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ABSTRACT 

 
Forecasting of a typhoon moving path may help to evaluate the potential negative impacts in the 

neighbourhood areas along the moving path. This study proposed a work of using both static and dynamic 

neural network models to link a time series of typhoon track parameters including longitude and latitude of 

the typhoon central location, cyclonic radius, central wind speed, and typhoon moving speed. Based on the 

historical records of 100 typhoons, the performances of neural network models are evaluated from the 

indices of a correlation coefficient and a mean square error. The dynamic model or the so-called nonlinear 

autoregressive network with the use of a moving average method proved to forecast the ten types of 

typhoon moving path more effectively in Taiwan region. The new and simply approach developed in this 

study for solving studied typhoon cases may be applicable to other areas of interest worldwide.. 
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1. INTRODUCTION 
 
Typhoon is one of natural phenomenon that generates a very powerful wind shear and its induced 
effects such as flooding and land sliding may cause tremendous property damages and loss of 
human lives, depended on the strength and the moving path of the typhoon. The genesis of 
typhoons is mostly located in the region of western North Pacific Ocean according to past 
records. Following the development process of typhoons in this region, there are about 26 
typhoons in average occurred yearly, where about three to four typhoons raided the island of 
Taiwan distributed mostly between July to September [1]. Although the relevant government 
agency of Taiwan has established a warning system, the accuracy for forecasting the moving path 
of typhoons still needs to be improved for reducing the negative impacts. As the typhoons may 
have an influence on several countries, so the typhoon related topics keep studying by many 
academic researchers in the international community. 
 
Basically, there are three types of models including statistical, dynamical, and combined 
statistical-dynamic models, for forecasting typhoon track, intensity, storm surge, rainfall, and the 
area threatened. No matter which model, it relies on the use of meteorological data that may be 
obtained from satellites, land-based radar, and reconnaissance aircrafts [2-3]. For more specific, 
the parameters to position the typhoon center may include surface pressure, wind circulation 
center, and the cloud system center. To reduce the forecasting errors from the above mentioned 
models, the theory of probability has been adopted to express the uncertainty in typhoon motion 
forecasts through the construction of probability ellipses [4-6]. Other forecasting models of 
typhoon path may also be found in many of previous literatures (e.g. [7-9]). No surprisingly, these 
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typhoon forecasting methods all involve a very complicated mathematical model and may require 
a heavy computational cost to obtain reliable results. 
 
The recently developed artificial intelligence also plays an important role for forecasting typhoon 
related research topics. For instances, the artificial neural network is applied for forecasting 
precipitation during typhoon periods by taking observed typhoon characteristics and ground 
weather data as the basis [10]. Wave peak or storm surge derivation due to typhoon at a point of 
interest and extended to other points could be predicted by using neural network approach with 
different analysis functions [11-12]. Although the applications of using artificial intelligence for 
predicting typhoon moving track based on meteorological fields are also available, these 
researches tended to a very complicated manner [13-14], and that may open an opportunity to 
study this interesting topic in an easier way.  
 
This study focuses on the development of static and dynamic neural network models for 
forecasting typhoon moving path by taking a series of time steps of typhoon data recorded 
previously. The parameters from typhoon historical records including the coordinates (longitude, 
latitude) of typhoon location, cyclonic radius, wind speed at central point, and typhoon moving 
speed are used for training, adapting, and verification the models. From statistical analysis, there 
exist ten types of typhoon moving paths occurred on the Taiwan region, and there are 100 
typhoon cases recorded previously in 1972-2012 are taken to develop the models. The 
performances of neural network models are evaluated from a correlation coefficient and a mean 
square error, and the forecasting result is improved with the use of moving average method. In 
addition, the recently occurred typhoons in 2013-2016 are forecasted without through training 
process to further validate the preferred models in the present study. Without considering the 
complicated weather condition or using meteorological data, the approach proposed in this study 
may provide a simple and cost inexpensive way for forecasting typhoon moving tracks. 
 

