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ABSTRACT 

 
This paper reports successful development of an exact and an efficient radial basis function network 

(RBFN) model to estimate the head of gaseous petroleum fluids (GPFs) in electrical submersible pumps 

(ESPs). Head of GPFs in ESPs is now often estimated using empirical models. Overfitting and its 

consequent lack of model generality data is a potentially serious issue. In addition, available data series is 

fairly small, including the results of 110 experiments. All these limits were considered in RBFN design 

process, and highly accurate RBFNs were developed and cross validated. 
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1. INTRODUCTION 

 
ESPs are widely used to lift large volume of fluid from downhole at different well conditions [1, 
2]. As a critical stage at design of offshore petroleum systems, size of ESPs should be chosen 
correctly as over- or under-sizing leads to premature equipment failure or low petroleum fluid 
recovery. In order to facilitate size selection, manufacturers normally provide curves depicting 
generated head versus liquid volumetric flow rate for each ESP size. The correct choice is the 
smallest ESP which can generate sufficient head to lift petroleum fluids within the designed range 
of flow rates.  
 
However, the aforementioned curves are not valid for gaseous fluids; while, ESPs are frequently 
utilised to pump petroleum fluids with high gas content [1].The solution is to develop models to 
estimate the generated head by ESPs on GPFs. This paper focuses on head estimating models and 
exclude other types of models developed for GFPs in ESPs, e.g.  the ones which estimate surging 
or stability border [3], gas bubble size [4] or in-situ gas volume fraction [5].  
 
Tens of year research led to head-estimating models based on analytical, numerical and empirical 
approaches [6]. Available analytical models, derived on the basis of mass and momentum 
balances [7, 8],  use unrealistic assumptions and oversimplified physics of two-phase fluids. This 
has harmed their reliability. Numerical models are normally formulated based on one-
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dimensional two-fluid conservations of mass and momentum along streamlines; also they demand 
prediction of surging initiation in ESPs [9]. As a result, they are not assumed to be trustworthy. 
On the contrary, empirical models of GFPs in ESPs are widely trusted and used in practice [10, 
11].  
 

2. CURRENTLY PREVALENT MODELS 
 

In this section, homogenous model and a number of empirical head-estimating models of GPFs in 
ESPs are briefly introduced. The values presented for empirical models’ parameters have been 
identified using the data collected from experiments on diesel fuel/carbon dioxide mixtures, 
reported in [12]. Advantageously, aforementioned mixtures are similar to petroleum fluids [13], 
dissimilar to air/water mixtures, which have also been used in experiments to develop ESP 
empirical models [14-16]. Latter models have been excluded from this paper due to significant 
difference of their tested fluids and GPFs. 
 
2.1. Model 1 
 

The oldest ESP model for GFPs is the homogenous model. This model is in fact an analytical 
model, based on oversimplification of two-phase physics of GPFs. Homogenous model receives 
an input from the curve provided by the manufacturer: the generated head by ESP if pure liquid 
was pumped instead of GPF (Hl ) [17]. This head is modified with assumption that the fluid 
motion is homogenous i.e. liquid and gas have equal speeds: 
 

( )ˆ (1 ) ,m l g lH Hα ρ αρ= − +                                                                                                          (1)  

where ρ , H and indices l , g and m stand for density, head, liquid, gas, and mixture, respectively. 
α is gas void fraction. ^ shows the head is estimated (not experimentally measured).  

2.2. Model 2 

The second model was developed by Turpin et al in 1986 [18]. Similar to (1), this model was 
focused to modify the output of manufacturer curve, Hl :  

    

                                                                      (2)    

where ql and qg are liquid and gas volumetric flow rates in gallons per minutes (gpm) , pin is 
intake pressure in psi.  

2.3. Model 3 

Sachdeva et al, in 1992 [19] proposed a model which did not need any inputs from 
manufacturer’s catalogue:  

                      

                                                                                                           (3)  

where g stands for gravity acceleration. The values of E1, E2 and E3 and K1 are listed in [10] for 
multiple stages of electrical submersible pumps. As an example, for 8 stages of I-42B radial ESP, 
K1=1.1545620, E1=0.943308, E2=-1.175596 and E3=-1.300093. Similar to Model 2, (3) is 
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convertible to a linear equation through taking algorithm. Parameters of a linear equation can be 
evidently identified with use of least square of error algorithm [20] 

2.4. Model 4 

This model was presented by Zhou and Sachdeva in 2010 [10]: 

                                   

                                                                          (4) 

where K2 is a unit-less coefficient, C is pressure unit factor, e.g. 1, 1000 or 0.145 for psi, ksi or 
kPa. Hmax and qmax are nominal maximum head and flow rate of the ESP; qm is mixture or GPF 
flow rate where qm=ql+qg = qg /α.  

