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ABSTRACT 

 

Things like growing volumes and varieties of available data, cheaper and more powerful computational 

processing, data storage and large-value predictions that can guide better decisions and smart actions in 

real time without human intervention are playing critical role in this age. All of these require models that 

can automatically analyse large complex data and deliver quick accurate results – even on a very large 

scale. Machine learning plays a significant role in developing these models. The applications of machine 

learning range from speech and object recognition to analysis and prediction of finance markets. Artificial 

Neural Network is one of the important algorithms of machine learning that is inspired by the structure and 

functional aspects of the biological neural networks. In this paper, we discuss the purpose, representation 

and classification methods for developing hardware for machine learning with the main focus on neural 

networks. This paper also presents the requirements, design issues and optimization techniques for building 

hardware architecture of neural networks.  
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1. INTRODUCTION 

 
From self-driving cars to SIRI, Artificial Intelligence (AI) is progressing rapidly. Science fiction 
often portrays AI as robots with human characteristics (example, Ava in Ex Machina and Skynet 
in Terminator) but the truth is that AI can encompass anything. The tech giants are racing to build 
their own AI software and products. We currently have Google’s Tensorflow and AlphaGo, 
Nvidia’s DGX, Amazon’s Alexa, Microsoft’s Azure, IBM’s Watson and Intel’s Nervana. A 
survey by McKinsey & Company showed that the total investments in AI development tripled 
between 2013 and 2016 [1]. Most of that — $20 billion to $30 billion — came from these tech 
giants [2]. These companies expect that machine learning (ML), and other AI models that 
descend from it, will be very critical to their customers in the future, just like networking and 
mobility. While many ML algorithms have been used for years, the ability to automatically apply 
complex mathematical calculations to big data – over and over, faster and faster – is a recent 
development. Online recommendation offers like those from Flipkart and Amazon, real-time 
advertisements on web pages and mobile devices, web search results are some of the examples of 
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ML applications that we are familiar with. Few other applications are Optical Character 
Recognition (OCR) [3], speech recognition [4,5] and pattern classification [6]. 
 
Google has become a part and parcel of our daily lives. But we have hardly cared to think on how 
it works [7]. The millions of images uploaded to the internet are sorted by image recognition 
which results in accurate classification and in turn give users better search results. One of the 
breakthroughs of Google in deep learning is in image enhancement. It involves restoring or filling 
in details missing from images, by extrapolation, as well as by using what it knows about other 
similar images. Google has implemented AI in language processing too. Google’s Assistant 
speech recognition AI uses deep neural networks (DNN) to learn how to better understand spoken 
questions and commands. [8] Google’s Neural Machine Translation also works in deep learning 
environment. Another way Google uses deep learning today on its services is to provide more 
useful recommendations on YoutubeTM. Google BrainTM monitors and records our viewing habits 
as we stream content from their servers. DNNs are made to study and learn everything about 
viewers’ habits and preferences, and work out what would keep them glued to their screens. 
 
Hence, we see that machine learning plays a significant role in the advances of technology today. 
There have been literature surveys previously done on this subject. The authors in [9] present the 
opportunities and challenges in designing hardware for machine learning while the study in [10] 
specifically talks about neural networks. A detailed survey of neural networks in hardware is 
done in [11] whereas the authors in [12] present a brief survey of FPGA implementation of neural 
networks. This paper presents the latest review of the hardware architectures for machine learning 
focussing mainly in the aspects of neural networks. 
 
The rest of the paper is organized as follows. Section 2 talks about the architectural design of the 
neural networks in both software and hardware keeping in the contrast between them. The 
different types of hardware for ANN are discussed in Section 3 with detailed explanation of each 
type. Section 4 finally talks about the hardware architecture in detail including CPU, GPU, FPGA 
and ASIC whereas section 5 focusses on the various issues in the design architecture and related 
optimization techniques. Some other approaches and further extension in the ML hardware 
architecture as advanced technologies are discussed in sections 6 and 7. Section 8 is a case study 
upon the Google's Tensor Processing Unit (TPU), and the final concluding remarks are presented 
in section 9. 
 

2. ARCHITECTURE DESIGN 
 
In recent years, there have been massive advances in implementing ML algorithms with 
application-specific hardware (e.g., FPGA, ASIC, etc.) due to their inherent parallelism. ML 
algorithms, such as those for specialised applications like image processing, speech synthesis and 
analysis, face recognition, multi-category classification, and data analysis, are being developed 
that will fundamentally alter the way individuals and organizations live, work, and interact with 
each other. Chipmakers are racing to build hardware for AI. Technology giants and governments 
are investing heavily in neuromorphic chips (prominent examples include the EU’s BrainScaleS 
project, the UK’s SpiNNaker brain simulation machine, IBM’s “synaptic chips”, DARPA’s 
SyNAPSE program, and Brain Corporation, a research company funded by Qualcomm). There is 
a timely need to map the latest learning algorithms to physical hardware, in order to achieve 
significant improvements in speed, performance, area and energy efficiency. However, their 
computational complexity still challenges the state-of-the-art computing platforms, especially 
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when the application of interest is tightly constrained by the requirements of low power, high 
throughput, less latency, small size, etc. 
 

2.1. Hardware vs Software Implementation of ANNs 
 
Implementation of ANNs falls into two categories: software implementation in conventional 
computers and hardware implementation, capable of dramatically decreasing execution time [10]. 
ANNs are implemented in software, and are trained and simulated on general-purpose computers 
for emulating a wide range of neural networks models. Software implementations offer flexibility 
and can be used to develop and debug new algorithms. However, hardware implementations are 
essential for applicability to large networks and for taking the advantage of ANN’s inherent 
parallelism. The main purpose of building dedicated hardware for AI is to provide a platform for 
efficient adaptive systems, capable of updating their parameters in the course of time. Specific-
purpose hardware implementations are dedicated to a particular ANN model. VLSI 
implementations of ANNs provide compact architecture and high speed in real time applications. 
 
