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ABSTRACT

The AGM model is the most remarkable framework for modeling belief revision. However, it is not

perfect in all aspects. Paraconsistent belief revision, multi-agent belief revision and non-prioritized

belief revision are three different extensions to AGM to address three important criticisms applied

to it. In this article, we propose a framework based on AGM that takes a position in each of these

categories. Also, we discuss some features of our framework and study the satisfiability of AGM

postulates in this new context.
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1 Introduction

Belief revision is a scientific field of research in the intersection of epistemology, logic and artificial

science. The main goal of belief revision is to provide a logical framework for modeling the process

of belief change of a rational agent. AGM ([1, 20, 15]) is the most popular model for this aim.

In AGM, a knowledge state is represented by a logically closed set of propositions called belief

set. Given a proposition as an input, three types of change are possible: expansion, revision and

contraction. Expansion and revision are both about adding a new belief to the belief set, but

in the former, keeping the consistency of the set is a consideration. Contraction, however, deals

with retracting an old belief. Applying any of these changes to a belief set results a new set

that according to AGM should satisfy a set of postulates ordained with respect to several rational

criteria.

Beside all advantages of AGM that have been explored by authors, there are several criticisms

have been noticed to show that it has some counterintuitive features. Thus, various extensions to

AGM are proposed to address such criticisms ([13]). Multi-agent belief revision, non-prioritized

belief revision and paraconsistent belief revision are three extensions proposed for three different

criticisms of AGM.

Multi-agent belief revision is introduced in order to enable AGM to handle belief changes in multi-

agent environments; whether we face multiple agents that change their beliefs, or have multiple

sources that utters new propositions for making belief changes. The latter case is called multi-

source belief revision.
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The main goal of non-prioritized belief revision is different. In AGM, every input information has

higher priority than existing beliefs. In other words, accepting a new proposition or retracting a

non-tautological one could be done without any obligation. However, this feature of AGM seems

to be an ideal assumption since we intuitively don’t accept every information passed to us by every

source. All multi-source models could be considered as non-prioritized, because it is impossible to

differentiate between the sources if we accept all the inputs of all of them. However, the reverse is

not true. There are several non-prioritized approaches that are defined in single-agent environments

and are sensitive only to input propositions.

In paraconsistent belief revision, the main problem is that it is impossible to have two different

inconsistent belief sets. Because by the rules of classical logic, every inconsistent belief set is

equivalent to K⊥, the set of all propositions. This feature seems counterintuitive too. Whether

the propositions are perceived as rational beliefs or practical data, it seems plausible to be able

to make meaningful deductions in case of inconsistencies. Also, handling such situations seems

reasonable in multi-source context. Because even fully self-consistent and rational sources can

utter contradicting information and in some cases, there are not enough reasons to accept only one

of them.

As it is clear, these three different criticisms have some intersections in their motivations and it is

reasonable to study models that coalesce all of them together. In the following, we try to define a

framework based on AGM that leverages the benefits of the three aforementioned extensions.

2 The Approach

In this section, we describe our approach for handling the mentioned criticisms.

2.1 For Paraconsistency

First change we apply, is to use a paraconsistent logic as our background logic. Paraconsistent logic

is a class of non-classical logics for which ECQ1 fails, i.e., the relation q ∈ Cn({p,¬p}) is not valid

in those systems. Therefore, they allow a theory to contain inconsistencies while not deducing all

propositions. There are many approaches for constructing such systems ([22]) and the question is

which one performs the best in the AGM model. Here, we use a three-valued paraconsistent logic,

called PAC ([5]). This logic is an enrichment of the logic LP ([21]) with an implication connective

→ for which modus ponens2 and the deduction theorem3 hold for it. In PAC, we have three values,

denoted by 1, −1 and 0. The interpretations of them are respectively “true”, “false” and “both

true and false”. Hence, the first two values are like the values of classical logic for representing

“truth” and “falsity” and the third value, 0, refers to “paradoxical” propositions, which are both

true and false at the same time. We take 1 and 0 as designated values in PAC. Therefore, the set

of values in PAC is V = {1, 0,−1} and the set of designated values is D = {1, 0}. In PAC, four

connectives ∧, ∨, → and ¬ are defined respectively for “conjunction (and)”, “disjunction (or)”,

“material implication (if...then)” and “negation (not)” by table 1. Two constants ⊥ and > are

also given with the values “false” and “true”.