2. TYPHOON INFORMATION AND DATA SOURCE 
 

In general cases, the generation of typhoons in western North Pacific Ocean is mainly guided by 
circulation of subtropical high atmospheric pressure, and most of typhoons track has a tendency 
to move west direction. But when typhoons move to nearby of Taiwan and Philippine areas, the 
moving paths become changeable due to the rim of subtropical high atmospheric pressure. Some 
of typhoons keep moving toward west direction, some of them transfer moving toward northeast 
direction, and some of them keep staying at the same location. Based on the statistical analysis of 
typhoon moving path records from Central Weather Bureau (CWB) of Taiwan for the recent 
hundred years, there are ten types of typhoon moving path can be drawn and shown in Figure 1 
(left). For the ten types of typhoons as displayed in Figure 2 (right), the occurrences of each type 
are: Type 1 (13%), Type 2 (11%), Type 3 (11%), Type 4 (10%), Type 5 (19%), Type 6 (16%), 
Type 7 (7%), Type 8 (4%), Type 9 (7%), and Type 10 (2%), respectively.  
 
In accordance with the historical typhoon data base from CWB, this study collects five typhoon 
related parameters including altitude, latitude, cyclonic radius, central wind speed, and moving 
speed, occurred during the recent four decades [15]. As some of typhoon event cases in early 
years were recorded by hand writing, which may not well clarified and recognized, and that 
results in a tendency of incompleteness. Hence, this study tried to pick up typhoon data sources as 
newer as possible for completeness and for analysis. Additionally for the sake of convenience, the 
data sets of 100 typhoon events in accordance with the occurred percentages of the ten typhoon 
types are chosen for numerical computation by neural network approach.  
 
The original data sets show that some of typhoon moving paths are recorded for every 3 or 6 
hours during at sea, whereas every 1 or 3 hours during at land. In order to unify the time interval 
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of typhoon records, this study uses 1 hour time interval for each typhoon path record, and a time 
series of data is applied in neural network analysis. To prevent extreme values and to increase 
convergent speed in neural computing, the data sets of typhoon moving path need to be 
normalized by using the following linear transformation equation: 
 

min max min( ) / ( )Y X X X X= − −                                                (1) 

 
where X denotes the value before normalization; Y represents the value after normalization; Xmin 
and Xmax are the minimum and maximum values in original numerical sequences, respectively. 
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Figure 1. Statistical  ten types of typhoon path and the occurrences in Taiwan region [15]. 

 

3. STATIC AND DYNAMIC NEURAL NETWORK MODELS 
 

3.1 Structure of Neural Network Models 
 
Due to the advantages of simplicity and effectiveness, the artificial neural network has been 
widely used in various applications recently. The basic element of a multi-layered neural network 
model constitute a series of neurons, where a set of weights, an adder, and a transfer function are 
performed to link neurons in different layers. The following mathematical equation can be written 
to describe the principle of a neural network model: 
 

                                                           
1

( )
n

j ij i j

i

y F w x b
=

= −∑                                                  (2) 

where iy  is the output of neuron j, 
ij

w represents the weight from neuron i to neuron j, i
x  is the 

input signal generated for neuron i, and 
j

b is the bias term associated with neuron j. The 

activation function F is used to constraint the output values to be between [0,1] or [-1,1] for the 
input values ranging from negative to positive infinity. This nonlinear transfer function can make 
the operating process continuous and differentiable.  
 
The artificial neural network may be in general classified into two types: static neural network 
model and dynamic neural network model; depends on the treatment of time factor (t) in the 
analysis. For the static neural network model, the corresponding relation between input and 
output will not be varied with the time factor, as this factor is implicit in the input parameters. 
Whether to consider the time factor or not, the use of static neural network can be found widely in 
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various applications (e.g. [16-20]). Relatively, the time factor is explicit represented in the 
dynamic neural network model, by using feedback loop to cause time delays. Further to mention 
that the dynamic neural network is not only treat nonlinear multivariate behaviour, but also 
include learning of time-dependent behaviour such as various transient phenomena and delay 
effects [21-25]. Nevertheless, both neural network models can be applied to analyse the present 
research topic in typhoon path prediction problem. 
 
