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ABSTRACT 

In this work feature extraction techniques for leaf classification are evaluated in a cross dataset scenario. 

First, a leaf identification system consisting of six feature classes is described and tested on five established 

publicly available datasets by using standard evaluation procedures within the datasets. Afterwards, the 

performance of the developed system is evaluated in the much more challenging scenario of cross dataset 

evaluation. Finally, a new dataset is introduced as well as a web service, which allows to identify leaves 

both photographed on paper and when still attached to the tree. While the results obtained during 

classification within a dataset come close to the state of the art, the classification accuracy in cross dataset 

evaluation is significantly worse. However, by adjusting the system and taking the top five predictions into 

consideration very good results of up to 98% are achieved. It is shown that this difference is down to the 

ineffectiveness of certain feature classes as well as the increased severity of the task as leaves that grew 

under different environmental influences can differ significantly not only in colour, but also in shape. 
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1. INTRODUCTION 

Computer vision is a rapidly growing field as classification and recognition tasks gained a lot of 

interest due to the increasing computing capabilities of modern systems. As for plant leaf 

classification the introduction of a general benchmark in shape of the Flavia dataset [1] led to an 

increase of publications regarding that topic. Many systems were proposed, mainly to test and 

compare different approaches, feature classes and classifiers [1-9]. Furthermore, several mobile 

applications like Leafsnap [10] for iOS or ApLeaf [11] for Android were developed. They allow 

quick classification by taking a photo of a leaf on a bright background like a piece of paper. 

The vast majority of publications deal with classification tasks within a dataset by using one part 

for training and the rest for testing. The chief purpose of this work is to examine the 

expressiveness of results obtained by using these standard evaluation procedures regarding a real 

world application scenario, i. e. classifying leaves by using a training set that was collected 

completely independent from the test set. The main difference between classification tasks within 

a dataset and between two different datasets is that the respective leaves grew in different 

locations and at a different time. Hence, the environmental influences like temperature, rainfall 

and solar irradiance can differ quite a lot. Moreover, leaves change over the course of a year 

because they lose water and therefore turn, at least in most cases, from green to yellow and brown. 

Unsurprisingly, features that use information about colour become pretty much useless in cross 

data set classification tasks. The aforementioned factors might have a great bearing on the shape 

of the leaves as well. This is also indicated by experiments performed by Sulc and Matas [6] 

which showed that it is possible to determine if leaves of the same species grew in northern or 

southern France using leaf recognition techniques. 
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In this work the performance of several established feature classes of varying complexity is 

evaluated within and across dataset evaluation. For this task a new data set was collected. It 

consists of ten species and is completely subsumed by the significantly larger MEW dataset. 

Therefore, it is perfectly suited for experiments on cross dataset evaluation. 

The remainder of this paper is organized as follows: In section 2 several notable contributions in 

the field of plant leaf identification are briefly reviewed. Section 3 introduces the used datasets. 

The segmentation process and the features are explained in section 4 and 5 respectively. The 

classification procedure is defined in section 6. In section 7 and 8 the results in both within and 

cross dataset evaluation are presented and discussed. Section 9 introduces the developed web 

application and section 10 concludes the paper. 

2. RELATED WORK 

Many approaches on plant recognition were introduced in the past. This section focuses on 

contributions that either yielded outstanding results or introduced feature classes or datasets that 

were used in the course of this work. 

The work by Wu et al. [1] proved to be very important for the field of leaf recognition as they 

introduced the Flavia dataset, which quickly became the standard benchmark for comparing leaf 

identification approaches. They used basic geometric features and principal component analysis 

and, despite the simplicity of their approach, achieved a classification accuracy of slightly over 

90%. 

Kadir et al. provided several publications as well as the Foliage dataset. Many different feature 

classes were used including polar Fourier transform, colour moments and vein features [2], 

principal component analysis [3] and gray level co-occurrence matrix, lacunarity and Shen 

features [4] achieving accuracies of up to 97.2% on the Flavia and 95.8% on the Foliage dataset. 

The Middle European Woody Plants dataset was introduced by Novotny and Suk [5]. In the 

corresponding paper a recognition system using image moments and Fourier descriptors achieved 

a recognition rate of almost 85% on the MEW dataset which is significantly larger than the Flavia. 

Furthermore, a web application for uploading leaf pictures and classifying them was provided. 

Sulc and Matas [6] proposed an approach that yielded excellent results of 99.5% on the Flavia 

and highly impressive 99.2% on the MEW. Their newly introduced so called Ffirst method is 

based on a rotation and scale invariant version of local binary patterns (LBP) that are computed 

both from the leaf interior and the leaf margin. In 2015, their system clearly presents the state of 

the art. 

The freely available iOS application Leafsnap was developed by Kumar et al. [10]. After having 

taken a picture with a smartphone or tablet while using a white background, the user can upload 

it to a server. An automatic segmentation procedure is performed and the leaf is classified. The 

dataset currently covers 185 tree species from the north-eastern United States. The only features 

used are the so-called HOCS-features which proved to be highly descriptive and will be 

thoroughly evaluated during the rest of this work. 

A similar application is available for Android. Zhao et al. [11] employ the same general approach 

as pictures have to be taken on a bright background. For classification a variation of the 

established HOG (Histogram of Oriented Gradient) features is combined with colour features 

using the HSV picture representation and wavelet features. The dataset contains 126 tree species 

from the French Mediterranean area. 
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3. USED DATASETS 

In the following sections the most popular publicly available datasets are briefly discussed. 

