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ABSTRACT 

 

Regression models and their statistical analyses is one of the most important tool used by scientists and 

practitioners. The aim of a regression model is to fit parametric functions to data. It is known that the true 

regression is unknown and specific methods are created and used strictly pertaining to the problem. For 

the pioneering work to develop procedures for fitting functions, we refer to the work on the methods of least 

absolute deviations, least squares deviations and minimax absolute deviations. Today’s widely celebrated 

procedure of the method of least squares for function fitting is credited to the published works of Legendre 

and Gauss.  However, the least squares based models in practice may fail to provide optimal results in non-

Gaussian situations especially when the errors follow distributions with the fat tails. In this paper an 

unorthodox method of estimating linear regression coefficients by minimising GMSE(geometric mean of 

squared errors) is explored. Though GMSE(geometric mean of squared errors) is used to compare models 

it is rarely used to obtain the coefficients. Such a method is tedious to handle due to the large number of 

roots obtained by minimisation of the loss function. This paper offers a way to tackle that problem. 

Application is illustrated with the ‘Advertising’ dataset from ISLR and the obtained results are compared 

with the results of the method of least squares for single index linear regression model.  
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1. INTRODUCTION 
 

The supervised learning in the form of classification and regression is an significant constituent of 

statistics and machine learning. The most basic supervised learning techniques is Linear 

regression which is the basic building block of all Machine Learning models. Linear regression 

was the first type of regression analysis to be studied rigorously, and to be used extensively in 

practical applications. The linear regression model assumes a linear relationship between the 

response and the predictor variables as show. 
 

Yi*= Xi
Tβ+ εi,*         i = 1,…….,n    (1) 

 

Where Yi* is the response variable(dependent variable), Xi
T is the set of predictor variables(set of 

independent variables), β is the set of coefficients we estimate and εi*is the unobservable error 

term independent of Xi. Various procedures have been proposed to estimate β [5, 6]. The 

estimation of β is entirely dependent on how we define ‘error’. In all known procedures of 

estimation, a standard error term is established first and the error is minimised to obtain β. The 

most popular techniques were the L1 and the L2 norms [1, 2]. The L1 is otherwise known as 

Least absolute deviations method and L2 is known as the Least squares method. These methods 

are widely used due to their intuitive and mathematical simplicity. In the L1 norm the error term 
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is established as the arithmetic mean of absolute differences and the in L2 norm the error term is 

established as the arithmetic mean of squared differences [3]. Latest techniques include 

estimation of coefficients using minimax regret and algorithmic methods [14, 15]. 
 

In this paper, we establish the error term as the geometric mean of squared 

differences/errors(GMSE). The robustness to large values of the Geometric Mean in comparison 

to the Arithmetic Mean calls for such a such a method. The loss function is established as the 

geometric mean of squared errors(GMSE), which is to be minimised to estimate the coefficients. 

Unlike the popular norms, minimising this function provides a large number of real 

roots(estimates of β). In other words minimising the function returns a large number of models as 

the loss function has a substantial number of minima. To tackle this problem we use a non-linear 

optimizing technique with a threshold to filter and retrieve a reasonable number of models similar 

to some methods used in [15]. The best fit is selected by choosing the model with the least 

geometric mean of squared differences(GMSE) of the retrieved models. The loss function has a 

large number of minima due to zero inputs in the geometric mean of squared errors(GMSE). 

Various techniques have been proposed to calculate geometric mean when there are zero values 

[16]. Although such techniques are intriguing the scope of this work does not include them. The 

proposed method is also dependent on the optimizing technique. Although there are a number of 

robust optimizing techniques like the stochastic gradient descent,In this paper we use fmincon 

owing to its simplicity and usability [17, 18]. 
 

In Section 2 we look at a brief overview of the popular methods of estimation. In Section 3 we 

frame our primary method(Minimisation of Geometric Mean Squared Error) of estimation and 

state the challenges faced with ways to tackle them in this method of estimation. We also develop 

an Algorithm to carry out the proposed method in Section 3. Section 4 includes the working of 

the Algorithm on real-time data with the interpretation of results. In the following sections we 

conclude the work with the provision of appropriate references. 
 

