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ABSTRACT 
 

Autonomous sorting is a crucial task in industrial robotics which can be very challenging depending on the 

expected amount of automation. Usually, to decide where to sort an object, the system needs to solve either 

an instance retrieval (known object) or a supervised classification (predefined set of classes) problem. In 

this paper, we introduce a new decision making module, where the robotic system chooses how to sort the 

objects in an unsupervised way. We call this problem Unsupervised Robotic Sorting (URS) and propose an 

implementation on an industrial robotic system, using deep CNN feature extraction and standard clustering 

algorithms. We carry out extensive experiments on various standard datasets to demonstrate the efficiency 

of the proposed image clustering pipeline. To evaluate the robustness of our URS implementation, we also 

introduce a complex real world dataset containing images of objects under various background and 

lighting conditions. This dataset is used to fine tune the design choices (CNN and clustering algorithm) for 

URS. Finally, we propose a method combining our pipeline with ensemble clustering to use multiple 

images of each object. This redundancy of information about the objects is shown to increase the clustering 

results. 
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1.INTRODUCTION 
 
The problem of automatic sorting has a long history in industry, with the first tomatoes sorting 

system dating back to the 70’s [1]. Since then, it has received a lot of attention, with important 

focus on combining computer vision and robotics manipulator to solve the pick-and-place task 

[2]. 

 

Although it was among the first robotics tasks, designing a pick-and-place application is 

challenging and requires solving multiple subtasks. If the objects to be sorted are cluttered, the 

system first needs to segment the scene and identify the different objects [3]. Then, the systems 

must use various sensors (2D or 3D cameras, color sensors, bar code readers, ...) to gather data 

about the different objects. These data are used to find a grasping strategy for the object [4] and to 

decide where to place the object. Naturally, all along this process, smart motion planning and 

control is also required [5]. 

 

Although every brick of the pick-and-place pipeline are interesting and challenging problems, the 

scope of this paper is limited to the decision making subproblem, i.e. how to decide where to 

place an object after grasping it? As discussed later in Section 2, previous implementations of 

automatic sorting deal with objects which are either known or belong to some predefined class. In 
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machine learning terminology, one could say that the robot intelligence usually resides in solving 

either an instance retrieval or a supervised classification 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: An instance of the unsupervised robotic sorting problem. 

 

problem. In this paper, a new kind of pick-and-place application is introduced, consisting in 

sorting unknown objects, which do not belong to any predefined class. Given a set of previously 

unseen objects, the robotic system needs to sort them such that objects stored together are similar 

and different from other objects. Such problem definition is the definition of a clustering problem 

in which the outputs consist in physically sorted objects, hence, we call this problem 

Unsupervised Robotic Sorting (URS). 

 

The above statement of the URS problem neither defines the notion of similarity nor the number 

of groups to be made. Different definitions of these concepts defines different instances of the 

URS problem. In this paper, we propose a solution to solve a URS in which the number of groups 

is imposed by the number of storage spaces available and the notion of similarity is defined by 

“how a human would solve the problem”. Figure 1 shows a practical example of inputs and 

expected output. In practice, each object is sensed with a camera and represented as an image, the 

semantic content of the image is extracted using a pretrained convolutional neural network 

(CNN) ([6]) and the classification is done using a “standard” clustering algorithm. A complete 

description of the algorithm used is given in Section 3. A video of our implementation can be 

found at https://youtu.be/ NpZIwY3H-gE. 

 

URS has various potential applications in industry such as organizing workspaces before the 

work day and sorting unsorted goods before packaging. However, to be useful in a real industrial 

shop floor, a URS implementation needs to work under a broad range of conditions. Object poses, 

background and lighting conditions are factors which vary a lot among industrial settings and 

they can impact widely the quality of a computer vision application. Hence, we introduce a new 

image dataset specifically designed to evaluate industrial robustness of our application. The 

dataset contains object which can be found on a shop-floor, under different orientations, 

background and lighting conditions. Together with artificial lighting modification, the dataset is 

used to choose the most robust components of the proposed clustering pipeline (CNN architecture 

and clustering algorithm). 
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It is also important to note that URS consists in sorting real objects, not only images. Hence, we 

propose to further improve the robustness of our implementation by introducing redundancy of 

information for each objects. After choosing the final elements of the image clustering pipeline, 

we propose to embed it in a multi-view clustering pipeline, taking as input several images, under 

different orientations, of each object. Leveraging ensemble clustering, we show that URS 

robustness can be increased using multiple views of each objects. 