Furthermore, the newly created Bavaria Leaf Dataset (BLD) and a combination of those datasets 

are introduced. 

3.1. Publicly Available Datasets 

Flavia [1] - consists of 32 species and a total of 1907 instances, mainly collected in the Yangtse 

Delta, China. It is the most frequently used dataset for the purpose of comparing the performance 

of leaf recognition systems. The established evaluation method is to randomly pick 40 instances 

per species for training and 10 of the remaining instances for testing (10 x 40). 

Foliage [2] - is divided into a training and a test set to maximize comparability. The former 

contains 100 images of each of the 60 species, the latter 20. 

Middle European Woody Plants (MEW) [5] – was collected in Central Europe. Each of the 153 

species is represented by at least 50 instances. For all 9745 instances binary images are provided 

as well. Due to its large number of leaves the variety of species and the high quality of images the 

MEW provides a great common ground to compare performances of different leaf recognition 

systems. 

Intelligent Computing Laboratory (ICL) [12] – the largest dataset used in this work contains 

16.851 leaves from 220 species of Chinese trees. The number of instances per species differs from 

26 to 1078. 

Swedish Leaf Dataset (SLD) [13] – consists of 75 images of 15 common trees from Sweden. 

The established evaluation method is 25 x 50. 

The leaves pictured in the images of the Flavia and Foliage datasets are already segmented and 

their petioles were removed beforehand. The images in the MEW, ICL and SLD were created by 

scanning each leaf without removing the petiole first. Two examples of leaves from each dataset 

can be seen in Figure 1. 

 

Figure 1. Example leaves from the Flavia (column 1), Foliage (2), 

SLD (3, 4), MEW (5, 6) and ICL (7, 8) dataset. 

3.2. Bavaria Leaf Dataset (BLD) 

On occasion of this work a new dataset was collected. It consists of leaf images of trees which 

are common in Bavaria, Germany. In contrast to the publicly available datasets mentioned above 

the leaf images in the BLD are not scans, but actual photographs taken by different digital and 

smartphone cameras of varying quality. About half of the leaves were picked from trees, placed 

on sheets of paper and photographed to simplify automatic segmentation. No special attention 

was paid to petioles. The rest of the leaves were photographed while still being attached to the 

respective tree. This led to a variety of very different and complex backgrounds. Figure 2 shows 

some leaves from the BLD. It can be seen that leaves with missing pieces (upper middle), 

abnormal spots (bottom left) or of questionable image quality (bottom right) were kept. For each 
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species in each subset at least 65 instances were collected. Altogether, the dataset consist of 878 

leaves photographed on paper and 858 leaves attached to a tree. 

 

Figure 2. Examples from the BLD on paper (top) and still attached to the tree (bottom). 

Table 1 shows the species used in the BLD. An important characteristic of the BLD is that all of 

its ten species also feature in the much bigger MEW. Therefore, it can be used as test set for the 

cross dataset evaluation task. 

Table 1. Species of the BLD. 

Scientific 

Name 

Acer 

platanoides 

 

Scientific 

Name 

Fagus 

sylvatica 

 
Common 

Name 

Norway 

maple 

Common 

Name 

European 

beech 

Scientific 

Name 

Acer pseudo- 

platanus 

 

Scientific 

Name 

Populus 

tremula 

 
Common 

Name 

Sycamore 

maple 

Scientific 

Name 

European 

aspen 

Scientific 

Name 

Alnus 

glutinosa 

 

Scientific 

Name 

Quercus 

robur 

 

Common 

Name 

Black 

alder 

Common 

Name 

English 

oak 

Scientific 

Name 

Betula 

pendula 

 

Scientific 

Name 

Quercus 

rubra 

 
Common 

Name 

Silver 

birch 

Common 

Name 

Northern 

red oak 

Scientific 

Name 

Carpinus 

betulus 

 

Scientific 

Name 

Tilia 

cordata 

 
Common 

Name 

European 

hornbeam 

Common 

Name 

Small-

leaved lime 

3.3. Combination of the Publicly Available Datasets 

To ensure an even more realistic evaluation scenario the five publicly available datasets used in 

this work were combined to a superset called “All Combined” (AC). It consists of 430 species 

with a total of almost 36,000 instances. Notably, the overlap between the five initial datasets is 

relatively small. By combining the datasets the number of species only drops from 480 to 430. 
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4. SEGMENTATION 

Before the different features can be extracted, the leaves have to be segmented. This includes 

removing the background as well as the petiole if present. In this work two types of segmentation 

procedures are performed. Leaves photographed on a piece of paper get automatically segmented, 

while the segmentation of leaves which are still attached to the tree need user interaction to yield 

quality results. In this section both approaches will be briefly described. Firstly, the algorithm 

behind both segmentation techniques, GrabCut, will be introduced. 

4.1. The Graph-/GrabCut Algorithm 

The Graph-/GrabCut algorithm was developed by Boykov and Jolly [14], refined by Rother et al. 

[15]. The basic idea is to transfer the input image into a graph, in which the vertices represent the 

pixels and the edges quantify the degree of similarity between adjacent pixels. The more similar 

two pixels are the higher the edge weight of their linking edge is. Every pixel is connected to its 

four direct neighbours and two terminal nodes which represent the current foreground and 

background model. After constructing the graph the actual segmentation is done by performing 

iterated minimum cuts. A cut severs edges until there is no path joining the terminals anymore. 

The result is called minimum cut when the sum of the weights of the severed edges is minimal. 