A significant amount of work has been done in developing software and simulation environments 
for ANNs. Standard implementations of ML algorithms are readily and widely available through 
libraries/packages/APIs (e.g. scikit-learn [13], Theano [14], Spark MLlib [15], H2O [16] , 
TensorFlow [17] etc.) but applying them effectively involves choosing a suitable model (decision 
tree, nearest neighbour, neural net, support vector machine, etc.), a learning procedure for fitting 
the data (linear regression, gradient descent, genetic algorithms and other model-specific 
methods), as well as understanding how hyper-parameters affect learning [18]. Specialized 
applications have motivated the use of hardware in ANN. For example, cheap dedicated devices 
used for speech recognition in consumer products, and analog neuromorphic devices, such as 
silicon retinas, directly implement the desired functions [11]. 
 
Generally, neural network hardware designs are of two types. The first is - a general, but probably 
costly, system that can be re-programmed for many kinds of tasks - such as Adaptive Solutions 
CNAPS [19]. The second is - a specialized, but relatively cheaper, chip that does single task 
quickly and efficiently, such as IBM ZISC [20]. 
 

2.2. Measurement Units 
 
The traditional approach for quantifying ANN hardware performance is to measure the number of 
MAC operations performed in the unit time, i.e., Millions of Connections Per Second (MCPS) 
and the rate of weight updates, i.e., Millions of Connection Update Per Second (MCUPS) [10, 
11]. These two measurements somewhat correspond to the Million Instructions per second 
(MIPS) or the Mega Floating-point Operations per Second (MFLOPS) measured on conventional 
systems. The common speed measurement units of today’s computers are GFLOPS (billions of 
flops) or TFLOPS (trillions of flops) [21]. 
 

2.3. Precision and Number Formats 
 
During the hardware implementation of ANNs, two important considerations need to be made. 
Firstly, there should be balance between the need of reasonable precision (number of bits) and 
the cost of logic area. Secondly, a suitable number format should be chosen so that dynamic 
range is large enough for general-purpose application [11]. So, before beginning the hardware 
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design of ANN model, the number format (floating point, fixed point etc.) and precision to be 
used for inputs, weights and activation functions must be considered. The precision is mostly 
limited to 16-bit fixed point for the weights of ANN and 8-bit fixed point for the outputs. In case 
of the standard error backpropagation and the multi-layer perceptron learning algorithm this 
precision was shown to be sufficient in most cases [22]. Using 16 bits as precision of calculation 
instead of 32 bits results in faster computation, because processors tend to have more throughput 
at lower resolution [23]. Reducing the precision also increases the amount of available 
bandwidth, because smaller amounts of data is being fetched for each computation. Kohonen's 
SOM algorithm can learn well with only 6-bit weights [24]. An arithmetical precision of more 
than 16 bits may be required by recurrent neural networks [25]. However, the precision cannot be 
reduced too much because then the network will not train and will never achieve the accuracy 
needed or it will become unstable. It was found that the discretization process degraded the 
performance of the NN algorithm in [26]. Since precision has great impact in the learning phase, 
it is important to keep the precision of numbers as high as possible during training phase. 
However, propagation phase requires the use of low precision. 
 
According to researchers, it is possible to train ANNs with integer weights [22]. The advantage 
of using integer weights is that integer multipliers can be implemented more efficiently on 
hardware than the floating-point ones. There are some special learning algorithms which use 
powers-of-two integers as weights [27]. The advantage of powers-of-two integer weight learning 
algorithms is that the required multiplications in an ANN can be reduced to a series of shift 
operations. Floating point offers the maximum dynamic range, making it suitable for any 
application. However, floating-point operations require more cycles for computation than integer 
operations (unless extremely complex designs are used) [10]. This is why most neurocomputer 
designers consider fixed-point representations in which only integers are used and the position of 
the decimal point is handled by some simple additional circuits or software. Appropriate word 
length must be found for using such representations. The convergence of the learning algorithms 
should not be affected and enough resolution should be provided during normal operation. The 
classification capabilities of the trained networks depend on the length of the bit representation. 
Another method for representation called Bit-Stream arithmetic is described in [12]. 
 
Deeper networks have improved accuracy but they greatly increase the number of parameters and 
model sizes. This increases the storage demands and computational memory bandwidth. As such, 
the trends have shifted towards more efficient DNNs. An emerging trend is the adoption of 
compact low precision data types, much less than 32-bits [28]. 16-bit and 8-bit data types are 
being used, as they are supported by DNN software frameworks (example, TensorFlow). 
Furthermore, researchers have shown continued improvements in accuracy for extremely low 
precision two-bit ternary DNNs where the values are constraints to (0,+1,-1), and one-bit binary 
DNNs where the values are constraints to (+1,-1). 
 

3. CLASSIFICATION OF NEURAL NETWORK HARDWARE 
 
The range of neural network hardware lies from single stand-alone neurochips to full-fledged 
neurocomputers. A block level architectural representation for almost all neurochips and 
neurocomputer processing elements has been presented in [11]. A variety of attributes have been 
used to classify NN hardware, such as system architecture, inter-processor communication 
networks, on-chip or off-chip learning, degrees of parallelism, general purpose or special purpose 
devices, and so on. NN hardware can be categorized into 4 classes by the degree of parallelism: 
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coarse-grained, medium-grained, fine-grained and massive parallelism [11]. The number of 
processing elements yields the degree of parallelism of a system. Parallelism increases data 
processing speed but is expensive in terms of chip area. Therefore, highly parallel systems usually 
employ simpler processing elements. Parallel processing elements only speed up the computation 
when they are not idle. Thus, for better system performance it is necessary that the inter-processor 
communication network provides the processing elements with sufficient data. 
 
Neurocomputers are divided into two major categories. Standard chips consist of sequential 
accelerators, which speed up conventional computers like PC or workstation, and parallel 
multiprocessors, which are mostly stand alone and can be monitored by a host computer. 
Neurochips are built from dedicated neural ASICs (Application Specific Integrated Circuits) and 
can be digital, analog or hybrid. 
 