 

The main contributions of this paper consist in the formalization, together with a working 

implementation, of the unsupervised robotic sorting problem. Such implementation is, to the best 

of our knowledge, the first application of image-set clustering to robotics and constitutes a new 

step towards autonomous decision-making robots. To validate our solution, a new image dataset 

is proposed. Such dataset, which appears to be challenging for the image-set clustering task, is 

made publicly available in order to help other researchers to test the robustness of their image-set 

clustering algorithms. By implementing a multi-view clustering algorithm based on ensemble 

clustering, we also show that URS robustness can be improved by using multiple images of the 

objects. 

 

The paper is organized as follows. In Section 2, we present a literature review on image-set 

clustering, multi-view clustering and decision making in robotic sorting. In Section 3, we define 

in details the vision pipeline proposed to solve the URS problem and validate our choice on 

several public datasets. In Section 4, we describe the complete URS implementation, introduce 

the validation dataset and test our approach on complex cases. Then we propose, in Section 5, a 

multi-view approach, based on ensemble clustering, to improve the robustness of URS. Finally, 

Section 6 discusses our findings and future working directions. 

 

2. PREVIOUS WORK  
 

2.1. Decision making in autonomous sorting  

 
Although scene segmentation, robotic grasping, motion planning and control are crucial 

problems, which have received major attention recently, the scope of this paper is limited to the 

decision making subproblem of the pick-and-place pipeline. We classify the approaches to 

decision making into three categories: known object (instance retrieval), unknown object member 

of a known class (supervised classification), unknown object and no predefined class 

(unsupervised classification). Different approaches in solving such decision-making problems 

differ in the kind of sensing devices used, as well as the algorithmic choices. 

 

Instance retrieval. Several implementations have considered the problem of recognizing each 

object as a member of a known database, and sorting it according to an associated predefined rule. 

In [7], RFID markers are used to recognize and sort objects. An implementation of a surgical 

tools sorting application using barcode reading and template matching to find and sort objects 

from a cluttered scene is proposed in [8]. Finally, the application presented in [9] sorts real-world 

objects (usb, glue-stick, ...) with a serial manipulator using template matching. 

 

Supervised classification. Many robotics supervised classification applications sort objects based 

on simple rules (thresholding) applied to simple features. For example, [10, 11, 12] all use color 

features extracted from either images or color sensors, [13] extend these approaches by adding 

shape features. In [14], robot manipulation is used to unclutter Duplo bricks and sorts them 
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according to their length and color. In [15], a classical computer vision framework is 

implemented to carry out faulty parts removal. A robotic system able to recycle construction 

wastes using features provided by metal detectors and sensors sensitive to visual wavelengths is 

presented in [16]. Recently, researchers have started to use CNN methods to carry out supervised 

classification in robotic sorting. The authors of [17] have used a CNN on RGBD images to find 

the class of an object and sort it. In [18], a fast RCNN proposal network is combined with a 

pretrained VGG16 CNN architecture to jointly localize and sort objects with a robot manipulator. 

Unsupervised classification. In previous work, we proposed a first implementation of 

unsupervised robotic sorting [19]. The approach consisted in clustering a set of Lego 

 

bricks using color and length features extracted with a computer vision pipeline. We also note 

that this paper is an extension of our previous work on transferring pretrained CNN features to 

unsupervised tasks [20], where the single-view implementation of URS was discussed. 

