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ABSTRACT 

 
Addiction, as a nervous disease, can be analysed using mathematical modelling and computer simulations. 

In this paper, we use an existing mathematical model to predict and simulate human brain response to the 

consumption of a single dose of methamphetamine. The model is implemented and coded in Matlab. Three 

types of personalities including introverts, ambiverts and extroverts are studied. The parameters of the 

mathematical model are calibrated and optimized, according to psychological theories, using a real coded 

genetic algorithm. The simulations show significant correlation between people response to 

methamphetamine abuse and their personality. They also show that one of the causes of tendency to 

stimulants roots in consumers personality traits. The results can be used as a tool for reducing attitude 

towards addiction.  
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1. INTRODUCTION 

 
Drug epidemics are becoming one of the main concerns in countries all around the world. 

Addiction of drugs can be categorized into addiction to narcotics and stimulants [1, 2]. 

Unfortunately the use of stimulants has become very popular in the modern world and in 

particular in Iran. These stimulants, in general, include cocaine, ecstasy pills and crack. Likewise, 

one of the very dangerous stimulant substances is methamphetamine, also known as “crystal” or 

“ice”. Methamphetamine, as a drug of abuse, has received a lot of attention in the recent years. It 

is an industrial, highly addictive substance. Different types of administration for 

methamphetamine include snorting, injecting, smoking and ingestion in the form of pills. Among 

these methods, injections gets the consumer to the “high” very quickly [1, 3].  

 

Research shows that there is a relevance between tendency to stimulant consumption and the 

consumers’ personality [4, 5]. Brain reaction to stimulants in terms of personality extraversion is 

of great importance. An individual’s affinity to drug abuse according to introversion or 

extraversion of his/her personality is different. The approach to consumption of stimulants is 

much greater in extroverts compared to introverts [4-6]. Previous research can show that 

consumers of these substances are in different personality categories and cannot show whether 

this difference is due to their personality or perhaps is relevant to variables that interact with their 

personality. In this study, only variables of personality and addiction are considered and in fact 

tens of other possible variables that may be consistent with personality can be controlled and a 

causal relationship between personality and addiction can be displayed [4-7]. The uniqueness of 
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this study is that is uses methamphetamine, which is a widely spread substance in Iran, as the 

stimulant. 

 

The aim of this research is to observe and analyse, by means of computer simulation, different 

responses of consumers with three personalities of introvert, ambivert, and extrovert to a single 

dose of a methamphetamine. Brain dynamics during stimulant consumption are demonstrated 

using an existing mathematical model. This model shows the effects of stimulant drugs on human 

brain [4]. The reason for these simulations is that the real evaluation of these effects on humans is 

not possible because of moral and legal considerations. Since methamphetamine is a dangerous 

substance, it cannot be tested on non addicts. To use the mathematical model, its parameters 

should be calibrated according to the opponent process theories for addiction provided in 

psychology [4]. This calibration is done using genetic algorithm which is an optimization 

evolutionary method. The suggested method is implemented and executed in MATLAB 2013 and 

examines several states and consumption patterns of drug abuse [8]. 

 

In the following sections, we will present a review on personality, neural system and the related 

theoretical concepts. The suggested method is described in sections 3 and 4 and the simulation 

results are presented in section 5. 

 

2. PERSONALITY AND HUMAN NERVOUS SYSTEM 

 
Human body, in particular the nervous system, and the brain, are very complicated in structure. 

Human brain weighs about 1.4 kilograms and is the most complex system ever known. This 

system consists of hundreds of millions of neurons that interact with each other in complex 

manner. Studying this system is an interdisciplinary topic and is not limited to just one scope of 

science [9]. This complexity affects many aspects of the body and mind including personality, the 

way people approach stimulants, the amount of consumption, and how they quit the consumption 

of drugs. Therefore, it is of great importance to have a comprehensive cognition on the nervous 

system in terms of personality which is the reason why many people are inclined to stimulants. 

 

In psychology, different personality traits are defined for human beings. One of these traits is 

extraversion, which according to unique personality trait theory, is known as the fundamental 

personality trait [10-12]. The biological basis of this trait is brain general activation system. 

According to unique personality trait theory, anxiety and impulsivity are two ends of a trait called 

extraversion. Extraversion starts with anxiety which has introversion and low psychoticism at one 

end and goes on to the other end of the pole with impulsivity, extraversion, and high psychoticism 

[10-12]. Also the opponent process theory presented by Solomon and Corbit in 1974, defines the 

response to an emotional stimuli in two main variables [4, 13]. 