2. BRIEF OVERVIEW OF STANDARD ERROR MEASURES AND ESTIMATION 

TECHNIQUES 
 

2.1 INTRODUCTION 
 

Most of the existing estimation techniques involve minimisation of the loss function. Thus 

depending on how error is defined. Methods have been proposed to deal with high dimensional 

regression problems and also a number of sparse and bayesian estimation methods are popular too 

[19 - 22]. This paper does not deal with such methods. In the following subsections we look at the 

classic error measures which are easy and intuitive to understand and we also discuss how they 

are minimised to estimate the regression coefficients. The error measures we look at are Mean 

squared Error(MSE), Mean of Absolute Errors(MAE) and the Least Absolute Relative 

Error(LARE). 
 

2.2 THE LEAST SQUARES METHOD 
 

The mean square error is defined as follows(MSE):  

 
 

Where Yi* is the set of values of the response variable (dependent variable), Xi
T
 is the 

corresponding values of the set of predictor variables (set of independent variables), n is the 

number of data points and β is the set of coefficients we want to estimate. 
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The MSE, as its name implies, provides for a quadratic loss function as it squares and 

subsequently averages the various errors. Such squaring gives considerably more weight to large 

errors than smaller ones (e.g., the square error of 100 is 10000 while that of 50 and 50 is only 

2500 + 2500 = 5000, that is half). MSE is, therefore, useful when we are concerned about large 

errors whose negative consequences are proportionately much bigger than equivalent smaller 

ones (e.g., a large error of 100 vs two smaller ones of 50 each) [7]. 
 

The two biggest advantages of MSE or RMSE are that they provide a quadratic loss function and 

that they are also measures of the uncertainty in forecasting. Their two biggest disadvantages are 

that they are absolute measures that make comparisons across forecasting horizons and methods 

highly problematic as they are influenced a great deal by extreme values [7]. 
 

To estimate β the loss function, that is the MSE is minimised to give a set of linear equations. A 

comprehensive look at the procedure can be found in [8]. 
 

2.3 THE LEAST ABSOLUTE DEVIATION METHOD 
 

The mean absolute error or mean absolute deviation is defined as follows(MAE): 
 

 
 

Where Yi* is the set of values of the response variable (dependent variable), Xi
T is the 

corresponding values of the set of predictor variables(set of independent variables), n is the 

number of data points and β is the set of coefficients we want to estimate.   
 

The MAE is also an absolute measure like the MSE and this is its biggest disadvantage. However, 

since it is not of quadratic nature, like the MSE, it is influenced less by outliers. Furthermore, 

because it is a linear measure its meaning is more intuitive; it tells us about the average size of 

forecasting errors when negative signs are ignored. The biggest advantage of MAE is that it can 

be used as a substitute for MSE for determining optimal inventory levels. The MAE is not used 

much by either practitioners or academicians [7]. 
 

Here, the MAE is minimised to obtain β. A detailed procedure can be found in [9]. 
 

2.4 THE LEAST ABSOLUTE RELATIVE ERROR ESTIMATION METHOD 
 

The Least Absolute relative error is defined as follows(LARE):  
 

  
Where Yi* is the set of values of the response variable(dependent variable), Xi

T 
is the 

corresponding values of the set of predictor variables(set of independent variables), n is the 

number of data points and β is the set of coefficients we want to estimate.  
 

The Least Absolute relative error(LARE) is a relative measure which expresses errors as a 

percentage of the actual data. This is its biggest advantage as it provides an easy and intuitive way 

of judging the extent, or importance of errors. Least Absolute relative error(LARE) is used a great 

deal by both academicians and practitioners and it is the only measure appropriate for evaluating 

budget forecasts and similar variables whose outcome depends upon the proportional size of 

errors relative to the actual data (e.g., we read or hear that the sales of company X increased by 
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3% over the same quarter a year ago, or that actual earnings per share were 10% below 

expectations) [7].  
 