The structures of static and dynamic neural network models may be shown in Figure 2 (left) and 
Figure 2 (right) respectively [26]. For the structure of static neural network, it denotes that there 
are n parameters in input x, and there are m time factors in each of input parameter. In addition, 

the sequential parameters 1 1 1( ), ( 1), ( 2)x t x t x t− −  for example, are taken as the inputs in the time 

delay backpropagation neural networks. For the dynamic neural network structure, there are m 
parameters in input x, n time delays in y(t), k parameters in output z(t+1), and the symbols v and w 
represent weight and bias values either in input or feedback layer. From these figures, it is easier 
to understand the operating process of the two neural network models. Regarding the calculation 
processes of the two models is described in the next subsection. In the present study, the software 
package MATLAB is taken to perform calculation of the two models [27-28], where the back-
propagation neural network (BP, a feedforward static model) and the nonlinear autoregressive 
network (NARX, a recurrent dynamic model), are chosen for analysing a series of typhoon data 
sets. 
 

  
 

Figure  2. Structure of the static (left) and dynamic neural network model (right). 

 

3.2 Algorithm of Neural Network Models 
 
The basic and extended theoretical backgrounds for the neural network approach can be found in 
many relevant references [29-30]. For simplification, the operational steps of a multi-layered 
back-propagation neural network approach can be described as follows: (1) Calculate output 
value in the hidden layer; (2) Calculate output value in the output layer; (3) Calculate gap amount 
of neuron in the output layer; (4) Calculate gap amount of neuron in the hidden layer; (5) 
Calculate corrections of weight matrix and bias vector in the output layer; (6) Calculate 
corrections of weight matrix and bias vector in the hidden layer. Note that the steps (1) and (2) are 
forward calculations, and the steps from (3) to (6) are reverse adjustments for weight and bias 
term. The detailed mathematical equations are not shown in here as they can be easily found in 
previous indicated references. Briefly to say is that the neural network training process can be 
performed by repeating the six steps until the error tolerance is achieved. 
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 For a dynamic neural network model, the often adopted real-time recurrent learning algorithm is 
depicted more in detail here based on the cited references [31-32]. Initially, by defining that I 
represents a set of input units, { ( ),  0 }kI x t k m= < <  , and U is a set of other units, 

{ ( ),  0 }
k

U y t k n= < < , which can be hidden or output units. Then, indexing that kz is an arbitrary 

unit in the network as that 
 

                                               ( )       if  ( ) ( )       if  { k
k

k

x t k I
z t

y t k U
∈

=
∈

                                                   (3) 

 
By computing weighted sum of the inputs for a dynamic system, the nonlinear function can be 
written as follows: 
 

                                     ( 1) [ ( )] [ ( )]k k k k kl i

l U I

y t f net t f w z t
∈

+ = = ∑
U

                                            (4) 

where klw  is the weight to neuron k from neuron l. Now by assuming that dk(t) is the target value 

of the k neuron at time step t, and ( )
k

e t  represents an error for the neuron k at time step t. Then, 

the transient error function E(t) can be written as the following equation: 
 

                                     2 21 1
( ) ( ) [ ( ) ( )]

2 2k k k

k U k U

E t e t d t y t
∈ ∈

= = −∑ ∑                                            (5) 

 
By applying the steepest gradient descent method, and a time series is presented to the network, 

the weight changes ij
w∆ from an accumulation of the gradient values may be written as: 

 

                                                      
( )

