science (thesis on Improving Search Algorithms and Path 

Planning for Autonomous Robots) and a BSc(Hons) in Mathematics. His current 

research focuses on using fuzzy graphical rating scales for requirements engineering and 

optimising information flows in health systems. He has authored over 30 international 

and national research papers, supervised PhD students in Artificial Intelligence, Health Informatics, 

Information Systems and Software Engineering and authored two editions of the textbook, “Principles of 

Information Systems” published by Cengage Learning (2007 and 2010). 

 