3.1. Standard chips 
 
3.1.1. Accelerator Boards 

 
Accelerator boards are the most frequently used neural network hardware because they are widely 
available, relatively cheap, simple to connect to the workstation, and typically provided with user-
friendly software tools. They are used to increase the speed of neural network computations. 
Accelerator boards are usually based on NN chips but some just use fast digital signal processors 
(DSP). A disadvantage of accelerator boards is that they are only specialized for certain tasks, and 
thus lack flexibility. Examples of accelerator boards are IBM ZISC ISA and PCI Cards. Other 
accelerator systems include SAIC SIGMA-1, Neuro Turbo, HNC, etc. Various types of neural 
network architectures have been studied and developed using accelerators in [29-32]. 
 

 
Figure 1. Neural network hardware categories 

 

3.1.2. Neurocomputers Built from General Purpose Processors 
 
Programmable neurocomputers were built to meet the need for high performance on large ANN 
simulations with reasonable cost/performance and flexible software control. These architectures 
can be simple, low-cost elements or rather sophisticated processors like transputers, which are 
unique for their parallel I/O lines or DSPs. These transputers were primarily developed for 
correlators and discrete Fourier transforms. A problem associated with neurocomputers is to find 
an interconnection strategy for large numbers of processors. Fortunately, knowledge about the 
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architectures of these massively parallel computers can be directly applied in the design of neural 
architectures. 
 
Multiprocessor neurocomputers can be classified into four categories [33]. The first category uses 
commercial digital signal processors (DSP) while the other three categories are based on custom-
designed silicon. 
 
3.1.2.1. Commercial DSP Arrays 

 
Several neurocomputers have been built using commercial DSP arrays. Some notable examples 
are the RAP (Ring Array Processor) [34] developed at the International Computer Science 
Institute and the MUSIC system [35] developed at the Swiss Federal Institute of Technology. 
Both of these arrays connect the DSPs in a unidirectional ring topology with communication 
circuitry built from field-programmable gate arrays (FPGAs). The RAP supports up to 40 Texas 
Instruments TMS320C30 floating-point DSPs, with a peak performance of 32 MFLOPS per 
node. The MUSIC system connects up to 45 Motorola DSP96002 floating-point DSPs, with a 
peak performance of 60 MFLOPS per node. Both of these systems have distributed memories. 
They are programmed using a Single Program Multiple Data (SPMD) model, where all nodes 
operate on different portions of the data but run identical programs. A separate host computer 
handles data input and output and manages the overall program flow. 
 
3.1.2.2. SIMD Processor Arrays 
 
A popular approach in neurocomputer design is a SIMD (Single Instruction Multiple Data) array 
of processors which have limited form of processor interconnect. Instructions are broadcast by a 
common sequencer and executed simultaneously by all processors in these designs. The 
processors in SIMD system are much simpler than those in SPMD system because they do not 
have to fetch and decode instructions. Examples of SIMD neurocomputers include the CNAPS 
systems [19] from Adaptive Solutions and the SNAP [36] system from HNC. The neurochip 
N6400 is the basic building block of the CNAPS system and consists of 64 processing elements 
(or processing nodes PN) connected by a broadcast bus. The HNC system is built from SNAP 
chips each of which contains four 32-bit floating-point multiply-add datapaths with access to 
local off-chip memory. Multiple chips can be interconnected and controlled by the same central 
sequencer in both of these systems. 
 
3.1.2.3. Systolic Processor Arrays 
 
Several neurocomputers have been built using systolic processor arrays that perform the matrix 
operations for most neural algorithms. A systolic processor contains an array of interconnected 
pipelines through which operands flow in a regular manner. The most advanced of these systems 
is the SYNAPSE-1 [37]. The basic building block for this neurocomputer is the Siemens' MA-16 
neurochip. It consists of eight MA-16 chips connected in two parallel rings controlled by two 
Motorola MC68040 processors. Systolic arrays can be formed by cascading multiple MA-16 
chips. This ensures that inputs and outputs are passed from one MA-16 chip to another in a 
pipelined manner leading to an optimal throughput. 
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3.1.2.4. Vector or SIMD Co-processor 
 
All the neurocomputers mentioned above rely on some form of off-chip control sequencer or host 
computer for managing the matrix computations occurring on the parallel processor arrays. 
Alternatively, the control processor can be integrated with the parallel execution units on the 
same die. Two examples of this type of design are the T0 vector microprocessor [38] and the L-
Neuro 2.3 multi-DSP [39]. The T0 vector microprocessor integrates an industry-standard MIPS-II 
32-bit integer scalar RISC processor with a tightly-coupled fixed-point vector coprocessor. The 
L-Neuro 2.3 design contains a 16-bit RISC controller along with an array of 12 DSP datapaths. 
The DSP datapaths are controlled using a writable microinstruction store, indexed by the RISC 
controller macroinstructions. 
 

3.2. Neurochips 
 
For multiprocessor neurocomputers the neural functions are programmed on general-purpose 
processors. Neurochips contain dedicated circuits devised in special purpose chips for the neural 
functions. This speeds up the neural iteration time by about two orders of magnitude as compared 
to general-purpose processor implementations. Neurochips can be designed using several 
implementation technologies. Defining a taxonomy of neurosystems requires consideration of 
three important factors: 
 
• the kind of signals used in the network, 
• the implementation of the weights, and 
• the integration and output functions of the units. 
 
The signals transmitted through the network can be coded using an analog or a digital model [10]. 
In the analog approach, a signal is represented by the magnitude of a current or voltage difference 
whereas in the digital approach, discrete values are stored and transmitted. If the signals are 
represented by currents or voltages, it is easier to implement the weights using resistances or 
transistors with a linear response function for certain range of values. In the case of a digital 
implementation, each transmission through one of the network’s edges requires a digital 
multiplication. Hybrid neurocomputers are built combining analog and digital circuits. Analog 
systems require less power and offer higher implementation density on silicon. But digital 
systems offer programming flexibility, greater precision, and the possibility of working with 
virtual networks, that is, networks which are not physically mapped to the hardware, making it 
possible to deal with more units. Due to limited precision, direct implementation in circuits may 
alter the exact functioning of the original (simulated or analysed) computational elements. In 
order to build large-scale implementations many neurochips have to be interconnected. Some 
chips are therefore supplied with special communication channels. Other neurochips are to be 
interconnected by specially designed communication elements. A detailed study of digital, analog 
and hybrid neurochips is given in [40]. 
 