The OpenCV library [16] offers an effective implementation of the described algorithm. To allow 

user interaction a mask is used to initialize the segmentation process. This input mask has the 

same dimensions as the input image. One of four possible values has to be assigned to each pixel: 

sure foreground, sure background, probable foreground or probable background. These values 

influence the edge weights and therefore the segmentation result. For example, if a pixel is 

considered as sure foreground, the weight of edge linking it to the background terminal will be 

set to zero. The edge connecting the pixel to the foreground terminal will be assigned a very high 

weight, ensuring the inseparability of the edge. 

4.2. User-assisted Segmentation 

GrabCut was primarily developed to allow user-assisted segmentations that are too difficult or 

too specific to be handled automatically. In this work the segmentation of leaves that are still 

attached to the tree can be very challenging because of the varying background. However, a 

simple GUI program allows highly effective segmentation as shown in Figure 3. 

 

Figure 3. Assisted segmentation using GrabCut: initialization (left), first result and adjustments 

(middle), final segmentation result (right). 

The initial segmentation is achieved by the user drawing a rectangle (red) that encloses the desired 

leaf. The GrabCut algorithm considers every pixel inside the rectangle as probable foreground 

and every pixel outside as probable background. Using this simple input mask the first result is 

calculated and the user is able to perform slight adjustments in the overlap image in which the 

current foreground is marked. This is done by manually labelling sure foreground (green) and 

sure background (blue) pixels. Based on the changed input the algorithm computes an updated 

segmentation until a satisfying result is obtained. The described system is very efficient and 

provides excellent results. 
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The BLD tree subset was segmented by using the method described above. Furthermore, a gold 

standard for the paper subset was created. 

4.3. Automatic Segmentation on Paper 

The input mask for the automatic segmentation process is constructed using the A- and S-channel 

from the LAB and HSV representations of the image. In the A-channel shadow pixels become 

almost invisible, while in the S-channel it is ensured that the white background is completely 

black. Binary representations are achieved by applying Otsus Method [17]. The obtained 

foreground from the A-channel can be considered as sure foreground, the obtained background 

from the S-channel as sure background. The not yet assigned pixels are mostly shadow or darker 

spots at the tips of the leaf. Especially for the shadow pixels, it is often next to impossible to make 

a profound prediction if they are indeed shadow and therefore background or if they belong to the 

leaf. To provide the GrabCut algorithm with at least some kind of tendency two heuristics are 

applied: Firstly, edges are way more likely to occur within or at the outer contour of the leaf than 

in the shadow region. Hence, an edge detection is performed on the A-channel image and the 

detected edges are considered to be probable foreground. Secondly, in general, the leaf regions in 

the S-channel image are brighter than the shadow regions. Therefore, another Otsu binarisation is 

applied that only considers those pixels which have not yet been assigned a value in the GrabCut 

input mask. According to the hereby achieved separation, the pixels are considered as probable 

foreground and background respectively. An outline of the segmentation process is shown in 

Figure 4. 

 

Figure 4. Automatic segmentation process. Top: Original (left), A-channel (middle), S-channel 

(right); bottom: GrabCut input mask (left), segmentation result (middle), failed segmentation 

example (right). 

The assigned colours in the GrabCut input mask are: sure foreground (green), sure background 

(black), probable foreground (blue), probable background (red). It has to be mentioned that the 

obtained result in this example is significantly worse than the average result which will be 

discussed in further detail in section 4.5. However, this example shows the severity of the task as 

it can be observed that the shadow in the critical regions shows a clear tinge of green and therefore 

looks very similar to the leaf itself. 



 

 

International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 2, March 2016 

 

  7 
 

 

4.4. Removing the Petiole 

If a petiole is present, it quite often vanishes during the GrabCut segmentation as it might get cut 

off from the leaf and only the biggest connected contour is kept. However, if a petiole is still 

attached, it has to be removed. In order to achieve that a simple procedure similar to the one used 

in [10] is applied. At first, a morphological transformation called top-hat is performed on the 

binary image of the segmented leaf. As a result, areas which are brighter than their immediate 

neighbourhood are highlighted. The obtained regions are considered as potential petioles. To 

detect the most likely petiole the candidates are checked for several conditions: To be considered 

any further a candidate has to be bigger than a certain minimum size. Furthermore, the removal 

of a candidate from the original picture obviously must not cause a change of the number of 

connected components as the petiole is simply attached to the leaf. Finally, the most elongated 

candidate is chosen and removed from the original image. 

4.5. Results 

The achieved results are compared to the gold standard and the error percentage for each image 

is calculated: The number of misclassified pixels is determined and for purposes of normalization 

is divided by the total number of foreground pixels in the gold standard image. The average error 

rate was found to be 4.10%, which is significantly lower than the results obtained by standard 

segmentation approaches like Otsu (10.37%), K-Means (8.75%) and Watershed Transformation 

(5.06%, using a pre-processing technique similar to the one described in 4.3.). Figure 5 shows 

two example leaves whose error rate is almost equal to the average. 

 

Figure 5. Two example segmentations: original (left), gold standard (middle), automatic 

segmentation (right). 

The proposed segmentation method shows very good results on a consistent basis as 92% of the 

test images had a segmentation error of lower than 6%. The downside of this approach is that the 

GrabCut algorithm is complex and therefore relatively slow. Depending on the used hardware the 

segmentation of an 800 x 600 image can take one to two seconds. This time could be brought 

down significantly by scaling down the images first. However, in this work one to two seconds 

are deemed acceptable as the segmentation results are excellent. 
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5. FEATURES 

In the past a wide range of different feature classes were used to classify leaves. The focus of this 

work is not the introduction of new ones, but 44to provide a more in depth evaluation of a subset 

of already existing ones. 