The consequence relation of PAC (`) is defined as follows: {p1, p2, ..., pn} ` p if and only if every

1ex contradiction quodlibet
2{p, p→ q} ` q.
3If A ∪ {p} ` q, then A ` p→ q.
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∧ 1 0 -1 ∨ 1 0 -1 → 1 0 -1 ¬

1 1 0 -1 1 1 1 1 1 1 0 -1 1 -1

0 0 0 -1 0 1 0 0 0 1 0 -1 0 0

-1 -1 -1 -1 -1 1 0 -1 -1 1 1 1 -1 1

Table 1: The matrices of the connectives in PAC.

valuation which assigns either 1 or 0 to all pi, does the same to p. It is possible for a valuation

v, such that v(p) = v(¬p) = 0 and v(q) = −1. Therefore, {p,¬p} 0 q and ECQ fails in this logic.

The Hilbert-style formulation of PAC can be given by table 2. In this table, the connective ↔ is

defined as follows: p↔ q := (p→ q) ∧ (q → p).

Axioms:

• p→ (q → p)

• (p→ (q → r))→ ((p→ q)→ (p→ r))

• ((p→ q)→ p)→ p

• p ∧ q → p

• p ∧ q → q

• p→ (q → p ∧ q)

• p→ p ∨ q

• q → p ∨ q

• (p→ r)→ ((q → r)→ (p ∨ q → r))

• ¬(p ∨ q)↔ ¬p ∧ ¬q

• ¬(p ∧ q)↔ ¬p ∨ ¬q

• ¬¬p↔ p

• ¬(p→ q)↔ p ∧ ¬q

• p ∨ ¬p

Rule of Inference:

•
p p→ q

q

Table 2: Hilbert-style system of PAC.

PAC has lots of advantages that makes it a suitable logic for being used for our purposes. On

the one hand, by the ideas of society semantics and multi-source epistemic logics introduced in

[6], [8], [9] and [11], it can be shown that PAC is a reasonable logic for handling inconsistencies

in multi-source environment with respect to epistemological aspects. On the other hand, the

profits of paraconsistent three-valued logics in handling inconsistent data bases, is discussed in [7].

Thus, it seems PAC is a suitable candidate for our framework both conceptually and practically.

Furthermore, it is an ideal and natural paraconsistent logic, as discussed in [2], [3] and [4] that

confirms it behaves like classical logic in the majority of cases.
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By having the consequence relation of PAC, we can define its induced logical consequences operator

as follow:

Cn(A) = {p : A′ ` p, for a finite A′ ⊆ A} (1)

Consequently, the theorem below could be concluded:

Theorem 2.1. Cn satisfies the following conditions:

(Cn1) A ⊆ Cn(A). (inclusion)

(Cn2) Cn(Cn(A)) ⊆ Cn(A). (iteration)

(Cn3) If A ⊆ B, then Cn(A) ⊆ Cn(B). (monotony)

(Cn4) If p ∈ Cn(A), then p ∈ Cn(A′) for some finite set A′ of A. (compactness)

(Cn5) If p ∈ Cn(A ∪ {q}) and p ∈ Cn(A ∪ {r}), then p ∈ Cn(A ∪ {q ∨ r}). (introduction of

disjunction in premises)

Proof. By the definition of `, it is easy to see that it satisfies Tarskian conditions on consequence

relations, i.e., reflexivity4, transitivity5 and weakening6. (Cn1)-(Cn3) are the direct results of

these conditions.

The satisfiability of (Cn4) can be easily followed by definition. Because if p ∈ Cn(A), it must be

at least one finite A′ ⊆ A, such that A′ ` p. And finally, by the semantics of PAC for ∨ and the

definition of `, (Cn5) can be easily deduced.