3.2.1. Digital Neurochips 

 
Digital Neural ASICs are the most powerful neurochips. Digital techniques offer high 
computational precision, programmability and reliability. Furthermore, powerful design tools are 
available for full-custom and semi-custom design. Its shortcoming is the relatively large circuit 
size compared to analog implementations. Synaptic weights can be stored on or off chip which is 
determined by the trade-off between speed and size. Two well-known digital neurochips are 
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CNAPS [19] and SYNAPSE-1 [37]. VLSI microprocessors, vector and signal processors, slice 
architectures, SIMD and systolic arrays can be used for digital implementation. Greater speedup 
of linear algebraic operations can be achieved using systolic arrays which are regular structures of 
VLSI units, mainly one or two-dimensional, and which can communicate only locally [10]. 
 
3.2.2. Analog Neurochips 
 
Analog electronics have characteristics that can directly be used for neural network 
implementation. For instance, operational amplifiers (Opamps), are built from single transistors 
and easily perform neuron-like functions, such as integration and sigmoid transfer. Some VLSI 
circuits work with field effect transistors (FETs) made of semiconductors. These are materials 
with a nonlinear voltage-current response curve which makes them especially suitable for the 
implementation of digital switches. Floating gate transistors can be used for an analog 
implementation of the multiplication operation. They represent the weights by statically stored 
charges or dynamically with the help of charge coupled devices (CCDs). Analog electronics are 
compact and offer high speed at low energy dissipation. The drawbacks of analog electronics are 
susceptibility to noise and process-parameter variations. Chips built according to the same design 
will never function in exactly the same way. Another limitation of the applicability of analog 
circuits is the problem of representing adaptable weights. Although analog chips will never reach 
the flexibility attainable with digital chips, their compactness and speed make them attractive for 
neural network research, especially when they adopt the adaptive properties of the original NN 
paradigms. Another advantage is that they more directly interface with the real, analog world, 
whereas digital implementations will always require fast analog-to-digital converters to read in 
data and digital-to-analog converters to put their data back into the world. Extensive 
implementations have been done using analog neurochips in [41-44]. Intel’s ETANN is an 
example of analog neurochip [45]. 
 
3.2.3. Hybrid Neurochips 
 
Both digital and analog techniques offer unique advantages but they also have drawbacks. The 
main shortcomings of digital techniques are the large amount of silicon and power required for 
multiplication circuits and the relatively slow computations. The shortcomings of analog 
techniques are the sensitivity to noise and susceptibility to interference and process variations. 
Therefore, the right combination of analog and digital techniques for the implementation of these 
processes is advantageous. Several research groups have implemented hybrid systems in order to 
gain advantages of both techniques and avoid the major drawbacks. 
 
The ANNA (Analog Neural Network Arithmetic and Logic Unit) [46] chip can be used for a wide 
variety of ANN architectures but is optimized for locally connected, weight-sharing networks and 
time-delay neural networks (TDNNs). The Epsilon (Edinburgh Pulse Stream Implementation of a 
Learning Oriented Network) chip is a hybrid neurochip that uses pulse coding techniques [47]. 
 

4. HARDWARE ARCHITECTURE 
 
There are two aspects of machine learning: training the network with massive amounts of sample 
data and then using the trained network to infer some attributes about new data sample. Training 
is typically done in large data centres. Figure 2 lays out the wide range of hardware targeting 
machine learning from leading vendors. 
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Figure 2. Hardware across the Machine Learning landscape [48] 
 

Most of the applications today are hosted in public clouds with companies like Amazon, Google, 
Microsoft, etc. These companies run their online services from data centres packed with 
thousands of servers, each driven by a chip called a central processing unit, or CPU. Now these 
companies are supplementing CPUs with other processors for using Deep Learning Networks. 
Neural networks can learn tasks by analysing huge amounts of data, and they require more than 
just CPU power. So Google built the Tensor Processing Unit, or TPU while Microsoft is using a 
FPGA processor. Myriad companies employ machines equipped with large numbers of graphics 
processing units, or GPUs. The hardware used for machine learning today mainly consists of one 
or more of the following: 
 

• CPU – Central Processing Units 

• GPU – Graphic Processing Units 

• FPGA – Field Programmable Gate Arrays 

• ASIC – Application Specific Integrated Circuits 

 
Figure 3. Overview of ML hardware available today [49] 

 

Each step in this progression of technologies produces tremendous performance advantages. Each 
has its advantages for specific type of application or data, that is being deployed and in a specific 
environment. The velocity and data complexity determine the amount of processing needed, 
while the environment typically determines the power budget and latency demands. Performance 
can be measured in a number of ways [50]: 
 

• computational capacity (or throughput) 

• energy-efficiency (computations per Joule) 

• cost-efficiency (throughput per dollar) 
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4.1. CPU  
 
Central Processing Units or CPUs are often referred to as the “brains” of a computing system – 
whether it is for mobile, tablet, consumer (laptop/desktop), or enterprise servers. They are 
extremely flexible in terms of programmability, and handling workloads. They do fast 
calculations and have dynamic circuitry. However, they have cost and heat issues. Nearly all 
CPUs use these four steps in their operation: fetch, decode, execute, and write-back. They are 
good at fetching small amounts of memory quickly and the best ones have about 50GB/s memory 
bandwidth. Typical consumer CPUs have <10 cores, while server CPUs may go all the way up to 
28. Intel is the dominant CPU manufacturer compared to others (ARM, AMD, IBM POWER, 
Oracle SPARC, Fujitsu). Intel’s Xeon and Xeon Phi [51] in datacentres and the Qualcomm 
Snapdragon in mobile devices are some examples of CPUs. Today, CPUs are mostly used for 
classic machine learning problems and sometimes for Deep Learning Inference [49]. 
 