Mathematical structure of this model seems more meaningful than Model 3; as if gas void 
fraction and flow rate equal zero, estimated head is definitely Hmax. According to [10], for 8 stages 
of I-42B radial ESP, K2=1.971988, E4=1.987838, E5=9.659664 and E6=0.905908.  

 2.5. Summary and Limits of Empirical Models  

All presented models have three input variables amongst pin , ρl, ρg, ql, qg,, qm or α. Two other 
potential input variables, pump rotational speed and temperature appear in neither empirical 
models of GPFs in ESPs nor in the homogenous model. As a matter of fact, the parameters of the 
presented empirical models have been identified based on the data collected at a fixed rotational 
speed of 3500 rpm; thus, the models are valid at this speed only. The estimated head can be 
adapted for other rotational speeds using ‘affinity laws’ detailed in [2, 10].  
 

3. MODEL DEVELOPMENT 
 

In this section, development of a radial basis function network (RBFN) is reported which is 
designed to estimate the head of mixtures of carbon dioxide/ diesel fuel pumped by eight stages 
of an I-42B radial ESP. The reason to choose an RBFN as the head-estimating model is the fact 
that RBFNs are mathematically proven universal approximators [21]. Inspired by existing 
empirical models, a single output of Hm and triple inputs of pin, qm and α were opted for the RBFN 
model. The same experimental data, used to identify the parameters of empirical models 2-4, 
were employed to develop and test the RBFN. Hence, the proposed model and presented 
empirical models are comparable. The data collected from 110 experiments cover a wide range of 
gas void fractions [0 0.5], intake pressures [50 to 400] psi and heads [1 55] ft. 93 data sets were 
used for modelling and the rest to test the RBFN. 
 
An RBFN has two layers, the first layer receives inputs array, U, and produces the ‘layer output’, 
O. The second layer receives O and produces the ‘network output’, Y. In this problem, there are 
three inputs and one output; thus, the input and output arrays are U3×Q and Y1×Q. Q is the number 
of data sets which are fed to the RBFN at once. For instance, if the inputs of the modelling data 
are fed into the model altogether, then Q=93.  

The first layer has an array of weights (WR×3) and a scalar namely Spread (S). The components of 
layer output, OR×Q, are calculated as presented in (5):  
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The second layer has an array of weights (X1×R) and an array of biases (B1×Q). The output array is 
calculated according to (6): 
 
Y1×Q = X1×R ×OR×Q+B1×Q ,                                                                                                             (6) 
 
Combination of (5) and (6) is the structure of the RBFN. The major task is to identify the model’s 
unknown parameters R, W, S, X and B using the modelling data presented as input and output 
vectors of U3×93  and Y1×93 . 
 
From (5), it is clear that the range of O components is [0 1]; also, if ith row of W and kth column of 
U are identical, Oik will be at its maximum, 1;or simply, maximum values of O components 
happen if the rows of W are same as the columns of U. From (6), it can be seen larger 
components of O are more influential on the network output. As a result, in order to maximise the 
effect of the modelling data on parameter selection, it has been suggested to set W=U

T, 
consequently R=Q. Then, O can be calculated with mere use of U3×93 and S . 
  
Solution of (7), a rearranged version of (6), determines B and X  components.  

[ ]1 93 1 186
186 93
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×
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O
Y X B

I
   ,                                                                                                       (7) 

where I is a unique matrix with size of 93×93.  
 
By this point, it has been shown how to find all unknowns of (5) and (6) except for S. The 
developed model is called an ‘exact’ RBFN. Such a model evidently provides exact estimation for 
the modelling data; however, a serious concern about exact RBFNs is model generality or the 
accuracy of estimation outside the operating points where the modelling data have been collected 
from or the modelling points. S is chosen by the designer as a tool to balance accuracy inside and 
outside the modelling points. A large spread (S) ( S >>1 in (5)) can smoothen the model output 
and generalise the network [22].  
 