2.2 For Multi-sourceness

Like the original case, by a belief set K we mean a set of propositions that is closed under logical

consequences, i.e., K = Cn(K). However, unlike AGM, the inputs are not represented by a single

proposition. In the proposed approach, an input I is described by an ordered pair (p, s) such that

the first element is a proposition and the second term is the source that utters p for a particular

type of belief change. In the following, we will use PI and SI for referring to the proposition and

the source of input I.

Also, epistemic and reliability functions are utilized to specify the degree of believability for beliefs

and inputs, respectively. In order to define these functions, a value set for the range of these

functions is required. Each value set V needs at least three elements with a given total order on

them, i.e., for every x, y, z ∈ V we have:

• x ≤ y or y ≤ x. (totality)

• If x ≤ y and y ≤ x, then x = y. (antisymmetry)

• If x ≤ y and y ≤ z, then x ≤ z. (transitivity)

4If p ∈ A, then A ` p.
5If A ` p and B ` q for every q ∈ A, then B ` p.
6If A ` p and A ⊆ B, then B ` p.
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It is also assumed that with respect to ≤, V has minimum element b and maximum element t. In

the recent article, V is taken as a fix value set. By adopting the notion of epistemic entrenchment

proposed in [16], the notion of epistemic function can be defined. Motivations and properties

of epistemic entrenchment fit well to our approach. There is only one critical difference in our

framework. Epistemic entrenchment is an order on propositions providing a qualitive relation

between them, but here the epistemic function is considered to be a function on propositions and

the range of it gives such a relation on propositions. If PROP is the set of all propositions of our

language, then we have:

Definition 2.1. For a given belief set K, the function E : PROP → V is an epistemic function

if it satisfies:

(E1) If p ` q the E(p) ≤ E(q). (dominance)

(E2) For any p and q, E(p) ≤ E(p ∧ q) or E(q) ≤ E(p ∧ q). (conjunctiveness)

(E3) When K 6= K⊥, p /∈ K if and only if E(p) = b. (minimality)

(E4) If E(p) = t, then ` p. (maximality)

The relation E(q) ≤ E(p) states that p is epistemologically more important than q, in the sense of

retaining to K if one of them must be avoided. The motivations of considering these conditions

can be found in [16]. Beside epistemic function, we assume another function on inputs that shows

the reliabilities of inputs. The notions of reliability and trustworthiness are usually taken as basic

factors in communication and social sciences and the effects of them in belief change have been

discussed in many articles ([27, 19]). For the input (p, s), the reliability of the source s and the

amount of its knowledge about p are both important for evaluating the degree of reliability.

Most models for multi-source or non-prioritized belief revision relate such concepts only to input

proposition or input source. However, many situations can be given to show that it is plausible to

assume both are important for such evaluation. For example, the relation between the trustwor-

thiness of two sources that are expert in two different science fields may not be the only important

data, but the content of information they utter may be effective either. This evaluation plays

the main role in several field of science and we don’t challenge the difficulties of that. Here, it

is assumed that such information about reliabilities are given, like epistemic entrenchment order.

However, we do not claim that computing reliabilities is an easy task to do. Just devolve it to

another research field.

If INP is the set of all possible inputs, then we have:

Definition 2.2. The function R : INP → V is a reliability function if it satisfies:

(R) If I1 = (p, s) and I2 = (q, s) and p ` q, then R(I1) ≤ R(I2). (dominance)

By (R), it is said that if a single source utters two propositions such that one of them is the

consequence of the other one, then the reliability of the input with the deduced proposition must

be greater than the other. Because if p ` q, then Cn(q) ⊆ Cn(p). Hence, p can be seen as a

bigger claim than q for making a change in the beliefs. Intuitively, if the sources are not the

same, this postulate should not necessarily hold. Several other conditions can be considered for

reliability function, but we will continue with this general definition to keep the situation open for

any possible extension in future.
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2.3 For Non-priority

The properties of ≤ on V provide the prerequisites to do a comparison between old beliefs and

inputs to make a decision for belief change. Most works for this purpose just get the non-priority

of the revision functions under discussion. In [12] two taxonomies are given for classifying the

non-prioritized functions proposed for this change; one based on the outputs of them and the other

based on their construction process. In the recent framework, the non-priority of every kind of

belief changes will be discussed.