4.2. GPU 
 
Graphics Processing Units or GPUs are currently the most widely used hardware option for 
machine and deep learning [50]. GPUs are designed for high parallelism and memory bandwidth. 
They are considered to be the best option for training. They were originally designed to accelerate 
the large number of multiply and add computations performed in graphics rendering. Packaged as 
a video card attached to the PCI bus, they offloaded these numerically intensive computations 
from the CPU. As the demand for high performance graphics grew, so did the GPU, eventually 
becoming far more powerful than the CPU. 
 
Machine and deep learning involves lot of matrix multiplications and convolutions. GPUs can 
provide an energy-efficient means of juggling the complex array of calculations required to train 
a neural network. This means they can train more neural networks with less hardware. GPU is 
good at fetching large amounts of memory. But companies also need chips that can rapidly 
execute neural networks through a process called inference. Google built the TPU specifically for 
doing this job. Microsoft uses FPGAs while Baidu is using GPUs, which are more suitable for 
training than for inference, but can do the job with the right software in place. 
 
CPUs contain few cores with a large cache memory, and each core capable of handling a few 
software threads at a time. In contrast, a GPU contains hundreds of cores that can handle 
thousands of threads simultaneously. For example, a 16-core CPU processor running at 3.0 GHz 
performing fused multiply-add instructions has a peak performance of 96 Gflops, and a 56 
processor GPU having 32 cores per processor containing 1792 cores and running at 1.48 GHz 
performing fused multiply-add instructions has a peak performance of 5300 Gflops [52]. The 
superior floating-point performance provided by GPUs is due to the large number of cores. That’s 
why the GPU can take on many multimedia tasks, such as accelerating Adobe Flash video, 
transcoding (translating) video between different formats and some really hard problems to solve 
that have an inherent parallel nature – video processing, image analysis, signal processing. Also, 
GPUs are now being used to accelerate computational workloads in areas such as cutting-edge 
scientific research, oil and gas exploration, and financial modelling [53]. 
 
Computers may contain multiple CPUs and GPUs for achieving good efficiency and very high 
speed processing [54]. Popular configurations include 2 CPUs and 1 to 8 GPUs. Each GPU 
provides an order of magnitude or more in performance over general purpose CPU processors 
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resulting in faster solution times and the ability to solve large problems. Also, GPUs provide an 
order of magnitude or more in processing power for the same capital cost. The efficient 
architecture of GPUs perform more floating-point operations per watt of power consumed. 
Performance comparison of CPUs and GPUs is provided in [55]. 
 
For training purpose, using clusters of 8-16GPUs gives easy parallelism leading to best 
performance, cost and energy efficiency, and memory bandwidth [54]. For inference in data 
centres or in mobile devices (Automotive, IoT), single GPUs are used. GPUs are often far away 
from the main memory of the server, thus sending all the data to GPU takes time. This can pose a 
problem. Hence, companies like NVIDIA have come up with a faster interconnect called NVLink 
[56]. Titan X and Tegra X1 [57] are examples of GPUs. 
 
NVIDIA and AMD are expanding both the sophistication of their processors and the software 
development tools for developing, porting, and debugging GPU code [58]. NVIDIA has an 
intriguing software tool called Nexus [59] that helps software developers to trace and debug 
application code from the CPU running on Windows into the GPU, including parallel applications 
on the GPU, and back to the CPU. These enhancements mean it will be easier to get existing 
software running on GPUs, although it will still require a software development effort. 
 
NVIDIA’s Compute Unified Device Architecture (CUDA) parallel computing architecture is 
developed for GPU computing. CUDA is a key to getting high performance out of certain 
computations that are important in engineering analysis and simulation. Many systems using 
GPUs and CUDA have a single industry-standard processor, usually running on Windows or 
Linux. 
 
An ideal configuration is one that has one or more CPUs and a set of GPUs, known as hybrid 
computing [60], that use CUDA or similar parallel computation architecture thus delivering the 
best value of system performance, price, and power. All support applications, such as word 
processing, email and web browsing use the CPU. And with tools such as NVIDIA Nexus, 
engineering software will eventually take advantage of both to speed up complex computations. 
 

4.3. FPGA  
 
Field Programmable Gate Arrays (FPGAs) are a type of hardware that can be programmed and 
reconfigured using a hardware descriptive language (HDL). FPGAs have recently become a 
target appliance for machine learning researchers, and companies like Microsoft and Baidu have 
invested heavily in FPGAs. Even though they do not offer top peak floating-point performance, it 
is observed that FPGAs’ performance/watt is higher than the GPUs’. This is because they have 
much less power usage (often 10s of Watts). This metric is important for applications in IoT and 
self-driving cars. As FPGAs can provide quick results for a pre-trained machine learning model 
(stored on the FPGA memory), they are also being used for inference [49]. 
 
To increase the number of operations processed and hence the compute performance researchers 
are looking for ways to leverage CPU and GPU architectures. FPGAs are concerned with system 
performance. By controlling the data path, they accelerate and aid the compute and connectivity 
required to collect and process the massive quantities of information. Also, they can directly 
receive data and process it inline without going through the host system. This frees the processor 
to manage other system events and provide higher real-time system performance. AI often relies 
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on real-time processing to draw instantaneous conclusions and respond accurately. The work in 
[61] shows the procedure to design and develop AI hardware using FPGA. 
 
FPGAs’ flexibility aids in delivering deterministic low latency and high bandwidth. The authors 
in [62] demonstrate an approach that uses an on-chip stream buffer that efficiently stores input 
and output feature maps on FPGAs and improves bandwidth efficiency. It enables users to update 
the hardware capabilities for the system without requiring a hardware refresh as in case of CPUs 
and GPUs, thus resulting in longer lifespans of deployed products. FPGAs support the creation of 
custom hardware for individual solutions in an optimal way. Regardless of the custom or standard 
data interface, topology, or precision requirement, an FPGA can implement the exact architecture 
defined, which allows for fixed data paths and unique solutions. This is also equivalent to 
excellent power efficiency and future proofing. With such a dynamic technology as machine 
learning, which is evolving and changing constantly, FPGAs provide the flexibility unavailable in 
fixed devices. An FPGA has the flexibility to instantly support changes such as precision-drop 
from 32-bit to 8-bit and even binary/ternary networks. No layout, masks or other manufacturing 
steps are needed for FPGAs, thus making the time-to-market faster. The design cycle is simpler 
due to software that handles much of the routing, placement, and timing. The project cycle of 
FPGAs is more predictable due to elimination of potential re-spins, wafer capacities, etc. 
 