In this section the six feature classes which were used during this work will be described briefly. 

As a prerequisite, all features had to be rotation-invariant. For some feature classes rotational 

invariance can only be achieved by major adaptions or even not at all. Nevertheless, this 

prerequisite was kept, because the alignment of the leaves is random in most of the datasets. Of 

course, it is possible to automatically detect the orientation of a leaf and rotate it into a uniform 

position, but it is a tricky task to perform consistently. Furthermore, misclassifications caused by 

errors during the alignment detection process would be misleading while evaluating the feature 

performance. 

5.1. Contour Features 

One of the most obvious ways to characterize the general form of a leaf is to describe its 

proportions. Inspired by [1] five features were derived by using the outer contour of the leaf, its 

convex hull and its minimum bounding rectangle, which can be seen in Figure 6. Several other 

features can be derived, for example by using the contour´s minimum enclosing circle. But 

preliminary tests showed no significant improvement was achieved by adding further features. 

 

AspectRatio =
Width

Length
 

Rectangularity =
ContourArea

RectangleArea
 

ConvexHullAreaRatio =
ContourArea

ConvexHullArea
 

ConvexHullPerimeterRatio =
ContourPerimeter

ConvexHullPerimeter
 

PerimeterLengthWidthRatio =
ContourPerimeter

Length + Width
 

Figure 6. Leaf Contour (red) with its related minimum bounding rectangle (green), 

    convex hull (light blue) and minimum enclosing circle (dark blue). 

5.2. Curvature Features 

Another way to characterize the margin of a leaf are the distances between the contour pixels and 

the centre of gravity of the contour. For 𝑁 Pixels 𝑃𝑖(𝑥𝑖, 𝑦𝑖) the centre of gravity 𝐶(𝑥, 𝑦) can be 

calculated as follows: 

𝐶(𝑥, 𝑦) = 𝐶 (
1

𝑁
· ∑ 𝑥𝑖

𝑁

𝑖=1

,
1

𝑁
· ∑ 𝑦𝑖

𝑁

𝑖=1

 ) 

Subsequently, the distances to the contour pixels can be computed: 

𝑑𝑖𝑠𝑡(𝑃(𝑥𝑖, 𝑦𝑖), 𝐶(𝑥𝐶 , 𝑦𝐶)) = √(𝑥𝐶 − 𝑥𝑖)2 + (𝑦𝐶 − 𝑦𝑃)² 
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From these distances five curvature features similar to the ones used by [7] are derived: 

 MinDistanceRatio: minimum distance divided by the average distance. 

 MaxDistanceRatio: maximum distance divided by the average distance. 

 StandardDevRatio: standard deviation of the distances divided by the average distance. 

 ZeroCrossingRate: number of conversions during a clockwise iteration over all points in 

which “+” describes a distance value bigger than the average and “-“ a smaller one 

divided by the total number of contour points. 

 TopPeaks: number of distances bigger than the average divided by the total number of 

contour points. 

5.3. Colour Features 

To examine the significance of the colouration of the leaves the four statistical moments mean 𝜇, 

standard deviation 𝜎, skewness 𝜈 and kurtosis 𝛾 are used: 

μ =
1

N
∑ xi

N

i=1

 σ = √
1

N
∑(xi − μ )²

N

i=1

 ν =
∑ (xi − μ)3N

i=1

Nσ3
 γ =

∑ (xi − μ)4N
i=1

Nσ4
− 3 

The calculation is performed for each colour channel (red, green and blue) as well as for the 

grayscale image. This approach was used by [3] and leads to 16 colour features altogether. 

5.4. Hu Features 

In 1962 Hu introduced seven moments which are able to describe the shape of a contour in a 

scale-, translation- and rotation-invariant way by combining its central moments in a linear way. 

For an in detail description of the highly mathematical procedure see [18]. 

5.5. HOCS Features 

The Histogram Of Curvature over Scale features were introduced by [10] who used them as their 

only feature class in their leaf recognition iOS app Leafsnap, which yielded excellent results. The 

basic idea of the feature extraction process is shown in Figure 7. 

 

Figure 7. HOCS-Features: arc (left), area (middle), used radii (right). 

There are two subclasses of HOCS features: arc and area features. To determine the arc features 

a circle of a given radius is drawn around every contour point. Then the ratio of foreground pixels 

covered by the outline of the circle (red) to the total number of circle pixels (red + blue) is 
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calculated and the result is stored in a histogram using ten bins. The calculation of the area features 

takes place analogously. 

Prior to the feature extraction process all leaf contours are resized to a common area of 30,000 

pixels. In preliminary tests the best results were achieved by using a set of eight different radii: 3, 

5, 10, 15, 20, 50, 60 and 70 pixels. It is worth mentioning that additionally medium sized radii of 

for example 30 or 40 pixels did not seem to have a positive impact on the classification 

performance. All in all, 160 single HOCS features are extracted: ten bins for arc and area features 

respectively, calculated for eight radii. 

To demonstrate the principle of operation of the HOCS features the feature extraction process is 

performed on two leaves, which can be seen in Figure 8. 

 

Figure 8. Example leaves of Carpinus betulus (left) and Fagus sylvatica (right). 