( )
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ij

E t
w t

w
η

∂
∆ = −

∂
                                                              (6) 

where η  is the parameter of learning rate. After the network has been calculated for the whole 

time series, the use of chain rule at each time step t gives:  
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( )
( )
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Since the error ( )
k

e t  at all times can be calculated from the difference between targets and 

outputs, the remaining derivation term can be calculated from equation (4) as that: 
 

                              
( 1) ( )

[ ( )][ ( )]k l
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where ikδ is the Kronecker delta. Since 
( )

0 for l

ij

z t
l I

w

∂
= ∈

∂
 , so equation (8) may become: 
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[ ( )][ ( )]k l
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y t y t
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The above equation is a recursive equation, so it is possible to compute the value for time step 
1t +  , if the value of previous time step t is known.  
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By setting the initial condition at 0t t=  as 0( )
0k

ij

y t

w

∂
=

∂
, for all ,   and k U i U j U I∈ ∈ ∈ U ; and 

defining the variable ( )
( )k k

ij

ij

y t
p t

w

∂
=

∂
 for every time step t and for all appropriate i, j, and k. With 

the initial condition: 0( ) 0k

ij
p t = , the equation for each time step t is: 

 

                                 ( 1) [ ( )][ ( ) ( )]k l

ij k k kl ij ik j

l U

p t f net t w p t z tδ
∈

′+ = +∑                                     (10) 

 
From the differences between targets and actual outputs, the weight changes ( )

ij
w t∆  and the 

overall correction 
ijw∆  can be obtained as: 

                                        
1 1

0 01 1

( ) ( ) ( )
t t

k

ij ij k ij

t t t t k U

w w t e t p tη
= + = + ∈

∆ = ∆ =∑ ∑ ∑                                       (11) 

 
The above derivation and description may complete the calculation algorithm of a dynamic neural 
network model, and can be used for forecasting typhoon moving track in this study. 
 

4. PERFORMANCE AND FORECASTING OF TYPHOON MOVING TRACK 
 

4.1 Comparison of Neural Network Models 
 
To develop a neural network model, the normalized typhoon record parameters including 
longitude (l), latitude (a), cyclonic radius (r), wind speed at central point (w), and moving speed 
(m), are initially inputted with different combination of these parameters in the input layer. Then, 
by using different neurons in the hidden layer in the model, the parameters of altitude and latitude 
can be obtained in the output layer, for three neural network calculation stages (train, validation, 
and test). For having a sufficient accuracy, and for preventing over training and reducing training 
time, three convergent criteria are set as: (1) 1000 learning cycles, (2) mean square error (mse) 
less than 10-5, and (3) the least mse of 6 validation checks. The execution program will be 
terminated as one of these criteria is reached.  
 
The definition of mean square error is: 

                                                             2

1

1
mse ( )

N
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t

d y
n =

= −∑                                                  (12) 

 
where di is the recorded value; yi is the calculated value; and N denotes the data number in the 
analysis. Sometimes, the root mean square error (rmse) may also be used to express the accuracy 

of calculation. In addition, by calculating the averaged value of record data d and calculated 
results y , the coefficient of correlation (R) can be defined as: 
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As the coefficient of correlation may exhibit a negative value, the square value (R2) is frequently 
used to evaluate the relationship between records and neural network calculations. In general 
case, the higher the R

2 value, the better the prediction result. 
 
Now by taking typhoon Type 1 as an example case, shown in Table 1 is the comparison result of 
back-propagation neural network models with different input parameters and neurons in the 
hidden layer. Note that one hidden layer is sufficient to analysis in this typhoon path problem 
studied. It can be found that the model IlawH3Ola has a relatively better performance as its 
calculated R2 value reaches up to 0.9977. That is, the static model of input parameters (altitude, 
latitude, and wind speed at central point), with three neurons in the hidden layer, can have a 
highly reliability to describe typhoon Type 1. For the comparison result of dynamic neural 
network models, Table 2 shows that a model of similar input parameters as the static model, with 
two neurons in the hidden layer IlawH2Ola, can obtain a relatively better value of R2=0.9970, which 
may imply that the dynamic model can also be used to solve this type of typhoon path forecasting 
problem efficiently. 
 