 

When a person consumes stimulants, personal traits have great impact on person’s actions and 

brain activity. Every individual, based on personal differences between people and also 

personality variables, shows a different reaction to stimulant consumption. This difference in 

reaction can be an important issue for drug abuse in various people [4, 14]. Before a person starts 

the stimulant consumption, their extraversion defines their brain tonic activity. When the 

substance is consumed, their extraversion level is altered [4, 5, 12]. Moreover, since the stimulant 

changes brain activation level and consumers differ in terms of their tonic activation level, then a 

dynamic model that considers both of these factors can predict stimulants effects on people with 

different personalities [4]. 

 

Many natural and biological phenomena can be expressed using a system of delayed differential 

equations [8, 15]. Dynamic intelligent systems with capability of prediction, in general should be 

a good instance of the real world they are modelling and embrace, as much as possible, all the 
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conditions of the event they are predicting [15, 16]. Human brain response to addiction and drug 

consumption is also something which can be modelled mathematically, for example using the 

General Modelling Methodology, and simulated numerically [4, 5, 17-19].  

 

Many studies have introduced mathematical models for the brain to show its dynamics, 

specifically in cases of addiction [17-21]. Haken introduced a dynamic model called lighthouse 

which is a mathematical model that demonstrates the dynamics of the brain and works on the 

relationship between brain subsystems that are defined by the neurons [21]. Also, in 2008 Amigo 

et al presented a dynamic mathematical model to show the brain response to a single dose of 

cocaine hydrochloride [4]. In 2010 Caselles introduced a more comprehensive model which 

embraces addiction to stimulants and is more extensible [5]. Models presented for dynamic 

systems consist of parameters that should be initialized before using the system. For this purpose, 

genetic algorithm can be considered as a suitable optimizing method. This algorithm has been 

used for the calibration of water distribution model, calibration of hydraulic process model used 

for detection of water loss and many other parameter calibration problems [22-29]. Also for 

determining the optimum soil parameters, evolutionary algorithms have been used. Genetic 

algorithm and particle swarm optimization methods have shown good results in these 

optimization problems [30, 31]. Particle swarm optimization has also been used in the calibration 

of climate models and has optimized the model parameters [32]. Also, in a study done in 2008, a 

genetic algorithm has been used for the generation of the system of differential equations. This 

cognitive research, studies the existence of chaotic response of a person consuming a dose of 

stimulants [33].  

 

3. MODELLING HUMAN RESPONSE TO STIMULANTS 
 
The goal of this study is the analysis of the effect of a single dose of methamphetamine on 

consumers’ personality. An existing mathematical model introduced in 2008 by Amigo et al is 

used for this purpose. This model is a set of delayed differential equations (DDE) and functions 

based on consumers’ personality trait in a psychological perspective and also the brain 

characteristics [4]. The solution of these equations displays the consumer’s brain activity level. In 

other words, by solving the equations for a given time interval, we can observe the changes in the 

individual’s personality in terms of extraversion. 

 

Having this mathematical model, we need to implement a computer program in Matlab, based on 

the model so that the simulations are done correctly. Also, the presented model should be 

calibrated with correct parameter values. This calibration must be accomplished in a way that 

model variables have suitable parameters and the creation of the model and its usage by the user 

are not controllable. Moreover after the calibration, the created system should show a known 

behavior in the simulations. For using the mathematical model, settings of the parameters have to 

be carried out according to the pharmacological information for the methamphetamine. In oral 

administration of methamphetamine, peak concentrations are seen in 2-3 hours after ingestion and 

reaches its maximum. This drug remains in the plasma for 4 to 12 hours [34-36].  

 

In this model, a state variable, s(t), is defined which shows the amount of drug consumed in the 

blood at each instance t. This variable produces consumer’s acute response to stimulant. The 

stimulant drug shows itself in the model as the amount of drug in blood and is defined as 

Equation (1). 
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In this equation, d is the dose of the consumed stimulant and α and β are assimilation and 

consumption rates of methamphetamine in the body and their values must be determined before 

simulations. As mentioned before, the dose of the consumed drug is one dose of 

methamphetamine and so d equals one. As for α and β, they should be determined in a way that 

the maximum point in s(t) happens when the drug level reaches its highest degree of 

concentration in the blood. This point happens after 2-3 hours of drug entrance to the body [34-

36]. In the simulations we consider this time 120 minutes. Moreover, as we would like to observe 

the brain response for the duration of the time drug remains in the blood, the total time of 

simulation is considered 725 minutes and the start of intake is t0=5 minutes. Before t0, the 

consumer has no drug inserted to his body. Also a delay parameter of τ, which is the inhibitor 

effect delay, is set to 340 minutes. 

 

To determine the values of α and β, a genetic algorithm is designed to find the optimum values of 

these controlling rates. A genetic algorithm with two populations is implemented in Matlab; a 

population for α and another for β. The fitness function is defined according to Equation (1) and 

setting t equal to 120, as presented in Equation (2). 
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In genetic algorithm each gene is a candidate as the solution of the problem. Therefore the 

representation of the genes is important. In this optimization, the genes are floating point numbers 

between 0 and 1. Hence real number representation has been used in the implementation of the 

genetic algorithm [37, 38]. 