 

2.2. Image-set clustering 
 

Given a set of unlabeled images, the image-set clustering problem consists in finding subsets of 

images based on their content: two images representing the same object should be clustered 

together and separated from images representing other objects (Figure 1). This problem should 

not be confused with image segmentation [21], which is also sometimes called image clustering. 

Image-set clustering has been used to solve various problems over the last two decades. Web-

scale image clustering has been tackled with variants of K-Means in both [22] and [23]. Concept 

discovery in image categories is solved using spectral clustering in [24]. In [25] a clustering based 

solution to story-line reconstruction in streams of images is proposed and in [26] image-set 

clustering is applied to large-scale medical image annotation. 

 

The first successful methods focused on feature selection and used sophisticated algorithms to 

deal with complex features. For instance, in [27], images are represented by Gaussian Mixture 

Models fitted to the pixels and the set of images is clustered using the Information Bottleneck 

(IB) method. Features resulting from image joint segmentation and sequential IB for clustering 

are used in [28]. In [29], commonality measures are defined from Bags of Features with local 

representations (SIFT, SURF, ...) and used for agglomerative clustering. Recently, image-set 

clustering algorithms have started to use features extracted with deep CNN. [23] applies a variant 

of approximate K-means on features extracted with a pretrained AlexNet and [30] uses deep auto-

encoders combined with ensemble clustering to generate feature representations suitable for 

clustering. As of today, a new family of methods consisting in learning jointly the clusters and the 

representation using alternating optimization has established a new baseline on the performance 

of image-set clustering algorithms ([31, 26, 32]). 

 

Literature review of image-set clustering algorithms raises two useful remarks for the URS 

implementation. First, objects representations should be extracted from images using a pretrained 

CNN. Then, given the scale of the clustering problems to solve (#images < 100), it is unlikely 

that jointly optimizing the CNN parameters would improve the final sorting results. We give a 

detailed description of our image-set clustering pipeline as well as experimentally motivated 

design choices in the next section. 
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2.3. Multi-view clustering 
 

Multi-view learning improves results classification results by leveraging complementary 

information from multiple views of a dataset, which can be obtained by various sensors or 

represented with different descriptors. Recently, multi-view clustering (MVC) has received a lot 

of attention. In [33] different loss functions are introduced and applied on the concatenated views. 

In both [34] and [35] lower dimensional subspaces are learned before clustering with standard 

methods. Recently, it has been shown in [36] that good results can be obtained by embedding 

MVC in the ensemble clustering framework [37]. The authors leveraged the different views to 

generate independent partitions and then used a co-association based method to obtain the 

consensus. 
 

3. IMAGE CLUSTERING PIPELINE 
 
In this section, we discuss the vision module of our URS application. First, the generic form of 

the image-set clustering pipeline is described. Then, we compare several sets of hyperparameters 

on the Pascal VOC 2007 test set. These preliminary results are used to prune the bad 

combinations and select only relevant design choices for further testings in section 4. Then, we 

validate the relevance of the chosen approach by comparing the best pipeline obtained with VOC 

against other approaches from the literature. 

 

3.1. Pipeline description  
 

The pipeline we propose for image set clustering is fairly straightforward. It consists in extracting 

deep features from all the images in the set, by using a deep convolutional neural network 

pretrained on a large supervised dataset for image classification and then apply a “standard” 

clustering algorithm to these features. The proposed vision module can be visualized later in 

Figure 2b. 
 

To implement this unsupervised image classification pipeline, we first need to answer four 

questions: 

 

• What dataset should be used for pretraining?  

• What CNN architecture should we use?  

• Which layer output should be chosen for feature extraction? 

• What clustering algorithm should be used?  

 

As of today, ImageNet [38] is the only very large labelled public dataset which has enough 

variety in its classes to be a good feature extractor for a variety of tasks. It has been shown than 

features extracted from CNN pretrained on ImageNet can be successfully transferred to a variety 

of tasks [6]. In addition, there are plenty of CNN pretrained on ImageNet already available 

online. Hence, we naturally use CNNs pretrained on ImageNet. The three other questions are 

answered experimentally. We use the VOC2007 [39] test set without labels to compare 

performances of the different options and select a small subset of parameters for further 

investigations on URS. 
 