The two biggest disadvantages of Least Absolute relative error(LARE) are that it lacks a 

statistical theory (similar to that available for the MSE) on which-to base itself and that equal 

errors when Yi is larger than XiTβ then LARE gives smaller relative errors than when Yi is 

smaller than Xi
T
β [7]. 

 

Squared relative error is also widely used. A detailed explanation of the Least Absolute relative 

error(LARE) coefficient estimation procedure can be found in [6], [10] & [11]. 
 

3. THE APPROACH: THE GEOMETRIC MEAN OF SQUARED ERROR AND THE 

PROPOSED ESTIMATION PROCEDURE 
 

3.1 INTRODUCTION 
 

Geometric means average the product of square errors rather than their sums as in MSE. The 

geometric mean of squared error(GMSE) is therefore defined as: 
 

 
 

Where Yi* is the set of values of the response variable(dependent variable), Xi
T
 is the 

corresponding values of the set of predictor variables(set of independent variables), n is the 

number of data points and β is the set of coefficients we want to estimate. 
 

The biggest advantage of geometric means is that they are influenced to a much lesser extent 

from outliers than squared means or absolute means [7]. 
 

The coefficients of regression (β) can be estimated by minimising the loss function: 
 

 
 

 The loss function is not as simple as the quadratic loss function of Least Squares Method [12]. 

The next section deals with the various challenges in obtaining the best linear fit by minimising 

the Loss function of the GMSE and retrieving the best linear fit for the data. Equation (8) is the 

final parametric equation we are trying to obtain. 

 

3.2 CHALLENGES IN OBTAINING THE BEST LINEAR FIT 
 

3.2.1 LARGE NUMBER OF MINIMA 

 

As you can see in Figure 1, the Loss function of the Least squares method contains a single global 

minima from which the best linear fit can be obtained. Whereas the loss function of GMSE 

contains a large number of minima as shown Figure 2. This calls for: 
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a) An optimization algorithm to retrieve a finite number of minima. 
 

      b) A metric to compare the obtained minima so as to obtain the one best linear fit to the data. 

   

 
 

Figure 1. Mean Squared Error Vs Β(A, B) (Loss Function for One Predictor Variable) 

 

 
 

Figure 2. Geometric Mean Squared Error Vs Β(A, B) (Loss Function for One Predictor Variable) 

 

3.2.2 LARGE NUMBER OF UNWANTED Β 

 

Clearly  is a function greater than or equal to zero. So at certain minima the 

value of the Geometric Loss function(Equation 6) is 0 as shown in Figure 2. Say, for any fixed 

data : 

If L = 0 
 

Then β is such that at least one Yi*- Xi
Tβ = 0 

 

Hence a large number of minima will return values of β such that the linear modelY- X
T
β = 0 

passes through exactly one point in the data, or exactly any two points in the data, or exactly any 

three collinear points in the data and so on. These β do not generalise the data well and is rarely 

the best linear fit for the data as shown in Figure 3 and Figure 4. For example say if a dataset 

consist of the points (0, 0) and (1, 0) then linear models {y = x, y = 2x, y = 3x etc.} and {y = 1, y= 

2x + 1, y = 3x + 1}  all are going to give the least possible value for the Geometric Loss function 

(Equation 6) that is zero, but not all are going to generalize the overall data set. 
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To tackle this problem we introduce a threshold to which we crop the Loss function. That is 

instead of minimising the empirical Geometric Loss function, we minimise only the part of the 

Geometric Loss function greater than a given threshold(t) which is close to 0 but greater than 0. 