Hence, we generalize our approach in order to suit source-sensitive functions, as follows:

• Based on the output: “all or nothing” approach; that means either it accepts the whole input

or leaves the belief set unchanged.

• Based on the construction: “decision + action” approach; that means first we decide whether

to accept the input or not, then do the change.

3 Source-sensitive Belief Changes

In the original manuscripts about AGM, contraction, expansion and revision are considered to be

the three main types of belief change that happen to a belief state with respect to to an input.

Contraction is defined for eliminating an existing belief and expansion together with revision are

defined for adding a new belief. The difference between revision and expansion is that in the

former, the result must be consistent, whereas for expansion consistency in not a restriction. By

changing our view from consistency to paraconsistency, motivations for taking revision as a main

kind of belief change don’t have reasonable supports and motivations anymore. As investigated by

Tanaka ([26]), by using paraconsistent logics in the AGM model, revision collapses on expansion.

Also, it seems very admissible to agree with this result in our multi-source environment. Consis-

tency of beliefs in this framework can be considered as an effective factor for evaluating reliability,

however it is not the only important parameter. Hence, the comparison of R(I) and E(¬PI) does

not provide sufficient information for accepting or rejecting I. Therefore, there cannot be a direct

way to define revision and we take expansion and contraction as the only main kinds of belief

change.

3.1 Expansion

By expanding a belief set K by an input I, we want to non-prioritizely have PI as a belief in

the resulted belief set. Since no restriction is considered in the definition of expansion, every new

information is welcome. The only condition we consider is b < R(I), that means the reliability of

an acceptable input can be anything expect exactly the minimum degree of reliability, that is the

amount of the epistemic value of ⊥. So, we define expansion as follows:

Definition 3.1. For a belief set K and an input I, the function +̇ is a source-sensitive expansion

if and only if:
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K+̇I =

{
Cn(K ∪ {PI}) if b < R(I)

K otherwise

The construction is simple. If b < R(I), we add PI to K and close it under Cn, to accept the new

logical consequences of K ∪ {p} too. On contrary, unlike original cases, our background logic is

PAC and also the change may be unsuccessful. If we want to discuss the properties of this function

by studying the satisfiability of AGM postulates, we must introduce the modified version of them

to have compatible postulates with our framework and its notations. The corresponding postulates

to AGM expansion postulates are:

(+̇1) K+̇I is a belief set. (closure)

(+̇2) PI ∈ K+̇I or K+̇I = K. (relative success)∗

(+̇3) K ⊆ K+̇I. (inclusion)

(+̇4) If PI ∈ K, then K+̇I = K. (vacuity)

(+̇5) If K1 ⊆ K2, then K1+̇I ⊆ K2+̇I. (monotony)

(+̇6) K+̇I is smaller than any set that satisfies (+̇1) and (+̇3)-(+̇5) and contains PI . (minimality)

The only postulate that is not the direct correspondence of its corresponding AGM postulate, is

(+̇2). Here, we use a weakening of the success postulate7, that shows “all or nothing” approach for

constructing our non-prioritized expansion function. Also, in the original case, the last postulate

specifies a limit on the size of the result. Thus, the important thing is to have a control on the

size of the expanded belief set. Therefore, we consider postulate (+̇6) only for the case that PI is

accepted in the result. Now, for this function we can show:

Theorem 3.1. Source-sensitive expansion satisfies (+̇1)-(+̇6).

Proof. For (+̇1), if b < R(I), then by definition, the result is a belief set. Otherwise, the result is

K that is our given belief set. For (+̇2), if b < R(I), then by (Cn1), PI ∈ Cn(K ∪ {PI}). If not

b < R(I), then by definition K+̇I = K.