To ease development and accelerate implementation, we compare the Keras [40] implementations 

of ResNet50 [41], InceptionV3 [42], VGG16, VGG19 [43] and Xception [44] with the pretrained 

weights provided by Keras. For the clustering algorithms, we use the scikit-learn [45] 
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implementations of K-means (KM) [46], Minibatch K-means (MBKM) [47], Affinity Propagation 

(AP) [48], Mean Shift (MS) [49], Agglomerative Hierarchical Clustering (AC) [50] and DBScan 

(DBS) [51]. For each CNN, the layers after which the features are extracted can be found in Table 

1 (Layers names are the same as in the Keras implementations). 
 

In the image-set clustering problem, the expected classes are represented by objects present on 

the picture and for this reason we need semantic information, which is present in the final layers 

of the network. Thus, we only choose layers among the last layers of the networks. On the one 

hand, the last one or two layers might provide better results as their goal is to separate the data (at 

least for the fully-connected layers). On the other hand, the opposite intuition is also relevant as 

we can imagine that these layers are too specialized to be transferable. These two contradictory 

arguments motivated the following experiment. 
 

We also note that the test set of VOC2007 has been modified for this validation. We removed all 

the images containing two or more labels in order to have ground truth to compute Normalized 

Mutual Information (NMI) scores. Indeed, if an image has several labels we cannot judge if the 

clustering pipeline prediction is correct or not. We note VOC2007-SL (single label) the modified 

VOC2007 test set. 
 

3.2. Hyperparameters choice  
 

To answer the questions stated above, we try to cluster the VOC2007-SL set using all 

combinations of CNN architectures, layer choices and clustering algorithms. To compare 

performances, we use NMI scores, a standard clustering evaluation metric. We also report 

clustering time for completeness. Only scikit-learn default hyperparameters of the different 

clustering algorithms are used, which illustrate the simplicity of this approach. For KM and 

MBKM, as the results depend on a random initialization, experiments are run ten times and the 

results reported are averaged over the different runs. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________________________________________________________________ 
1
DB-Scan poor results might come from the default parameters and using different configurations might 

improve clustering, but this is out of the scope of this paper. 
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Table 1: NMI scores (in black) and time in seconds (in blue, italics) on Pascal VOC2007-SL test set using 

different CNN, different output layers and different clustering algorithms. (Layers names are the same as in 

the Keras implementations). 

 

 
 

 

These experiments show that, for every CNN architecture and clustering algorithm pairs, the 

results get better when we choose layers which are further in the architecture. Hence, from now 

on, we only consider the last layer before classification for each network. For example, in the rest 

of the paper, VGG16 now denotes the features extracted from fc2 in the VGG 16 architecture. 

Looking at the results, we also keep only two clustering algorithm (KM and AC) for our URS 

testings. This leaves us with 10 configurations to test in section 4. 

 

In the next section, the relevance of the proposed pipeline is further evaluated. We compare the 

most successful pipeline (Agglomerative Clustering on features extracted from the final layer of 

an Xception CNN) against other methods from the literature on other public datasets. 

 

3.3. Literature comparison  
 

To justify the use of the proposed clustering routine, we compare its results against other image 

clustering methods on several public datasets, which are described in Table 2. The tasks involved 

by these datasets are different from each others (Face recognition, grouping different objects, 

recognizing different pictures of the same object). In addition, the content of the classes differs 

from the ones in ImageNet. For these reasons, the four datasets constitute a good benchmark to 

quantify the robustness of transfer learning for unsupervised object categorization. 
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Table 2: Several key features about the datasets used for the vision pipeline validation. 

 

 

We propose a comparison with the results reported in the following papers:  

 

• [29] proposes different clustering algorithms applied on bags of features. In Table 3, we note 

”BoF” the best results obtained by such pipeline on the different datasets.  