 

The proposed algorithm is initialized with generating random numbers between 0 and 1 for each 

of the two populations. To begin, the fitness of the generated numbers is calculated for each gene. 

For selection, the roulette wheel method is chosen. Roulette wheel selects parents directly 

proportional to their fitness. For each individual, the probability of being selected for the next 

generation is the fitness of that individual divided by the sum of the fitness values of the entire 

population. This selection method is applied for both populations [38].  

 

The performance of genetic operators, crossover and mutation, in real coded GAs are essentially 

different from those in binary, while the drive and the framework is similar. In real GA, the 

operation of crossover considers each chromosome a real number and uses a determined 

crossover rate to swap the digits. In this method, one point crossover is applied [38]. Also, as the 

chromosomes of the population are real numbers, real mutation should be applied. Real number 

mutation differs with binary mutation. In it, a very small amount from a known distribution is 

added to each variable. In binary populations, mutation reverses each bit i.e. it changes zero to 

one and one to zero. Mutation operator includes adding a small amount from a uniform 

distribution in the interval of [-0.1,0.1] to a random place in the gene. Both populations go on to 

maximizing s(t) function and increase its value [39]. The criteria for the termination of the 

algorithm is that either the answers do not change over several successive generations, or that the 

algorithm is repeated for the determined number of generations. The values obtained for the 

parameters are shown in Table (1).  
 

Table 1. Optimizing the Parameters Using Genetic Algorithm 

 

s(120) β Α 

0.4351 0.0071 0.0121 
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To avoid being trapped in local optima, the crossover and mutation rates must be selected with 

care. In this study, these values are obtained using trial and error. So, the values of 0.75 and 0.15 

were selected respectively. If the mutation rate is too small, it will lead to premature convergence 

to a local optimum instead of the global one. On the other hand, if a very large value is selected, it 

will lead to missing good solutions during the search [39, 40].  

 

The type of personality in individuals is expressed using the delayed differential equation in (3). 

The solution of this equation shows the extraversion of the consumer and needs to be solved 

using numerical methods. 

 

)3(  

 
 

 

In the delay differential equation mathematical model in (3), the tonic activation level of each 

individual is expressed with a constant parameter b. If the consumer has the basal personality of 

extraversion, the parameter b will be valued 0.5, for the introvert personality it would be 1.5 and 

for the ambivert this parameter would be 1. The consumer starts the consumption of a dose of 

stimulant with an initial extroversion value of y0 which has one of the mentioned values. In fact it 

should be equal to the tonic activation level. This means that y(t0)=y0=b [4].  

 

As the consumer starts the administration of the stimulant, the extraversion parameter, defined by 

y, begins to be modified. Parameter a is the homeostatic control rate and is a factor that causes the 

model to behave like the predicted form. The parameters p and q are excitation effect power and 

inhibition effect power. These values should be positive and depend on each individual. In the 

calibration of the model for methamphetamine, the value of parameter a is set to 0.025, p is 0.8 

and q is 0.15. Solving the equations in (3) analytically is very complicated. Hence the solution of 

these equations has been obtained using numerical methods for solving delayed differential 

equations (DDE) in MATLAB. These functions include dde23 and ddeset [8, 41]. The time 

interval for the simulations is equal to the duration of the time that the individual consumes one 

dose d of snorted methamphetamine until the effect of the drug reaches its highest degree of 

concentration in the blood and its duration in the blood ends. During the time methamphetamine 

remains in the blood, it is evident from the known psychological theories how the behaviour of 

the nervous system should be. 

 

Model validation can be accomplished according to the time patterns produced in the simulations. 

This time pattern has to be consistent with the predicted behaviour predicted by the psychological 

theories. In fact the plots resulted from the simulations should show the unique personality trait 

theory for excitation-inhibition balance which is similar to affective acquisition pattern presented 

by Solomon and Corbit [12]. This all means that after the consumption of the stimulant, there 

should be an initial euphoria, then a feeling of pleasure which remains for some time. At the end, 

a displeasing activation is observed which causes an unpleasant feeling in the consumer. These 

are observable in the output results of the simulations.  

 

4. SIMULATING BRAIN RESPONSE TO METHAMPHETAMINE 

 
In this study, several simulations were conducted to observe the response of human brain to the 

methamphetamine stimulant according to the personality of consumer in terms of extraversion. 

Parameters of the model were calibrated with regard to this information, using genetic algorithms. 