For (+̇3), if b < R(I), then by (Cn3), K ⊆ Cn(K ∪ {PI}). In the other case, the result is

K and K ⊆ K. For (+̇4), suppose that b < R(I). From PI ∈ K, it follows that K+̇I =

Cn(K ∪ {p}) = Cn(K) = K. If not b < R(I), then the result is K by definition. For (+̇5), first

assume b < R(I). Since K1 ⊆ K2, by (Cn3) we conclude that Cn(K1 ∪ {PI}) ⊆ Cn(K2 ∪ {PI}).
So, K1+̇I ⊆ K2+̇I. For the other case, by definition K1+̇I = K1 and K2+̇I = K2. Hence by

assumption, K1+̇I ⊆ K2+̇I.

For (+̇6), assume that K∗ satisfies (+̇1) and (+̇3)-(+̇5) and contains PI . Assume the case that

b < R(I). Suppose that not K+̇I ⊆ K∗. It means that, there is a proposition p such that p ∈ K+̇I

and p /∈ K∗. Since p ∈ K+̇I, then by definition, there is a finite K ′ ⊆ K ∪ {PI} such that K ′ ` p.

We have two possible conditions. Either PI /∈ K ′ or PI ∈ K ′. The former case deduces that

K ′ ⊆ K and so, p ∈ Cn(K). Thus by inclusion, p ∈ K∗, that is contradictory. Assume the latter

case, i.e., PI ∈ K ′. We have (K ′ \ {PI}) ∪ {PI} ` p. By deduction theorem we deduce that

K ′ \ {PI} ` PI → p. Since K ′ \ {PI} ⊆ K, then PI → p ∈ Cn(K). From inclusion, it follows that

PI → p ∈ K∗. Since by assumption K∗ contains PI , then by modus ponens and closure, it is easy

to show that p ∈ K∗. That is again in contradiction with the assumption. For the case that not

b < R(I), by the definition the result is K and by inclusion K ⊆ K∗.
7Success postulate state that if + is an AGM expansion, then p ∈ K + p.
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3.2 Contraction

For contracting a given belief set K with respect to an input I, we are aiming to eliminate PI from

K by the claim of SI . We expect this change to happen whenever I has more amount of reliability

than the amount of believability of PI in K. So, we want to constraint E(PI) < R(I) be satisfied

for contraction. In [16], by having a standard relation for epistemic entrenchment, e.g., ≤EE , a

construction for AGM contraction called entrenchment-based contraction is defined as follow:

K − p =

{
{q ∈ K : p <EE p ∨ q} if p /∈ Cn(∅)

K otherwise
(2)

In the above definition, <EE is defined as usual. Since every epistemic function induces a standard

epistemic entrenchment relation on propositions, we can define source-sensitive contraction based

on equation 2 by changing its constraint.

Definition 3.2. For a belief set K and an input I, the function −̇ is a source-sensitive expansion

if and only if:

K−̇I =

{
{p ∈ K : E(PI) < E(PI ∨ p)} if E(PI) < R(I)

K otherwise

Again, we should change some notations to have the correspondences of AGM contraction postu-

lates. The important point is that we are compelled to consider postulates (−̇5), (−̇7) and (−̇8)

in single-source conditions, because in our multi-source framework there is not (and must not be)

any relation between inputs with different sources. These postulates only make sense in single-

source environments, like AGM. Similar to source-sensitive expansion, the success postulate8 will

be replaced by a weakening of that which is called relative success. It specifies “all or nothing”

approach for constructing our non-prioritized contraction. The corresponding postulates to AGM

contraction postulates are:

(−̇1) K−̇I is a belief set. (closure)

(−̇2) PI /∈ K−̇I or K−̇I = K. (relative success)∗

(−̇3) K−̇I ⊆ K. (inclusion)

(−̇4) If PI /∈ K, then K−̇I = K. (vacuity)

(−̇5) If SI1 = SI2 and Cn(PI1) = Cn(PI2), then K−̇I1 = K−̇I2. (extensionality)

(−̇6) K ⊆ Cn((K−̇I) ∪ {PI}). (recovery)

(−̇7) If SI1 = SI2 = SI3 and PI3 = PI1 ∧ PI2 , then K−̇I1 ∩K−̇I2 ⊆ K−̇I3. (conjunctive overlap)