It can easily be seen that both leaves are quite similar in terms of their coarse form: egg-shaped 

and hastate, but the fine structure of their leaf margin differs quite a lot: serrated on the left and 

smooth on the right. To show how the HOCS features model these kinds of similarities and 

differences the feature extraction process is performed for two radii: a big one (60 pixels) and a 

small one (5 pixels). The obtained results are shown in Figure 9. 

 

Figure 9. HOCS-Features example: small radius (top), big radius (bottom). 

5.6. Binary Pattern Features 

In this work a simplified version of the original binary patterns initially introduced by Ojala et al. 

[19] was tested: Instead of a grayscale image a binary representation is used to calculate the 

features in which “1” describes a leaf pixel and “0” a background pixel. For each contour pixel 
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its circular neighbourhood with radius r is computed and the resulting circle is divided in p 

equidistant pixels. The different features for one circle is simply the count, how many consecutive 

pixels belong to the leaf. If there are two or more partitions of pixels belonging to the leaf, which 

are interrupted by background pixels, this is viewed as a separate feature. These binary patterns 

can be viewed as a simplification of the HOCS arc feature, which measure the leaf part of the 

circle and the background part of the circle as a number and not as count of equidistant points. 

Note that the special case, whether the circle cuts the leave several times, is not modelled within 

the HOCS features. Figure 10 shows an example of the HOCS arc features and the equivalent 

binary pattern feature with p = 8 as well as the 17 radii used in this work: 1, 4, 6, 7, 9, 12, 17, 20, 

22, 25, 30, 32, 35, 37, 40, 42 and 45 (right). Notably, the white pixel marked with a square presents 

a borderline case. This already hints at possible shortcomings of the BP features, especially when 

using large radii. 

 

Figure 10.  Relation between the HOCS arc features (left) and the BP features (middle). 

5.7. Overview 

The final feature vector of each instance consists of 365 features: 5 contour features, 5 curvature 

features, 16 colour features, 7 Hu features, 170 binary pattern features and 160 HOCS features. 

Furthermore, there is an ID feature which stores all necessary information about an instance, for 

example “[MEW] Acer platanoides_0”. 

6. CLASSIFICATION 

For classification the Weka data mining and machine learning tool was used [20]. It offers more 

than 70 classifiers and many helpful pre-processing applications like the normalization of 

attributes. Moreover, it allows easy integration of additional machine learning libraries such as 

LibSVM [21]. 

6.1. Used Classifiers 

In this work two classifiers were used: the Weka implementation of the K-Nearest-Neighbours 

classifier (KNN) and a support vector machine (SVM) provided by LibSVM and executed via 

Weka. 

6.2. Parameter Optimization 

One of the biggest problems in classification tasks is overfitting. In this work especially the binary 

pattern and HOCS features need highly optimized parameters to work properly. To make sure 

that the proposed system generalizes well the following optimization procedure was used: 

All parameters were optimized by using the Flavia dataset exclusively. For a start, this includes 

feature parameters such as the binary pattern and HOCS radii or the bin distribution in histograms. 

Preliminary tests on feature classes like the ones using the MinimumEnclosingCircle mentioned 
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in 5.1 were performed on the Flavia data set as well without exceptions. The same applies to all 

classifier parameters like the number of considered nearest neighbours K for the KNN or the 

kernel type and kernel parameters for the SVM. 

After the optimization phase all parameters remained completely untouched during the tests on 

the other datasets. 

6.3. Classifier Parameters 

Using the KNN the best results were achieved with a 𝐾 value of 1 and the Euclidian distance. 

Considering only the single nearest neighbour obviously increases the variance of the 

classification procedure. It also increases the presentiveness to a maximum. 

The SVM yielded the best results while using a Radial Basis Function kernel: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒(−𝛾‖𝑥𝑖−𝑥𝐽‖²), 𝛾 > 0 

The optimal values for 𝛾 and the cost parameter 𝐶 were determined using a grid search as 

suggested by [22]. The best result was achieved with values of  𝛾 = 0.335 and 𝐶 = 20. 

6.4. Choice of Classifier 

Both classifiers were tested using the configurations described above. A 10-fold-cross-validation 

was chosen as evaluation method. After ten classification runs on the Flavia dataset the SVM 

achieved a classification rate of 99.41% ± 0.02%. The KNN performed slightly better by reaching 

99.61% ± 0.02%. Obviously, this tiny difference does not prove the superiority of the KNN. 

However, considering the KNN offers way better traceability it was used as the main classifier 

for the remaining classification tasks. On a different note, the KNN additionally allows the 

efficient usage of the 1 x all evaluation method, which proved to be very useful because of its 

complete lack of variance. 

7. EVALUATION OF THE CLASSIFICATION WITHIN A DATASET 

The standard approach in leaf classification tasks is to use only one dataset at a time and split it 

up to obtain a test and training set. In this section the achieved results of the proposed approach 

will be presented and compared to other leaf recognition systems. However, at first, the 

significance of the individual feature classes will be evaluated in detail. 

7.1. Feature Performance 

The feature performance was tested on two datasets: the Flavia dataset, which was used for 

parameter optimization, and the significantly larger MEW. 