All FPGA implementations of ANNs try to use the re-configurability of FPGA hardware in one 
way or another. Intel and Xilinx produce FPGA that has the ability to reconfigure the hardware 
[49]. Identifying the purpose of reconfiguration highlights the motivation behind different 
implementation approaches [63]. 
 

• Prototyping exploits the fact that FPGA-based hardware can be quickly reconfigured an 
unlimited number of times. This apparent hardware flexibility allows rapid prototyping of 
different ANN implementation strategies and learning algorithms for initial simulation. 
Also, due to the dynamic nature of FPGA devices they have modifiable topologies. 
Hence, iterative construction of ANNs can be realized through topology adaptation. A 
digital architecture for classification using FPGAs’ re-programmability feature is 
described in [64]. 

 

• Density enhancement refers to methods which increase the amount of effective 
functionality per unit circuit area through FPGA reconfiguration. This is attained by 
using FPGA run-time / partial re-configurability in one of the two ways. Firstly, an FPGA 
chip can be time-multiplexed for each of the sequential steps in an ANN algorithm. 
Secondly, an FPGA chip can be time-multiplexed for each of the ANN circuits that is 
specialized with a set of constant operands at different stages during execution. This 
technique is also called dynamic constant folding. 

 
A feed-forward ANN algorithm is implemented based on the FPGA technology in [26]. A 
method of implementing a fully connected feed forward network with Xilinx FPGAs for image 
processing in a way that a single processing node is partitioned into two XC3090 chips is 
proposed in [63]. It explores the way to implement fully parallel ANN and efficiently use 32-bit 
floating-point numeric representation in FPGA-based ANNs by making use of the features of 
SpartanIIE series FPGAs. Pedro Ferreira et. al. [65] proposed a hardware implementation of ANN 
using FPGA and piece-wise linear approximation. In [66], a digital hardware-implementation 
strategy for feedforward ANNs with step activation functions has been reported. The algorithm 
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treats each neuron as a special case of Boolean functions with properties that can be exploited to 
achieve compact implementation. This is accomplished by means of VHDL code that can be 
easily translated into an FPGA implementation, using suitable electronic-design-automation 
software. The work in [67] describes the hardware implementation of a real-time neural network 
controller with a DSP and an FPGA for nonlinear systems. 
 
Recent studies say that FPGAs have outperformed GPUs in many fields and are expected to beat 
GPUs in accelerating Deep Learning [58]. The emerging sparse and low precision DNN 
algorithms offer orders of magnitude algorithmic efficiency improvement over the traditional 
dense FP32 DNNs, but they introduce custom data types and irregular parallelism which are 
difficult for GPUs to handle. In contrast, FPGAs are designed for extreme customizability when 
running irregular parallelism and custom data types. Such trends make future FPGAs a viable 
platform for running DNN, ML and AI applications. Intel’s evaluation of various emerging 
DNNs on two generations of FPGAs (Intel Arria 10 [68] and Intel Stratix 10 [69] and Titan X 
GPU shows that current trends in DNN algorithms may favour FPGAs, and that FPGAs may 
even offer superior performance than GPUs. In [70], the authors showed the implementation of 
Binarized Neural Networks (BNN) using CPU, GPU, FPGA, and ASIC and compared their 
performances. FPGAs may be used for other irregular applications beyond DNNs, and on latency 
sensitive applications like ADAS and industrial uses [28]. 
 
Generally, FPGA is about an order of magnitude less efficient than ASIC. However, modern 
FPGAs contain “hardened” resources, such as DSPs for arithmetic operations and M20Ks (in 
Altera FPGA) for on-chip RAMs which reduce the efficiency gap between FPGA and ASIC.  
 
Dedicated ASICs can provide a higher total cost of ownership (TCO) in the long run, and with 
such a dynamic technology, there is a higher threshold to warrant building them, especially if 
FPGAs can meet a system’s needs. 
 
We can have a fusion of these hardware to suit the applications. This enables the hardware to be 
used to their fullest capacity and gives optimal network architectures. For example, in [48] the 
accelerators do good job of running the AI inference engine; sensor fusion, data pre-processing 
and post-scoring policy execution require a lot of special I/O and fast traditional logic which is 
best suited for CPUs. Hybrid hardware platforms are offered by NVIDIA with an ARM / GPU 
combination in NVIDIA’s Jetson [71] and DrivePX2 [72], while Intel and Xilinx offer SoCs 
(System on Chips) that bring ARM and FPGAs into a single, elegant low-power package. All of 
these products are finding their way into drones, automobiles and factory robots / cobots where 
the right combination of flexibility, speed and low power demand innovative approaches. 
 

4.4. ASIC  
 
Whilst GPUs and FPGAs perform far better than CPUs, a factor of 10 in efficiency can still be 
gained with a more specific design, via an Application-Specific Integrated Circuit (ASIC) [49]. 
ASICs are the least flexible but highest performing hardware options. They have full custom 
capability for design since devices are manufactured to design specifications. They are also the 
most efficient in terms of performance/dollar and performance/watt, but require huge investment 
and NRE (non-recurring engineering) costs that make them cost-effective only in very high 
volume designs. They have smaller form factor since devices are manufactured to design 
specifications. ASICs can be designed for either training or inference.  
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Google is the best example of successful machine learning ASIC deployments. The first 
generation of Google’s Tensor Processing Unit (TPU) [73] originally focused on 8-bit integers 
for inference workloads. The newer generation ASICs offers floating point precision and can be 
used for training, too. Unlike CPUs and GPUs, they are designed for a specific purpose (for e.g., 
mining bitcoins) and cannot be reprogrammed. Their lack of extraneous logic makes them 
extremely high in performance and economic in their power usage – but very expensive. Intel’s 
Nervana [74], a low-latency, high-memory bandwidth chip built for deep learning, is another 
example of an ASIC. 
 