(−̇8) If SI1 = SI2 = SI3 and PI3 = PI1 ∧ PI2 and PI1 /∈ K−̇I3, then K−̇I3 ⊆ K−̇I1. (conjunctive

inclusion)

Now we can show the following theorem:

8With respect the success postulate for contraction, if − is an AGM contraction, then p /∈ K − p whenever

p /∈ Cn(∅).
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Theorem 3.2. Source-sensitive contraction satisfies (−1)-(−8),

Proof. Again, we show the satisfiability of postulates for both cases E(PI) < R(I) and not E(PI) <

R(I). In the first case, the properties of PAC provide the possibility of getting help of the proof of

original case ([16]). However, using PAC and being non-prioritized make some changes in proofs.

For (−1), suppose that E(PI) < R(I). We must show that by having a set A ⊆ K−̇I such that

p ∈ Cn(A), we can conclude that p ∈ K−̇I. Clearly, each element of A is also an element of K.

Since K is a belief set, p is an element of K. By (Cn4), there is a finite set A′ = {p1, p2, ..., pn :

pi ∈ A} such that p ∈ Cn(A′), i.e., A′ ` p. By the rules of PAC, we have p∧ := p1∧p2∧ ...∧pn ` p.

For showing that p ∈ K−̇I, we must prove that E(PI) < E(PI∨p). Since each pi ∈ A′ is an element

of K−̇I, then by definition for every pi, E(PI) < E(PI ∨ pi). By (E1) and (E2) it is easy to show

that E(PI) < E((PI∨p1)∧(PI∨p2)∧...∧(PI∨pn)). In PAC, ` ((PI∨p1)∧(PI∨p2)∧...∧(PI∨pn))↔
(PI ∨ p∧). So by (E1), E(PI) < E(PI ∨ p∧). Since p∧ ` p, by the rules of PAC, PI ∨ p∧ ` PI ∨ p

and by (E1), E(PI ∨p∧) ≤ E(PI ∨p). Therefore, it deduces that E(PI) < E(PI ∨p). We are done.

For the case that not E(PI) < R(I), the result is K that is a belief set.

For (−2), suppose that E(PI) < R(I). Clearly, not E(PI) < E(PI ∨ PI). So by definition,

PI /∈ K−̇I. If it is not the case that E(PI) < R(I), then we have K−̇I = K.

For (−3), since by definition, the elements of the output are also the elements of K. Hence,

K−̇I ⊆ K.

For (−4), assume that PI /∈ K. By (E3), we deduce that E(PI) = b. Now if E(PI) < R(I), then

the result is {p ∈ K : E(PI) < E(PI ∨ p)}. By (E1) and (E3), it is easy to see that for every

p ∈ K, E(PI) < E(p) ≤ E(PI ∨ p). So K−̇I = K. If not E(PI) < R(I), the result is obvious.

For (−5), since Cn(PI1) = Cn(PI2), from reflexivity of ` and deduction theorem, it follows that

` PI1 ↔ PI2 . Hence, by (E1) and (R) we conclude that E(PI1) = E(PI2) and R(I1) = R(I2). So,

E(PI1) < R(I1) if and only if E(PI2) < R(I2). Assume that E(PI1) < R(I1). So, K−̇I1 = {p ∈
K : E(PI1) < E(PI1 ∨ p)} and K−̇I2 = {p ∈ K : E(PI2) < E(PI2 ∨ p)}. Suppose that p ∈ K−̇I1.

It means that p ∈ K and (PI1) < E(PI1 ∨ p)}. Since ` PI1 ↔ PI2 , then ` PI1 ∨ p ↔ PI2 ∨ p.

Hence by (E1), (PI2) < E(PI2 ∨ p)}. So, p ∈ K−̇I2 and K−̇I1 ⊆ K−̇I2. The reverse is similar.

Therefore K−̇I1 = K−̇I2. Now assume not E(PI1) < R(I1). It deduce that not E(PI2) < R(I2).

In this case, by definition we have K−̇I1 = K−̇I2 = K.