First of all, the performance of each feature class was evaluation on its own. The results can be 

seen in Table 2. As expected, all feature classes perform better on the Flavia dataset as it is 

significantly smaller than the MEW (32 species compared to 153). Furthermore, the HOCS 

features achieve the by far highest accuracy as they allow an exact representation of the coarse 

shape of a leaf as well as of small variations of the margin. The BP features perform very well on 

the Flavia dataset, but only provide an average result on the MEW. Apparently, the BP features 

suffer much more from overfitting than the HOCS features. It is worth mentioning that the colour 

features perform quite well on both datasets, considering they scored the third (Flavia) and second 

(MEW) best classification results. The accuracies of the contour and curvature features are almost 

cut in half when switching to the MEW. As both feature classes are not prone to overfitting, the 

best explanation for this gap is that simple feature classes are able to distinguish relatively well 

between a small to medium number of leaf species, but are not sophisticated enough to repeat this 

performance on a very large dataset like the MEW. 
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Table 2. Classification results of all feature classes on their own. 

Flavia; 1 x all; 1NN MEW; 1 x all; 1NN 

Features Result Features Result 

Contour 77.45% Contour 40.55% 

Curvature 72.78% Curvature 35.76% 

Colour 78.81% Colour 62.34% 

Hu 43.84% Hu 31.08% 

BP 88.46% BP 51.11% 

HOCS 95.86% HOCS 84.99% 

All 99.69% All 95.66% 

Due to these results the entire system is constructed by iteratively adding feature classes which 

improve the current setup the most. For both datasets the HOCS features mark the starting point. 

Table 3 shows the obtained results. 

Table 3. Step by step construction of the system. 

Flavia; 

1 x all; 1NN 

MEW; 

1 x all; 1NN 

Features Result Features Result 

HOCS + 95.86% HOCS + 84.99% 

Contour 96.43% Contour 85.49% 

Curv. 96.70% Curv. 86.83% 

Colour 98.74% Colour 94.19% 

Hu 96.28% Hu 88.13% 

BP 97.17% BP 87.08% 

HOCS + 

Colour + 
98.74% 

HOCS + 

Colour + 
94.19% 

Contour 98.90% Contour 94.33% 

Curv. 98.79% Curv. 94.84% 

Hu 98.85% Hu 95.21% 

BP 99.63% BP 94.51% 
 

Flavia; 

1 x all; 1NN 

MEW; 

1 x all; 1NN 

Features Result Features Result 

HOCS + 

Colour + 

BP + 

99.63% 

HOCS + 

Colour + 

Hu + 

95.21% 

Contour 99.63% Contour 95.48% 

Curv. 99.69% Curv. 95.52% 

Hu 99.63% BP 95.63% 

HOCS + 

Colour + 

BP + 

Curv. + 

99.69% 

HOCS + 

Colour + 

Hu + 

BP + 

95.63% 

Contour 99.69% Contour 95.63% 

Hu 99.69% Curv. 95.68% 

Full 

system 
99.69% 

Full 

system 
95.66% 

 

On both datasets the inclusion of the colour features improves the classification results more than 

any other feature class. Although suspicious on the first look, this can easily be explained. The 

colour features are the only feature class which does not represent information about the shape of 

a leaf. All other classes keep redundant information, whereas the colour features add a whole new 

dimension. Again, it can be observed that the BP features seem to be much more significant when 

using the MEW. It is worth mentioning that the Hu features surprisingly have a notable effect on 

a system consisting of HOCS and colour features when the larger MEW is used. Contour and 

curvature features barely have an impact on the achieved classification rates. 

7.2. Comparison of Results 

Table 4 compares the achieved results to other systems. The used datasets (DS) and evaluation 

procedures (EP) are specified at the top. For evaluation procedures effected by variance the given 

value was calculated using ten runs with random generator seeds of 1-10. If mentioned in the 
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original source the standard error is also shown for the other systems. All values are given as 

percentages. 

Table 4. Results (%) of the proposed method in comparison to systems from other publications. 

DS Flavia Foliage SLD MEW ICL 

EP 10 x 40 1 x all Te x Tr 50 x 25 1 x all ½ x ½ 1 x all ½ x ½ 1 x all 

[7] 97.19         

[9] 97.50         

[3] 97.19  95.00       

[8]    97.92      

[6] 
99.70 

±0.30 
 99.00 

99.80 

±0.30 
 

99.20 

±0.10 
   

[5] 91.53 93.66   96.53 84.92 88.91 79.68 84.62 

1NN 
99.37 

±0.08 
99.69 95.83 

97.81 

±0.15 
98.74 

93.80 

±0.09 
95.66 

90.19 

±0.07 
93.48 

SVM 
99.29 

±0.09 
- 95.17 

98.35 

±0.12 
- 

96.54 

±0.10 
- 

95.28 

±0.10 
- 

[9]: Not exactly 10 x 40 as more than 40 instances were used for training. 

[6]: Results averaged from ten experiments. 

For all datasets the proposed approach produces results that are equal to or even better than those 

achieved by most other systems. Moreover, it has to be said that the method introduced by Sulc 

and Matas [6] seems to be clearly superior to all other currently known approaches. This becomes 

especially evident because of the highly impressive result of 99.2% they achieved on the very 

challenging MEW dataset. 

8. CROSS DATASET EVALUATION 

In the previous section it was shown that the proposed system provides satisfying results when 

the classification process is performed within a dataset.  However, in this section the main focus 

of this work will be evaluated: the inter-dataset classification. 

8.1. Evaluating the Initial System 

To simulate a realistic use case for leaf classification the large MEW dataset is used for training. 

The BLD subsets Paper and Tree serve as test sets. Furthermore, for the sake of comparability 

each of the subset was used to classify the other subset and vice versa. The results are shown in 

Table 5. 

Table 5. Initial results of the cross-dataset classification. 