• [30] proposes a method called infinite ensemble clustering (IEC). In the paper, IEC algorithm is 

compared to several other deep clustering algorithms and ensemble clustering algorithms. In 

Table 3, we report the best results obtained using Deep Clustering (DC) and Ensemble Clustering 

(EC) for each datasets. We note that for VOC2007-5-ML, [30] also uses deep features as 

clustering inputs (the CNN used is not reported).  

• [31] proposes a method called Joint Unsupervised Learning (JULE) of Deep Representations 

and Image Clusters, based on Alternating optimization between clustering and weight 

optimization of the CNN feature extractor. Results from this work are reported in Table 3. 
 

For each dataset groundtruth is known as they are intended for supervised classification. We 

compute both NMI scores and purity for each dataset/method pair. 
 

Table 3: NMI scores and purity comparison on various public datasets. (A result that is not reported in the 

papers cited above is denoted N.R.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

___________________________________________________________________________ 
 2

The data used for VOC2007 in [30] are irrelevant for clustering with hard assignment. The 

VOC2007 subset used in [30] contains images with several objects but only one label. However, we still 
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ran our clustering method on this data to be able to compare results. This second modified VOC2007 set is 

denoted VOC2007-5-ML (5 classes - multiple labels). 

 

Table 3 shows that features extracted by the final layer of Xception combined with  

agglomerative Clustering performs better than or close to state-of-the-art methods at unsupervised 

object classification as well as fine-grained image clustering (ORL). Results on the ORL dataset 

are interesting as they show that pretrained Xception is able to classify different faces without 

supervision, although ImageNet does not deal with human faces at all. 

 

We underline the very good results of JULE [31] at clustering COIL100. It appears that fine 

tuning feature extraction using alternating optimization is a good way of improving clustering 

results. However, the simple approach proposed here, which provides slightly lower results, still 

keeps the advantage of being very fast (as it only requires to evaluate the network once for each 

sample and apply AC), which is useful for our application. Moreover, the very small sample size 

of URS problems makes retraining impractical. From our attempts of using JULE for URS, it 

seems that the approach in this paper is more relevant. 

 

It is also interesting to notice that [30] is also using CNN features for clustering VOC20075-ML. 

The fact that our pipeline outperform largely DC and EC for this dataset illustrate that when using 

transfer learning for a new problem, careful selection of the CNN used is important, which is 

often neglected. 

 

4. URS IMPLEMENTATION 
 

4.1. Physical implementation 
 

In our implementation of URS, we use a KUKA LBR iiwa robot. Both a camera and a parallel 

gripper are mounted on the end-effector. First, different previously unseen objects are placed in 

the robot workspace. The robot scans the scene and gathers pictures of each object to be sorted. 

The above computer vision pipeline is applied to the image set and returns a bin number for each 

object. Finally, the robot physically sorts the objects according to the clustering results. Figure 2 

shows a schematic view of the system, and a video of the implementation can be viewed at 

https://youtu.be/NpZIwY3H-gE. 

 

The application was implemented in a shopfloor with unmastered lighting (glass roof) and a 

wooden table background. We tested the URS using sets of different tools (screw drivers, allen 

keys, flat keys, clamps, ...) and the goal was to correctly group together the different models of 

the same tool. For this particular task, we recorded only one misclassification in over 100 runs, 

which was due to very high brightness (white image). 
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Figure 2: Unsupervised robot sorting implementation. 

 

4.2. Robustness Evaluation And fine Tuning Of The Clustering Pipeline  

4.2.1. Dataset  
 

To test the robustness of the URS application, we build a challenging dataset for image 

clustering, composed of pictures of objects which can be found in industrial workstations. Objects 

are chosen from seven classes, and pictures of each objects are taken under five different 

background/lighting conditions (BLC). This dataset appears to be challenging for image-set 

clustering because of the BLC variations but also because some classes have low intra-cluster 

similarity (usb) and extra-cluster similarity between some classes is relatively high (pens/screws). 