For (−6), first assume that E(PI) < R(I). Clearly by (E4) and the definition of R, 0 PI . By

definition, Cn((K−̇I) ∪ {PI}) = Cn({p ∈ K : E(PI) ≤ E(PI ∨ p)} ∪ {PI}). Now we want to show

that K ⊆ Cn((K−̇I) ∪ {PI}). Thus by taking p ∈ K, we will show that p ∈ Cn((K−̇I) ∪ {PI}).
Since in PAC for every p and q we have p ` q → p, by closure of K, we conclude that PI → p ∈ K.

Since PI ∨ (PI → p) is theorem in PAC and 0 PI , then by (E4), E(PI) < E(PI ∨ (PI → p)). Hence

by definition, PI → p ∈ K−̇I and by (Cn3), PI → p ∈ Cn((K−̇I)∪{PI}). From (Cn1), it follows

that PI ∈ Cn((K−̇I) ∪ {PI}). So by modus ponens, it deduces that p ∈ Cn((K−̇I) ∪ {PI}).
Hence, K ⊆ Cn((K−̇I) ∪ {PI}). Now suppose that not E(PI) < R(I). Then by definition,

Cn((K−̇I) ∪ {PI}) = Cn(K ∪ {PI}) and the result is obvious.

For (−7), assume that E(PI3) < R(I3). Independently, three conditions are possible for E(PI1)

and E(PI2). E(PI1) < E(PI2) or E(PI2) < E(PI1) or E(PI1) = E(PI2). Consider the first case.

By (E1) and (E2), we have E(PI1) ≤ E(PI3). Now, (R) deduces that R(I3) ≤ R(I1). So, we
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have E(PI1) < R(I1). We want to show that K−̇I1 ⊆ K−̇I3. Suppose that p ∈ K−̇I1. It

means that p ∈ K and E(PI1) < E(PI1 ∨ p). It deduces that E(PI3) < E(PI1 ∨ p). Now since

E(PI1) < E(PI2), by (E1) and (R), we have E(PI3) ≤ E(PI1) < E(PI2) ≤ E(PI2 ∨ p). Hence

by (E1) and (E2), E(PI3) < E((PI1 ∨ p) ∧ (PI2 ∨ p)). Since ` (PI3 ∨ p) ↔ (PI1 ∨ p) ∧ (PI1 ∨ p),

from (E1) we conclude E(PI3) < E(PI3 ∨ p). So by definition, p ∈ K−̇I3 and K−̇I1 ⊆ K−̇I3.

Therefore, K−̇I1 ∩K−̇I2 ⊆ K−̇I3. For the case that E(PI2) < E(PI1), the proof is similar.

Now assume the third case, i.e., E(PI1) = E(PI2). So, since E(PI3) < R(I3), both constraints

E(PI1) < R(I1) and E(PI2) < R(I2) are satisfied. Now take p ∈ K−̇I1 ∩ K−̇I2. It means

that p ∈ K and E(PI3) ≤ E(PI1) < E(PI1 ∨ p) and E(PI3) ≤ E(PI2) < E(PI2 ∨ p). Therefore

E(PI3) < E((PI1 ∨ p) ∧ (PI1 ∨ p)). So as we seen, it deduces that E(PI3) < E(PI3 ∨ p). Hence

by definition, p ∈ K−̇I3 and K−̇I1 ∩ K−̇I2 ⊆ K−̇I3. The only remained case is when not

E(PI3) < R(I3). In this case, by definition K−̇I3 = K. From (−̇2) it follows that K−̇I1 ⊆ K and

K−̇I2 ⊆ K. Therefore again, K−̇I1 ∩K−̇I2 ⊆ K−̇I3.

For (−8), first suppose that E(PI1) < R(I1). It follows from assumption PI1 /∈ K−̇I3, that either

PI1 /∈ K or it is the case that PI1 ∈ K and E(PI3) < R(I3) and not E(PI3) < E(PI3 ∨ PI1).

In the first case, by (−̇3), K−̇I1 = K and the postulate is satisfied. Now take the second case.