As displayed in Figure 3 (a) and (b) are the plot comparison of normalized coordinates (x-
altitude, y-latitude) of typhoon path Type 1 for the two neural network models. It can be seen that 
both static model and dynamic model are in good agreements with recorded data. Similarly to the 
above analysis, the relatively better models can be obtained for the other nine typhoon types. 
Table 3 shows the performance of each typhoon type, and it can be found that both models 
exhibit a very good performance as all correlation coefficients fall in very high values. The 
averaged value of the ten typhoon types for the BP model is 0.9875, and it is 0.9909 for the 
NARX model, so the dynamic model is slightly better than that of the static model here in this 
typhoon type case. From the table, it also can be found that each of the five input parameters may 
play an important role in different typhoon types. Therefore, it will not skip any one from the five 
input parameters in the following further analysis of typhoon path problems. 
 

 
 

Table 1. Comparison result of different static neural network models for typhoon Type 1. 
 

BP R
2 BP R

2 BP R
2 BP R

2 

IlaH2Ola 0.9972 IlawH5Ola 0.8882 IlarwH6Ola 0.9848 IlawmH5Ola 0.8552 

IlaH3Ola 0.9833 IlawH6Ola 0.9455 IlarwH7Ola 0.2568 IlawmH6Ola 0.9910 

IlaH4Ola 0.9859 IlamH3Ola 0.9956 IlarmH3Ola 0.8098 IlawmH7Ola 0.9718 

IlarH3Ola 0.5375 IlamH4Ola 0.9884 IlarmH4Ola 0.4977 IlarwmH4Ola 0.8494 

IlarH4Ola 0.2805 IlamH5Ola 0.9743 IlarmH5Ola 0.6699 IlarwmH5Ola 0.5803 

IlarH5Ola 0.9784 IlamH6Ola 0.9912 IlarmH6Ola 0.3917 IlarwmH6Ola 0.5777 

IlarH6Ola 0.9769 IlarwH3Ola 0.9364 IlarmH7Ola 0.9846 IlarwmH7Ola 0.9430 

IlawH3Ola 0.9977 IlarwH4Ola 0.2492 IlawmH3Ola 0.9960 IlarwmH8Ola 0.9729 

IlawH4Ola 0.9968 IlarwH5Ola 0.9592 IlawmH4Ola 0.9248 IlarwmH9Ola 0.9815 
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Table 2. Comparison result of different dynamic neural network models for typhoon Type 1. 
 

NARX R
2 NARX  R

2 NARX  R
2 NARX R

2 

IlaH1Ola 0.9896 IlawH2Ola 0.9970 IlarwH2Ola 0.9920 IlawmH2Ola 0.9857 

IlaH2Ola 0.9871 IlawH3Ola 0.9946 IlarwH3Ola 0.9763 IlawmH3Ola 0.9378 

IlaH3Ola 0.9745 IlawH4Ola 0.9963 IlarwH4Ola 0.9774 IlawmH4Ola 0.9710 

IlarH2Ola 0.9887 IlamH2Ola 0.9836 IlarmH2Ola 0.8415 IlarwmH2Ola 0.9917 

IlarH3Ola 0.9566 IlamH3Ola 0.9881 IlarmH3Ola 0.9821 IlarwmH3Ola 0.9828 

IlarH4Ola 0.9905 IlamH4Ola 0.9430 IlarmH4Ola 0.8689 IlarwmH4Ola 0.9782 

 

    
 

Figure 3. Plot comparison of normalized coordinates for typhoon path Type 1.  
(a) static model, (b) dynamic model 

 
Table 3. The relatively better neural network models for the ten typhoon types. 