Here is a pseudo-algorithm of exact RBFN modelling (to find R, W, X, B using the input and 
output arrays of the modelling data, U3×93  and Y1×93, and a well-selected S) 

1. Set W93×3 = U
T

93×3  

2. Choose a large S to generalise the developed RBFN 

3. Calculate O93×93 from (5) with U3×93 (from the modelling data), W93×3 and S defined at 
steps 1 and 2, respectively. 

4. Form (7) with Y1×93 (from the modelling data) and O calculated at step 3. 

5. Solve (7) to find X1×93 and B1×93 

A straightforward non-iterative parameter identification algorithm is an advantage of exact 
RBFNs; however, this method creates models with a lot of parameters: a disadvantage for 
working on small data series. In this research, the exact RBFN has 466 parameters; whereas, only 
93 modelling data sets, in total 372 pieces of input/output data, are available for modelling. 
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Excessive number of parameters and focus of the algorithm on exact fitting of the model to the 
modelling data increases the risk of ‘overfitting’ or lack of generality (see [23, 24]). The only tool 
to enhance generality in exact RBFNs is spread with a limited influence [23]. 
 
Efficient RBFNs, alternatively, may have much fewer parameters than exact RBFNs, which 
means a lower risk of overfitting. In efficient RBFNs, some columns of U (not all of them) are 
selected and transposed to form W. Therfore, W array is smaller. In order to select U columns to 
be used as W rows, first, every single column is transposed and tried as a single-row W. The 
column of U which leads to the smallest modelling error (see the second appendix of [25] about 
the modelling error) is selected, transposed and used as the first row of W. At the next iteration, 
another column of U in which the merger of its transpose to W leads to the largest drop in the 
modelling error is chosen and added to W. This continues till the number of W rows (R) reaches 
its pre-defined maximum (Rmax) or the modelling error reaches its predefined target (Et). It should 
be noted that if a too small modelling error (e.g. 0) is targeted, overfitting is more likely to 
happen.  
 
Here is a pseudo-algorithm of efficient RBFN modelling: 
 

1. W=null, Urem=U, Uopt=null, E=1000 (a large number) 

2. Choose a large S to generalise the developed RBFN 

3. Choose Rmax and target modelling error, Et 

4. Set R=1 

5. Set k=1 

6. Add transpose of kth column of Urem as the Rth row of W 

7. Calculate O from (5) with U3×93 (from the modelling data), WR×3 and S defined at steps 6 
and 2. 

8. Solve [ ]
( )

( )

1 93 1 93
93 93

R

R

× × +

+ ×

 
=  

 

O
Y X B

I
to find X1×R and B1×R (Y and O are available from 

the modelling data and step 7) 

9. Find the Modelling Error (ME) from comparison of Ymodel (calculated from (5) and (6)) 
and Y 

10. if ME<E, then E=ME and Uopt=Uk 

11. k=k+1 

12. if k ≤ 93-R then go to 6  

13. Remove Uopt from Urem 

14. R=R+1 

15. if R≤ Rmax and E>Et then go to 5  

 

4. RESULTS AND DISCUSSION 
 

Both exact and efficient RBFN modelling methods were employed to develop models for GPFs 
pumped by eight stages of an I-42B radial ESP, using 93 sets of experimental data as detailed in 
section 3. The models were tested with 17 data sets not used for modelling, ‘test data’, including 
an input and outputs arrays of T

U3×17 and T
Y17×1. Upper left index of T refers to ‘test’. The vector 
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of estimated outputs with inputs of T
U3×17 is named T

17 1
ˆ

×Y . The ‘test error’ or TE, introduced in 

(8), was employed as the accuracy criterion for models. 
 

                                                                                                                (8) 

                                                                                                                 

A model should have a reasonably low TE to be cross-validated [25, 26]. The developed exact 
RBFN, with 466 parameters, has a rather low TE, 2.7683 ft, at a very high value of spread, S=125. 
At lower values of S, the modelling error may be misleadingly small. For example, at S=1, with 
use of the modelling data in (8), the resultant error is 0.0645 ft; whereas, the test error is 44.8621 
ft, an evident example of overfitting to the modelling data. 

The efficient RBFN, however, provides better results with fewer parameters and a lower spread. 
Development of an efficient RBFN with a spread of 20 and target modelling error (Et) of 1.2 ft 
result in R=74, 390 parameters in total and a very low test error of 1.8648 ft  equal to 3.45% of 
head range. With such a low, this model is definitely considered as cross-validated. 