Parameters must be determined so that the proposed time pattern for the model of the excitation-
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inhibition effect matches the time pattern predicted by Solomon and Corbit [12]. Since the 

presented model is a system of delayed differential equations, its solution must be found, for the 

expected time pattern, using numerical methods and MATLAB programming. Figure (1) shows 

the level of methamphetamine in body for the duration of 725 minutes.  
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Figure 1. Stimulant level in the body after the consumption of a dose of methamphetamine 

Parameters in these simulations are set in a way that their maximum point is 120 minutes (2 

hours) after the start of consumption. The values of the parameters are found by genetic algorithm 

as explained in the previous section. According to Figure (1), as the time goes by, the 

concentration of stimulant in the blood increases until it reaches the maximum point of blood 

concentration. Then it starts to decrease as it is absorbed in the body. The stimulant level reaches 

values close to zero after 12 hours. The level of stimulant in the blood does not depends on the 

person’s personality, but it depends on the dose of the consumed drug.  

 

After the consumer snorts a dose of methamphetamine, he reaches a pleasant feeling. Then they 

experience a constant period of joy until the effect of drug starts to disappear and the level of 

activation makes the consumer to feel unpleasant. This part is shown in the negative part of 

Figure (2). At the end, it returns to the initial activation state. This figure shows the excitation-

effect effect where the positive part illustrates the excitation factor and the negative part of it, is 

for the inhibitor.  
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Figure 2. The Excitation and Inhibitor Effects of Methamphetamine 

 

As it is observed in figure (2), the effect of inhibitor starts according to the value of the delay 

parameter at t=340 minutes. This is close to the time that the effect of drug is starting to be 
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reduced and eliminated. If we subtract the values of the inhibitor effect (negative part) from the 

excitation effect (positive part) we reach the plot in figure (3). The simulations in figure (3) show 

the excitation-inhibitor balance for three personalities of introvert, ambiverts and extroverts. The 

extrovert has been affected more than the other personalities by the excitation effect. As for the 

introvert, it is observable that he can return much faster to the tonic level (1.5 fo introvert) than 

the other personalities. 
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Figure 3. The excitation-inhibitor balance for introvert, ambivert and extroverts after the consumption of a 

single dose of methamphetamine 

 

It is seen in figure (3) that there is stronger inhibitor effect in introvert than extrovert and the 

introvert has not had a very high excitation effect. The brain activation level that shows the 

extraversion of the consumers are shown in Figure (4). This simulation, shows the brain 

activation level for the duration of 725 minutes. The level of extraversion of the individuals 

increases until the concentration of the stimulant in the blood reaches its maximum point and then 

it starts to decrease. At the end, it returns to basic state. Figure (4) shows the level of extraversion 

for three types of personalities. The amount of tonic activation level (before any consumption) for 

the introvert is 1.5, for ambivert 1, and for the extrovert it is equal to 0.5.  
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Figure 4. Extraversion variable for introverts, ambivert and extrovert after the consumption of a dose of 

methamphetamine 
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It can be observed that for the same period of time and for the same consumed dose, the extrovert 

has a higher brain activation level than the ambivert and the ambivert has bigger activation level 

than the introvert. The introvert returns to his tonic activation level much faster than the other 

personalities. The extrovert takes more time to return to his tonic level. This is due to the fact that 

extroverts have a higher brain excitation level. Introverts are not excited as much as the introverts 

by the dose of stimulant entered to their blood. Hence they have an easier and faster return to their 

basal brain activation level. Also, the increase in brain activation level, y(t), is very high 

compared to cocaine [4]. This is due to the nature of methamphetamine which a more powerful 

stimulant than cocaine. 

 

5. CONCLUSION 

 
With the acquisition of the system presented in this research which has the capability of 

predicting different responses of human brain to consumption of a single dose of 

methamphetamine, based on the type of extraversion of the individuals, we can develop new 

advances in addiction prevention. Evolutionary methods, in this study genetic algorithm, were 

used as a powerful tool to model parameter calibration and were found a great optimization 

method. Considering various consumption conditions, different consumption doses and stimulants 

other than methamphetamine, it can also help with prevention and treatment of addiction and drug 

abuse. By knowing that individuals who consume methamphetamine, have what kind of 

personality and based on this type of personality how their brains response to stimulants, there is 

a possibility for intervention and improvements of the addiction treatment. We observed that 

extroverts experience a much higher brain activation level than the introverts, after consuming 

one dose of methamphetamine. This intervention can be carried out on real human beings with 

the assurance of causality, and not relevance, and no other artifact variable has made this 

relevance. This study may underlie effective interventions to reduce the impact of addiction and 

lower the tendency to stimulants. 

 

6. FUTURE SCOPE 

 
Future work can use different, and at the same time popular, stimulant substances along with 

more data collected from the addicts consumption pattern. Moreover, since personality of human 

being has many traits, the models used in this research may be more generalized for different 

aspects of personality, not just extraversion, with correlation to stimulant consumption. On the 

other hand, the effects of other driving stimulus, like the effect of noise, can be analysed on 

introverts and extroverts. 
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