 

Typhoon type BP model R
2 NARX model R

2 

1 IalwH3Oal 0.9977 IalwH2Oal 0.9970 

2 IalH3Oal 0.9836 IalrH4Oal 0.9854 

3 IalmH5Oal 0.9976 IalH3Oal 0.9935 

4 IalwmH7Oal 0.9974 IalrmH3Oal 0.9964 

5 IalmH4Oal 0.9953 IalmH4Oal 0.9953 

6 IalwH6Oal 0.9822 IalrwmH3Oal 0.9857 

7 IalmH5Oal 0.9834 IalrwmH3Oal 0.9853 

8 IalH4Oal 0.9902 IalmH2Oal 0.9903 

9 IalrwH4Oal 0.9955 IalrH4Oal 0.9967 

10 IalrwmH5Oal 0.9520 IalrwH3Oal 0.9836 

Average - 0.9875 - 0.9909 
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4.2 Forecasting of Typhoon Moving Track 
 

In this study, a total of 100 historical typhoon cases are considered to model the typhoon path 
forecasting problem, where 2 to 19 sets of typhoon data are taken for each of the ten typhoon 
type, according to the distribution of typhoon occurrences shown in previously section. For each 
typhoon type, there exists a variation of typhoon path from different cases, the mixed data set 
from all cases in each typhoon type may be used to develop a neural network model, but it may 
become too tedious and overtraining, particularly for the more often occurrence typhoon types. 
Instead, the present study tried to develop neural network models from each case in each type, 
and the relatively better models based on the performance are determined to represent the model 
to be used for future forecasting in each type. 
 
 Now by taking the five input parameters including longitude, latitude, cyclonic radius, wind 
speed at central point, and moving speed of each typhoon case, a relatively better neural network 
model (I5HnO2, where n denotes number of neurons) based on the best performance in testing 
calculation stage is obtained for each typhoon type. Table 4 shows the relatively better neural 
network model for the ten typhoon types. It can be found that the static model in general requires 
more neurons in the hidden layer than that of dynamic model. Note that the special case of 
typhoon Type 10 does not have a regular moving track, the model developed here is for reference 
only, and no further analysis is performed for this unstable typhoon type. From the above 
discussed results, the dynamic neural network model seems more favourable to deal with this type 
of typhoon track forecasting problem studied herein, and so this model is taken for further 
analysis as follows. 
 
 By employing the dynamic neural network model for the nine typhoon types, displayed in Figure 
4 is the approaching tendency of output results with target records, for all data sets in the 
calculation stages. It can be seen that typhoon Type 3 has the best performance, whereas typhoon 
Type 8 has the poorest performance. However, all models tend to have a suitable reliability for 
forecasting typhoon moving track from evaluation index of correlation coefficient. Figure 5 
shows the convergent tendency of mean square errors (take Type 2 and Type 4 as examples), it 
converges to a required tolerance without too many epochs for the problems studied herein. 
 

Table 4. The relatively better static and dynamic models for each of the ten typhoon types. 
 

Typhoon type NN model Typhoon type NN model 

1 
BP I5H4O2 

6 
BP I5H4O2 

NARX I5H2O2 NARX I5H5O2 

2 
BP I5H6O2 

7 
BP I5H7O2 

NARX I5H4O2 NARX I5H3O2 

3 
BP I5H7O2 

8 
BP I5H8O2 

NARX I5H3O2 NARX I5H4O2 

4 
BP I5H4O2 

9 
BP I5H7O2 

NARX I5H3O2 NARX I5H4O2 

5 
BP I5H8O2 

10 
BP I5H7O2 

NARX I5H3O2 NARX I5H3O2 
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Figure 4. The approaching tendency of output values with target records. 

 

 
 

Figure 5. Convergent tendency of mean square errors (e.g. typhoons Type 2 and Type 4). 
 