 
 

Figure 3. Β(A, B) Obtained by Minimising the L = 0 Giving a Line that Passes through just One Points 

 

  
 

Figure 4. Β(A, B) Obtained by Minimising the L = 0 Giving a Line that Passes through just Two Points 

 

3.2.3 THE ALGORITHM 
 

a. The Loss function (Equation 6) is coded and plotted fixing the threshold at t(some value 

close to zero) as concluded in section 3.2.2. 
 

b. A random β is initialized and the Loss function(Equation 6) is minimised by an 

optimization algorithm (section 3.2.1a) to the threshold t and the corresponding β is 

obtained and noted [25]. 
 

c. Step b) is repeated for ‘i’ iterations and the corresponding β are obtained and noted. 

 

d. Now that we have ‘i’ good β values(‘i’ linear models), we need a metric to compare them 

and obtain the best fit for the data. We calculate the Geometric Mean of Squared 

Errors(GMSE) for each model and select the model with the least Geometric Mean of 

Squared Errors(GMSE). 

 

 

 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol. 7, No. 6, November 2016 

81 

4. CALCULATIONS AND RESULTS 
 

4.1 THE DATA SET 
 

In this paper the algorithm is demonstrated from the ‘advertising’ data set from ISLR [4] as 

shown in Figure 3. The Advertising dataset consists of sales of the product in 200 different 

markets(200 data points), along with advertising budgets for the product in each of those markets 

for three different media: TV, Radio and Newspaper. In this paper we only consider Sales vs TV 

and other variables are ignored. All optimizations and calculations are performed in MATLAB. 

 

Since the data set contains only one predictor variable the parametric equation(Equation 8) 

reduces to: 

 

Y- a*X-b = 0    (10) 
 

Where β = (a, b) , XT= (TV, 1) and Y= (Sales) 

 

 
 

Figure 5. The Plot Displays Sales in Thousands of Units and TV Budgets in Thousands of Dollars 

 

4.2 PERFORMING THE ALGORITHM 
 

a) The Geometric Loss function L (Equation 9) is such that (Yi, Xi) are the (Sales, TV) data 

points from the data set is input and plotted in MATLAB. Here, threshold t is taken as 0.001. 

 

b) A random β = (a, b) is initialized between the interval (0.01, 0.06) for a and (1, 10) for b. The 

Geometric Loss function(Equation 6) is minimised by a non-linear optimization solver 

fmincon [13] to the threshold t = 0.001 and the corresponding β is obtained and noted [23, 

24]. See Table 1. 

 

c) Now, Step b) is repeated for ‘i’ = 15 iterations and the corresponding β are obtained and 

noted. See Table 1. 

 

d) Now that we have ‘15’ good β values(‘15’ linear models), the Geometric Mean Squared 

Error(GMSE) for each model is calculated as show in and select the model with the least 

MSE as shown in Table 1. 
 

4.3 PLOTTING THE RESULTS 
 

Following the algorithm we obtain the values of β = (0.0438, 7.4005), thus obtaining the 

parametric equation: 
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 Y- 0.0438*X-7.4005 = 0                   (11)   

 

The least square line obtained by standard procedure is [8]: 
 

- 0.0475*X-7.0325 = 0                 (12) 
 

  
 

Table 1.  Initial Β Values, their Corresponding Final Β Values and their Geometric Mean of Squared 

Errors(GMSE) 
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Figure 6. Scatterplot of Sales Vs TV with the Least Squares Line(Equation 11) and the Geometric Mean 

Square Line (Equation 10) 

 

5. CONCLUSION 
 

With this approach we have successfully obtained a line comparable to the Least squares line (11) 

as shown in Figure 4. The Geometric regression line (12) has a lesser GMSE(2.123238) 

compared to the GMSE(2.7895) of the Least square line(See Table 1). The advantages of this 

model is its robustness to outliers when compared other linear models like the L1 and L2 norm. 

Also the method is not computationally expensive. The disadvantages are that the results could 

vary with the change in initial β, also this method is not simple and intuitive like the L2 norm. 

 

Further work includes usage of a better optimizer, increase in the number of iterations and 

extension to multivariate linear models. Also the geometric mean of squared error(GMSE) term 

can be improved to deal with non-positive terms [16]. 
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