Table 1 compares the test error (TE) and number of parameters in empirical models 1-4 (M1-M4) 
and developed exact and efficient RBFNs:  

Table 1. Test error (TE) in ft and total number of parameters for different models 

 M1 M2 M3 M4 Exact RBFN Efficient RBFN 

Test Error 8.85 7.36 12.13 5.16 2.77 1.87 

Number of Parameters 1 3 4 5 466 390 

 
Figures 1-3 compare estimated heads of different models with the real head at three different 
operating areas. In this paper, an operating area is the collection of operation points with same 
intake pressure and gas void ratio, e.g. Pin=100 psi and α=0.2. Table 2 shows the mean of 
absolute estimation error for different operating areas. Table 2 and Figs.1-3 show the results for 
the entire available experimental data in operating areas, not only the test data. 
 

 

Figure 1. Real and estimated head (by six models) for a mixture of carbon dioxide and diesel fuel pumped 
by eight stages of an I-42B radial ESP; intake pressure is 50 psi and gas void fraction is 0.2 
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Figure 2. Real and estimated head (by six models) for a mixture of carbon dioxide and diesel fuel pumped 
by eight stages of an I-42B radial ESP; intake pressure is 100 psi and gas void fraction is 0.1 

 

 

 

Figure 3. Real and estimated head (by six models) for a mixture of carbon dioxide and diesel fuel pumped 
by eight stages of an I-42B radial ESP; intake pressure is 400 psi and gas void fraction is 0.5 
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Table 2. Mean of absolute head estimation error in ft for different models at various operating areas. 

Pin α M1 M2 M3 M4 Exact RBFN Efficient RBFN 

50 0.10 4.66 14.7 24.1 5.00 1.42 0.33 

50 0.15 12.1 12.0 11.5 7.32 4.62 1.85 

50 0.20 15.8 8.63 6.85 8.63 1.32 0.71 

50 0.30 16.4 6.63 5.06 4.34 4.97 1.68 

50 0.40 17.1 3.00 1.39 2.44 2.31 1.81 

100 0.10 5.66 3.21 22.5 4.24 2.29 0.90 

100 0.15 6.28 4.61 13.3 5.94 1.98 1.06 

100 0.20 8.25 4.96 10.4 6.68 1.29 1.30 

100 0.30 10.1 10.3 7.76 4.65 3.00 1.00 

100 0.40 11.7 6.40 3.81 2.89 1.33 0.43 

400 0.30 5.47 3.73 9.92 5.84 0.80 1.09 

400 0.40 4.45 2.95 8.27 4.30 0.57 0.52 

400 0.50 5.69 9.04 7.51 5.79 0.39 1.18 

 

According to Table 2, the efficient and exact RBFN models outperform all comparable empirical 
models, M1-M4, in 12 and 11 operating areas out of 13 operating areas covered by experiments, 
respectively. As an exception, Model 3 presents a lower error than RBFNs, at pressure of 50 psi 

and gas void ratio of 0.4. As a justification, the results of only 2 experiments   are available in this 
operating area, too few to asses modelling approaches. As to Table 2 and Figs. 1-3, different 
empirical models may perform better in specific operating areas; so called critical models [6] 
have been proposed to define these high performance or validity areas of a number of empirical 
models. However, RBFN models are advantageously valid for the whole operating areas where 
the modelling and test data have been collected from.  
 

5. CONCLUSION 
 

This paper initially presented existing empirical models, which estimate the head of gaseous 
petroleum fluids in ESPs as well as a simple analytical model (the homogenous model). These 
models are called head estimating models.  
 
Then, exact and efficient RBFN models were developed to serve the same function as the existing 
head estimating models using the same data used to identify the parameters of aforementioned 
empirical models. The developed models outperformed existing models, and the efficient RBFN 
particularly estimated head highly accurately with a test error equivalent to 3.45% of head range. 
It was also shown that if some popular values were opted for RBFN design factors, e.g. spread of 
1 and target modelling error of 0, the developed model would fail to fulfil cross-validation 
requirements due to overfitting. In the exact RBFN, a very large spread, 125, was shown to 
effectively reduce overfitting. Overfitting was diminished with use of a large spread, 20, and a 
fairly large target modelling error for the efficient RBFN. 
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