5. ISSUES IN HARDWARE DESIGN AND OPTIMIZATION TECHNIQUES 
 
The key metrics for embedded machine learning are accuracy, energy consumption, 
throughput/latency, and cost [9]. The accuracy of the ML algorithm should be measured on a 
sufficiently large dataset. The weights have to be updated when the application changes, thus 
making programmability important. For DNNs, the processor should also be able to support 
different networks with varying number of channels, layers, filters and filter sizes. The need for 
programmability and higher dimensionality both result in an increase in data movement and 
computation. Programmability means that the weights also need to be read and stored and higher 
dimensionality increases the amount of data generated. This can pose a challenge for energy-
efficiency since data movement costs more than computation. The throughput is dictated by the 
amount of computation, which also increases with the dimensionality of the data. The cost is 
dictated by the amount of storage required on the chip while maintaining low off-chip memory 
bandwidth. Finally, training requires a significant amount of labelled data (particularly for DNNs) 
as well as computation for multiple iterations of back-propagation for determining the value of 
weights. Currently, state-of-the-art DNNs consume higher energy than other forms of embedded 
processing (e.g., video compression). We must exploit opportunities at different levels of 
hardware design to address all these issues and remove this energy gap. 
 
When implementing ANNs, selecting weight precision is one of the important choices. Weight 
precision is used to trade-off the capabilities of the realized ANNs against the implementation 
cost. A higher weight precision results in fewer quantization errors in the final implementations, 
while a lower precision leads to greater speed, simpler designs, and reductions in area 
requirements and power consumption. One way of resolving the trade-off is to determine the 
“minimum precision” required to solve a given problem [12]. 
 
Direct implementation for non-linear sigmoid transfer functions is very expensive. There are two 
practical approaches to approximate sigmoid functions [12]. Piece-wise linear approximation 
describes a combination of lines in the form of y = ax + b which is used for approximating the 
sigmoid function. The sigmoid functions can be realized by a series of shift and add operations if 
the coefficients for the lines are chosen to be powers of two. The second method is lookup tables, 
in which uniform samples are taken from the centre of a sigmoid function and stored in a table for 
look up. The regions outside the centre of the sigmoid function are still approximated in a piece-
wise linear fashion. 
 
Researchers are modifying the ML algorithms to make them more hardware-friendly while 
maintaining accuracy. The main focus lies on reducing computation, data movement and storage 
requirements. The optimization techniques are as follows: 
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5.1. Precision reduction 
 
The default size for programmable platforms such as CPUs and GPUs is often 32 or 64 bits with 
floating-point representation during training [9]. While during inference, it is possible to use a 
fixed-point representation and substantially reduce the bit-width for savings in energy and area, 
and increase in throughput. For instance, in [58], input and feature vectors are 4 bits while weight 
is 6 bits. 
 

5.2. Pruning 
 
For DNNs, the number of multiply and accumulate operations, and weights can be reduced by 
removing weights with small or minimal impact on the output through a process called pruning. 
However, removing weights does not necessarily lead to energy reduction. Hence, weights are 
removed based on an energy-model to directly minimize energy consumption. In [31], 
performance and energy efficiency are improved by a factor of 2.7x and 2.3x respectively by 
network pruning during training. 
 

5.3. Compression 
 
Data movement and storage are important factors in both cost and energy. Feature extraction can 
result in sparse data and the weights used in classification can also be made sparse by pruning. As 
a result, compression can be applied to exploit data statistics to reduce data movement and 
storage cost. 
 

6.  USING  MIXED-SIGNAL  CIRCUITS  FOR  ML  HARDWARE 

ARCHITECTURE 
 
Most of the data movement is in between the memory, processing element, and sensor. Since the 
training often occurs in the digital domain, the analog-to-digital conversion and digital-to-analog 
conversion overhead should be accounted for when evaluating the system. While spatial 
architectures bring the memory closer to the computation (i.e., into the processing element), there 
have also been efforts to integrate the computation into the memory itself. For instance, in [75] 
and [76], the classification is embedded in the SRAM. Recently, use of mixed-signal circuits to 
reduce computation cost of the MAC have been explored. Authors in [77] study the trade-off 
between energy and accuracy in neural networks, and present the ways to incorporate mixed-
signal design techniques to achieve low power dissipation in a semi-programmable ASIC 
implementation. 
 

7. ADVANCED TECHNOLOGIES FOR ML HARDWARE ARCHITECTURE 
 
Conventional CPUs/GPUs, which are based on the sequential von Neumann architecture, are 
inadequate for fast training with large data set due to limited power constraints and various other 
reasons. Even the computing speed of custom-designed ASIC lags behind the requirement of real-
time online learning. Hence, to speed this process researchers are looking for ideas beyond the 
traditional CMOS designs. For example, in [78] Chen et. al. have implemented machine learning 
algorithms on a chip using Synaptic Device Model and Technology-design Co-optimization 
Methodologies of the Resistive Cross-point Array. Reverse scaling rules have been used for 
sizing the array geometrical dimensions such as the wire width and the cell spacing to achieve 
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high learning accuracy. It realizes fully parallel operations of the weighted sum and the weight 
update with the help of parallel read and write scheme. The digital spike encoding scheme and the 
analog voltage encoding scheme have been used in terms of learning accuracy. It achieves 103 
speed-up and 106 energy efficiency improvement, enabling real-time image feature extraction and 
learning. 
 
An analog deep learning system has been developed in [79] which overcomes the limitations of 
conventional digital implementations by exploiting the efficiency of analog signal processing. 
Reconfigurable current-mode arithmetic realizes parallel computation. A floating-gate analog 
memory compatible with digital CMOS provides non-volatile storage. Algorithm-level feedback 
mitigates the effects of device mismatch. System-level power management applies power gating 
to inactive circuits. The online cluster analysis with accurate parameter learning, and feature 
extraction in pattern recognition with dimension reduction by a factor of 8 has been 
demonstrated. The system features unsupervised online trainability, non-volatile memory and 
good efficiency and scalability, making it a general-purpose feature extraction engine ideal for 
autonomous sensory applications as well as a building block for large-scale learning systems. 
 