1NN; Full system 

Train Test Result 

Paper Tree 87.30% 

Tree Paper 75.97% 

MEW Paper 10.93% 

MEW Tree 25.99% 

The classification rates are significantly worse than the ones obtained by the classification within 

a dataset. Especially, when using the MEW as a training set the results become pretty much 

useless. The obvious explanation for this deterioration is that some of the feature classes are not 

suited to be used in an inter-dataset classification scenario. 
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8.2. Removing Potentially Harmful Feature Classes 

The feature classes to be checked first are the colour features and the BP features, which already 

yielded questionable results. The outcome is displayed in Table 6. 

Table 6. Results of the cross-dataset classification after 

having removed potentially harmful feature classes. 

1NN Results - Full system without… 

Train Test - Colour-F. BP-F. Colour-, BP-F. 

Paper Tree 87.30% 85.90% 91.72% 95.34% 

Tree Paper 75.97% 77.68% 95.10% 97.95% 

MEW Paper 10.93% 14.92% 46.70% 60.36% 

MEW Tree 25.99% 22.49% 33.57% 51.17% 

The classification results improve drastically after removing the colour and BP features. As 

expected, the expressiveness of the colour features is reduced because of different environmental 

influences. The BP features perform even worse in an inter-dataset classification task. There are 

several reasons for this: First of all the BP features are very prone to overfitting as mentioned 

before. Furthermore, in this work only eight points per radius were used. For bigger radii the BP 

features therefore cannot be considered rotation-invariant anymore. This can lead to massive 

contortions in the classification process. As opposed to the BLD pretty much all leaves in the 

MEW dataset are placed with their petiole pointing straight down. 

After eliminating the prime candidates responsible for the bad classification results the other 

feature classes are checked again as well. The results are shown in Table 7. 

Table 7. Evaluation of the impact of the remaining feature classes after removing colour and BP 

features. 

1NN Results - Full system without Colour-, BP- and 

Train Test - Contour-F. Curvature.-F. Hu-F. HOCS-F. 

Paper Tree 95.34% 95.45% 95.10% 95.34% 74.24% 

Tree Paper 97.95% 97.95% 97.61% 97.72% 79.04% 

MEW Paper 60.36% 60.25% 59.68% 64.46% 15.26% 

MEW Tree 51.17% 51.17% 51.40% 55.01% 14.45% 

Unsurprisingly, the HOCS features are indispensable for the classification system. It is worth 

mentioning that the impact of removing the HOCS features is way higher than in the classification 

task within a dataset. Again it becomes obvious that the HOCS features are the best engineered 

feature class used in this work. In comparison, the impact of the remaining feature classes is small. 

The Hu features are clearly deteriorating the results and are therefore removed. The contour and 

curvature features give mixed results. As the MEW → Paper task comes closest to a realistic 

scenario of application both feature classes are kept. Thus, the final system used for the rest of 

this work uses 171 features: 5 contour features, 5 curvature features, 160 HOCS features and 1 

ID feature. 

8.3. Further Evaluation of the Final System 

After the final system had been established, further evaluation had to be conducted. Firstly, this 

includes not only paying attention to the top classification result, but also to the top x results. 

Moreover, the system is further evaluated by using an even bigger dataset for training and a 

separately collected evaluation dataset for testing. 
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8.3.1. TopX Evaluation 

Even though the results improved significantly after removing colour, BP and Hu features, a 

classification accuracy of under 65% on paper is still not enough to yield satisfying results in a 

real world application. Additionally to the already mentioned usual problems of cross dataset 

evaluation, the high difficulty level of the classification task does not allow better results. The 

main problem is that there are many different species without any distinctive characteristics. 

Especially, egg-shaped leaves with a smooth or slightly wavy margin are often almost impossible 

to distinguish. To still improve the usability of the system a concept called TopX is introduced. 

The idea is to not only compare the top rated species by the classifier to the actual species, but to 

include the second, third, etc. species as well. The results can be seen in Table 8. 

Table 8. Results when considering the TopX species. 

1NN Results when considering the TopX species 

Train Test Top1 Top2 Top3 Top5 Top7 Top10 

Paper Tree 95.34% 98.37% 99.19% 99.65% 99.77% 100% 

Tree Paper 97.72% 99.77% 99.88% 100%   

MEW Paper 65.38% 81.09% 86.22% 91.69% 94.42% 96.13% 

MEW Tree 53.32% 72.76% 80.09% 86.50% 89.87% 93.71% 

Obviously, this does not improve the classification accuracy of the system in itself. But in a real 

world application it allows the user to make the final decision on a predefined selection of 

manageable size. Displaying the top five results seems to be a reasonable choice as it increases 

the classification accuracy to almost 92% and should not overexert the average user. It is also 

worth mentioning that by just taking the second most likely classification result into account the 

accuracy can already be improved significantly. 

8.3.2. Using the AC Dataset for Training 

Using the MEW for training and the BLD for testing comes close to resembling a realistic 

application scenario. However, there are a lot more than 153 plant species. Therefore, the AC 

dataset introduced in 3.3 is used as training dataset, which allows the system to distinguish 

between 430 species. Of course, that still does not cover even close to all existing plant species. 

Yet, as it contains all species and instances of all the established publicly available datasets it 

comes as close as it gets. The achieved results are shown in Table 9. 

Table 9. Results when using the AC as training set. 