By inverting the normalized calculation results to the coordinates of typhoon central location, the 
forecasting typhoon track for the typhoon types with higher occurrence rates (e.g. Types 2,3,5, 
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and 6) is shown in Figure 6. In general, it can be seen that the forecasting result is in good 
agreement with actual typhoon record. However, if a blow up of the track plots, for examples, 
typhoon Types 3 and Type 6 as shown in the left hand side of Figure 7, there exist some 
unexpected inaccurate calculation results in the middle part and the end part of the typhoon path. 
As one of disadvantages of using neural network approach is the possibility of converging to a 
local minimum during searching solution process, and that may cause the none-reasonable result 
as presented here in these typhoon forecasting cases. 
 

 
 

Figure 6. Forecasting results by a dynamic model compared with the actual typhoon record. 
 
In order to improve the neural network forecasting result in the time series problems, a simple 
method, the so-called moving average method can be adopted, and the equation is:  
 

                                                  
( 2) ( 1) ( )

3

y t y t y t
Ma

− + − +
=                                              (14) 

 
where Ma is the correction of forecasting result; y(t) is the output at time step t; and n denotes the 
delay number here in this studied problem. As seen the right hand side of Figure 7, a more 
reasonable and smoother calculation result is obtained, which can further increase a reliability of 
the developed dynamic neural network model, and can be taken for future typhoon track 
forecasting work. 
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Figure 7. Blow up of forecasting result and revised result (e.g. Type 3 and Type 6). 
 

For validating the present developed dynamic neural network model with moving average 
method, two more recently typhoon events, namely Typhoon Kongrey and Typhoon Nepartak 
occurred in 2013 and 2016, respectively are taken for analysis. At the beginning, the first typhoon 
is judged as Type 6, whereas the second typhoon belongs to Type 4, based on the potential 
moving track of the two typhoons. Then, by applying the relatively better neural network models, 
i.e. by using the weight and bias values in the model developed previously without resort to any 
further training. The directly forecasting result is shown in Figure 8, and acceptable typhoon track 
forecasting results are found for both typhoons. 
 

5. CONCLUSIONS 
 
Typhoon is one of natural disasters in the earth, and that may bring a huge amount of rainfall to 
cause property damages and loss of human lives. To track the movement of a typhoon, which 
may be taken to evaluate the negative effects in the neighborhood areas, various statistical and 
numerical models have been reported previously. However, these complicated models in  
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Figure 8. Directly forecasting results by a dynamic model with moving average method. 
 

general require many weather information and computer resources, and those may cost expensive. 
To facilitate the typhoon path forecasting work, this study proposed a method of using both static 
and dynamic neural network models to solve the problem effectively in Taiwan region. 
The key elements for developing the model include typhoon central location (longitude, latitude), 
cyclonic radius, central wind speed, and moving speed. By varying different neurons in the 
hidden layer, a relatively better neural network model is obtained for each of the ten types of 
typhoon classified in the island of Taiwan. Both static and dynamic models exhibited a good 
performance, but the dynamic model seems to have a slightly better evaluation index than that of 
the static model. In particularly, this nonlinear autoregressive network with the use of moving 
average method, could improve some of the inadequate forecasting result that may generate from 
a local minimum converged by the neural network approach. 
 
Due to the limitation of typhoon data resources, the neural network model developed here in this 
study did not consider typhoon parameters at the early stage, and so the model could not be 
applied to forecast the typhoon moving track at its early stage. Once the typhoon data can be 
obtained more in detail, the present neural network approach may help to forecast a typhoon 
potential track, and that may help to provide a warning message as soon as possible. For future 
study, some of other typhoon related information such as atmospheric pressure, sea temperature, 
wind direction, topographic condition, and season factor, may be taken into account to model the 
problem for increasing its reliability. Besides, a global searching capability of genetic algorithm 
may be incorporated into neural computing to prevent the convergence of local minimum. 
Nonetheless, the present study did show a simple way to deal with this type of typhoon track 
forecasting problem, and may be extended to increase its applicability. 
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