The use of advanced memory technologies such as embedded DRAM (eDRAM) is explored in 
[80] to reduce the energy cost in memory access of the weights in DNN. In [81], memristors are 
used to compute a 16-bit dot product operation with 8 memristors each storing 2-bits. In [82], 
ReRAM is used to compute the product of a 3-bit input and 4-bit weight. Similar to the mixed-
signal circuits, the precision is limited, and the analog-to-digital conversion and digital-to-analog 
conversion overhead must be considered in the overall cost, especially when the weights are 
trained in the digital domain. 
 
An analog neural network suitable for building large scale systems has been developed using a 
learning procedure called contrastive backpropagation learning in [83]. In [84], the components 
of VLSI implementation of a spiking neural network is presented while [85] demonstrates a 
highly configurable neuromorphic chip with integrated learning for a network of spiking neurons 
which can be used in pattern classification, recognition, and associative memory tasks. A spatial 
architecture named ‘Eyeriss’ for energy-efficient dataflow for Convolutional Neural Networks is 
implemented in [86]. 
 

8. CASE STUDY 
 
CNAPS [19] and SYNAPSE-1[37] have been studied extensively in [11]. Here, a study of the 
TPU has been presented. 
 
A Tensor Processing Unit (TPU) is an ASIC developed by Google specifically for machine 
learning. Compared to a GPU, it is designed explicitly for a higher volume of reduced precision 
computation (e.g. 8-bit precision) with higher input/output operations per second per watt. The 
chip has been specifically designed for Google's TensorFlowTM framework. However, Google 
still uses CPUs and GPUs for other types of machine learning. 
 
Google has stated that its proprietary TPUs were used in the AlphaGo versus Lee Sedol series of 
man-machine Go games. Google has also used TPUs for Google Street View text processing, and 
was able to find all the text in the Street View database in less than five days [87]. In Google 
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Photos, an individual TPU can process over 100 million photos a day. It is also used in 
RankBrain which is used by Google to provide search results. 
 

8.1. First generation  
 
The first generation TPU is an 8-bit matrix multiply engine, driven with CISC instructions. It is 
manufactured on a 28nm process with a die size ≤ 331 mm2. The clock speed is 700 MHz and has 
a thermal design power of 28-40 W. It has 28 MiB of on chip memory, and 4 MiB of 32-bit 
accumulators taking the results of a 256x256 array of 8-bit multipliers. Within the TPU package 
is 8 GiB of dual-channel 2133 MHz DDR3 SDRAM offering 34GB/s of bandwidth. Google’s 
first-generation TPUs made it dramatically faster to run ML models that had not been trained a 
lot, but the training had to be performed separately. 
 

8.2. Second generation  
 
Training state-of-the-art machine learning models requires an enormous amount of computation, 
due to which researchers, engineers, and data scientists often wait weeks for results. To solve this 
problem, an all-new ML accelerator was designed from scratch, a second-generation TPU or 
Tensor Processing Unit, that can accelerate both training and running ML models. The second 
generation TPU was announced in May 2017. Google stated the first generation TPU design was 
memory bandwidth limited, and using 64 GB of high bandwidth memory in the second-
generation design increased bandwidth to 600GB/s and performance to 45 TFLOPS. The TPUs 
are arranged into 4-chip 180 TFLOPS modules. These modules are then assembled into 256 chip 
pods (64-TPU pods) with 11.5 PFLOPS of performance. Notably, while the first generation TPUs 
were limited to integers, the second generation TPUs can also calculate in floating point. This 
makes the second generation TPUs useful  for both training and inference of machine 
learning models. Google’s second-generation Cloud TPUs are even more powerful, designed to 
accelerate the training of ML models as well as running them. The TPU features [88] are: 
 

• The TPU is 15x to 30x faster than contemporary GPUs and CPUs for AI workloads that 
utilize neural network inference. 

 

• As compared to conventional chips, the TPU achieves much better energy efficiency 
gaining 30x to 80x improvement in TOPS/Watt measure (tera-operations [trillion or 1012 
operations] of computation per Watt of energy consumed). 

 

• The neural networks powering these applications require a surprisingly small amount of 
code: just 100 to 1500 lines. The code is based on TensorFlow, which is an open-source 
machine learning framework. 

 

 
Figure 4. Google’s new Cloud TPUs deliver machine learning acceleration [89] 
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9. CONCLUSION 
 

Machine learning has covered significant areas of computing and information processing in 
today’s world. There is a timely need to map the latest ML algorithms to physical hardware, in 
order to achieve significant advances in performance, speed, area and energy efficiency. ANNs, 
one of the important learning algorithms of machine learning, are implemented in software, and 
are trained and simulated on general-purpose computers for testing a wide range of neural 
networks models. The main objective of building dedicated hardware for ML is to provide a 
platform for efficient adaptive systems, capable of updating their parameters in the course of 
time. Deep learning networks are playing a critical role in most AI-based technologies today. 
 
Hardware implementation of ANNs is essential for applicability to large networks and for taking 
advantage of their inherent parallelism which is less efficient in their software implementation. 
While designing hardware for neural networks, careful consideration should be made for the 
choice of precision, number format and type of neurocomputer. Machine learning hardware is 
also designed using CPUs, GPUs, FPGAs and ASICs depending on the required performance. 
The hardware built using these technologies may have structural and behavioural issues and 
hence optimization and careful design is necessary. Advanced technologies such as eDRAM and 
ReRAM are being used for speed-up and to overcome conventional design problems. As AI 
applications expand, the demand for ML-specialized devices will drive hardware into the next 
phases of evolution. It will be fascinating to experience the impact of these technologies applied 
in healthcare, transportation, and robotics. Many exciting steps in the evolution of machine 
learning still remain yet to be explored. 
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