1NN Results 

Train Test Top1 Top2 Top5 Top10 

MEW Paper 65.38% 81.09% 91.69% 96.13% 

MEW Tree 53.32% 72.76% 86.50% 93.71% 

AC Paper 63.10% 76.31% 87.02% 92.81% 

AC Tree 49.48% 64.26% 79.86% 87.19% 

As expected, the classification accuracy suffers because of the much larger training dataset. 

However, the results only deteriorate by about 4.5% on the paper and 7% on the tree subset. 

Considering that the AC includes almost three times as many species as the MEW this represents 

a rather mild drop in accuracy. 

8.3.3. Using a Separately Collected Evaluation Set for Testing 

During the collocation of the original BLD the focus was on collecting as many leaves as possible 

in a short period of time. Therefore, leaves with obvious shortcomings were not sorted out as long 
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as they were in a somewhat decent condition, because it was interesting to see how the 

classification system deals with these leaves. This lead to the inclusion of many leaves which 

showed to be in borderline condition or even worse. An example is shown in Figure 11. 

 

Figure 11. Example of two leaves of Tilia cordata: in great (left) and poor (right) condition. 

Even though this is an extreme example, obviously, it is important that the leaves are in a 

condition which allows the classification system at least a fair chance to make a correct prediction.  

Therefore, two evaluation subsets were collected in the same region as the original BLD. This 

time only leaves in good condition were used. It has to be mentioned that the guideline was not 

to add only leaves in perfect condition, but just to renounce the ones with moderate defects or 

worse ones. The same ten species were used to provide maximal coverage by the MEW and AC. 

For each species 20 leaves were photographed while still attached to their respective tree. 

Afterwards the leaves were collected, placed on a sheet of paper and photographed again. This is 

another alteration compared to the original BLD in which leaves were not used in both subsets. 

After collecting the evaluation sets the classification tasks described in the previous section were 

exercised. The outcome can be seen in Table 10. 

Table 10. Results when using the BLD evaluation datasets. 

1NN Results 

Train Test Top1 Top2 Top5 Top10 

MEW EvalPaper 73.5% 87.5% 98.0% 100% 

MEW EvalTree 60.5% 78.5% 93.5% 99.0% 

AC EvalPaper 68.5% 86.5% 94.0% 97.0% 

AC EvalTree 58.0% 75.5% 86.5% 92.5% 

As expected, the classification accuracy improved significantly when testing on the evaluation 

sets. Even when using the AC for training a very good accuracy of 94% was achieved on the 

paper subset when considering the top five species. 

8.3.4. Influence of the Region of Growth 

Some of the previous experiments already quite clearly showed that the region and timespan a 

leaf grew in has a massive impact on its colour and most likely also on its shape. To make this 
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even clearer one last experiment was performed. As mentioned before, the BLD evaluation set 

was indeed collected in the same region as the original BLD, but almost an entire year later. In 

this classification task the AC dataset was extended by adding the instances of the original BLD 

paper subset. Table 11 shows the achieved results. 

Table 11. Results after adding the original BLD to the AC. 

1NN Results 

Train Test Top1 Top2 Top5 Top10 

AC EvalPaper 68.5% 86.5% 94.0% 97.0% 

AC EvalTree 58.0% 75.5% 86.5% 92.5% 

AC + Paper EvalPaper 88.0% 95.0% 99.0% 100% 

AC + Tree EvalTree 82.5% 90.5% 94.5% 97.0% 

By adding instances from the original BLD the classification results receive a massive boost. The 

accuracies rise by 5% (paper) and 8% (tree) when the top five species are considered. The Top1 

values even go up by almost 20% and 25% respectively. It is worth mentioning that the addition 

of 878 instances from the original BLD paper subset to the almost 36,000 instances of the AC 

only represents an increase of a merely 2.5%. As the system used does not include colour features 

anymore this clearly shows that the region of growth has a huge impact on the shape of the leaves. 

9. WEB APPLICATION 

The proposed system is available as a web application at www.leafidentification.informatik.uni-

wuerzburg.de. After uploading a photo of a leaf the segmentation is performed either 

automatically or user-assisted. Then the user can choose how many of the best fitting species 

should be calculated. The classification process is executed and the results are shown. Finally, the 

user can manually compare the species to find out, which one fits best. An example classification 

result can be seen in Figure 12. 

 

Figure 12. Example classification of a leaf using the web application. 

Currently, the classification of a total of 430 species is supported. Of course, deploying the system 

as a mobile application would offer even more flexibility, but at the same time would make the 

precise manual segmentation almost impossible. To find the optimal solution will be a challenging 

task for the future. 

http://www.leafidentification.informatik.uni-wuerzburg.de/
http://www.leafidentification.informatik.uni-wuerzburg.de/
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10. CONCLUSION 

A system for leaf identification was introduced and assessed using standard evaluation 

procedures. The achieved results came close to the state of the art. Further tests showed that the 

obtained classification accuracies could not be replicated at all when performing cross dataset 

evaluation. Especially, the performance of some individual feature classes deteriorated massively. 

The main reason for this are differing environmental influences depending on the area and time 

of growth of the respective leaves. Moreover, it was clearly shown that factors like rainfall, 

temperature and solar irradiance do not only influence the colour, but also the shape of the leaves. 

This leads to the conclusion that the standard procedures for evaluating and comparing leaf 

recognition systems can offer misleading results. That became especially evident by evaluating 

the performance of the colour features and the simplified version of the BP features, as they 

performed very well on the Flavia dataset, but failed completely during cross dataset 

classification. The HOCS features proved to be the by far best suited approach for this 

classification task yielding excellent results in both evaluation scenarios. 
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