We can show that if not E(PI3) < E(PI3 ∨ PI1), then we have E(PI1) ≤ E(PI2). It is because if

E(PI2) < E(PI1), then by (E1) we conclude that E(PI2) < E(PI1 ∨ PI2). Then by having (E2),

we have E(PI2) < E((PI1 ∨ PI2) ∧ PI1). Since in PAC ` ((PI1 ∨ PI2) ∧ PI1) ↔ (PI3 ∨ PI1), then

(E1), deduces E(PI3) ≤ E(PI2) < E((PI3 ∨ PI1)). Contradiction. So, E(PI1) ≤ E(PI2).

Now, we must show that in this condition, we have K−̇I3 ⊆ K−̇I1. Take p /∈ K−̇I1. It means

either p /∈ K or p ∈ K and E(PI1) < R(I1) and not E(PI1) < E(PI1 ∨ p). The first case

clearly deduces that p /∈ K−̇I3. Assume the second case. Since we have E(PI1) ≤ E(PI2) and

` (PI3∨p)↔ ((PI1∨p)∧(PI2∨p)), then by (E1) and (E2) and assumption not E(PI1) < E(PI1∨p),

we conclude that E(PI3 ∨ p) ≤ E(PI1 ∨ p) ≤ E(PI1) ≤ E(PI3). We had before E(PI3) < R(I3).

Hence, by definition p /∈ K−̇I3. The only remaining case is when not E(PI1) < R(I1). In this case,

by definition we have K−̇I1 = K, Therefore by (−̇2), K−̇I3 ⊆ K−̇I1.

3.3 Defining Revision

As said before, revision should not be considered as a main kind of belief change in the para-

consistent context. However, it is possible to define it as a derived change from expansion and

contraction. The standard way of doing this, is Levi identity, i.e.:

K ∗L p = Cn((K − ¬p) ∪ {p}) (3)

It is shown that if − is an AGM contraction function, then ∗L will be an AGM revision. The

original form of Levi identity is not suitable in our framework, for two reasons. First, in our multi-

source environment there is no relation between an input with proposition p and another one with

proposition ¬p. Second, since the last step of Levi identity is expansion, it almost disregards our

non-prioritized approach.

Thus, it should be modified in order to fit our proposed framework. For every input I = (p, s), we

use the auxiliary notation I, such that I = (¬p, s). Now, the revision process on K with respect

to I will be contracting it by I and then expanding it by I. These changes will be done whenever

54



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.8, No.2, March 2017

their considered restrictions are satisfied. Therefore, one way to define the source-sensitive revision

function, denoted by ∗̇, is as follows:

K∗̇I =

{
(K−̇I)+̇I if E(PI) < R(I) and b < R(I)

K otherwise
(4)

However, it is not the only way. Another approach can be modifying reverse Levi identity ([18]),

that is:

K ∗RL p = (K + p)− ¬p (5)

In the original case, whenever ¬p ∈ K we will have K +p = K⊥. Hence, this definition does not fit

the AGM model well. One way to avoid triviality, is to use belief bases ([14, 17]) instead of belief

sets. Belief bases are sets of propositions that are not closed under logical consequences. Since in

our framework inconsistencies do not explode to triviality, the problem will not happen. Thus by

some necessary modifications, also reverse Levi identity can be used for defining source-sensitive

revision.

However, by avoiding primacy of the input and consistency criterion, many of AGM revision

postulates will be lost. It is important for many various applications of belief revision, to find the

best way of this kind of change.

4 Conclusion

In this paper, we introduced a new framework, called source-sensitive belief change, based on AGM

to address three criticisms applied to the AGM model, i.e., single-agent environment, primacy of

input and consistency criterion. We specified our position in each extended subject for those

criticisms, called multi-agent belief change, non-prioritized belief change and paraconsistent belief

change. Naturally, there are some similarities and relations between our model and other proposals

([10], [23], [24] and [25]) in these fields and also there are several motivations, features and properties

that are exclusive in the recent framework.

As showed, the changes we applied for constructing our desired model, resulted in persevering

AGM postulates as much as possible. However, some definitions we used are new and defined with

very general attributes. Hence, ways of improving them are open and need to be studied.
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