For each object and each BLC, the dataset contains four pictures under different 

position/orientation. This is used to test the robustness to objects pose variation and to test the 

multi-view method in Section 5. 

 

The dataset statistics are summarized in Table 4 and sample images, illustrating the different 

objects and BLC, can be seen on Figure 3. The dataset, together with its description, can be 

downloaded at https://github.com/jorisguerin/toolClustering_dataset. 

 
Table 4: Dataset statistics (BLC stands for Background/Lighting Conditions). 

 

 

 

 



International Journal of Artificial Intelligence and Applications (IJAIA), Vol.9, No.2, March 2018 

91 

 

 

 

For further evaluation of the robustness to lighting conditions, we computationally modify the 

brightness of the pictures under conditions 2 only. Example images with the applied 
 

Figure 3: Sample images from the robustness validation dataset. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Example images of the 5 artificial brightness conditions used to test  

different pipelines robustness. 

 

brightness filters can be visualized on Figure 4. This allows to isolate the influence of brightness 

in the clustering results. 

 

Then, for each BLC, we create a clustering problem by sampling one image (i.e. one 

position/orientation) for each object. To evaluate the 10 remaining pipelines (5 CNN architectures 

and 2 clustering algorithms), we sample 1000 clustering problems as explained above and try to 

cluster them with each of the pipelines. These experiments are used to choose the most robust 

clustering routine for our application. 

 

4.2.2. Results  
 

Results from the above experiments are reported in both Tables 5 (physical BLC variation) and 6 

(artificially modified brightness). Reported results are the averages over the 1000 runs. Both 

tables show that agglomerative clustering always present better results than KMeans. Also, 
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Inception-like architectures tend to outperform their competitors, particularly Xception, which 

outperforms all the other CNN architectures for every clustering algorithm and every BLC. 

Based on these result, we choose Xception + AC as our full vision pipeline. This clustering 

routine is used in the next section in a framework making use of redundancy of images to 

improve URS robustness. The chosen pipeline seems to be robust to reasonable changes in 

lighting conditions (Dark and Bright) but its performances start to decrease when the brightness is 

really high or low. This makes sens as it also becomes difficult for a human to identify these 

objects. On the other hand, background changes seem to have a more important impact on the 

clustering results. Indeed, BLC4 shows much lower results than other BLC. This might come 

from the fact that the background in BLC4 contains geometric shapes (lines, circles) which are 

distractors for the network. 

 
Table 5: Clustering results for different CNN architectures and clustering algorithms on the tool clustering 

dataset. NMI scores are in black and cluster purity in blue, italics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Clustering results for different CNN architectures and clustering algorithms for different artificially 

modified lighting conditions on the BLC2 subset. NMI scores are in black and cluster purity in blue, italics 

. 
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5. INCREASE ROBUSTNESS USING MULTIPLE VIEWS 
 
In the previous sections, for each object, we only use one image. However, URS deals with 

physical objects and does not need to be limited to single-image clustering. Using multiple views 

can increase the performance of the application by using redundant and complementary 

information. Hence, we propose a multi-view clustering method to solve the URS problem more 

accurately. 

 

5.1. Multi-view clustering using Ensemble-clustering  

 
Let Ω = {Ω1,...Ωn} be the set of n objects to cluster. For each object Ωi, let ωi = {ωi,1,...ωi,mi} be 

the set of mi views representing it. And let C denote the clustering pipeline chosen from the 

previous experiments (Xception + AC). The proposed MultiView Ensemble Clustering (MVEC) 

method, inspired by [36], goes as follows. For each object Ωi, we randomly select one image ωi,j. 

Then, we cluster the new image set using C, the cluster assignments (partition) generated, is 

denoted Pk. This procedure is repeated N times and we note P = {P1,...PN} the set of N partitions. 

Once the N partitions have been generated by randomly sampling images in each ωi, MVEC must 

find a consensus partition P∗, maximizing the agreement between the different partitions. In this 

paper, we choose an approach based on objects co-occurrence to compute P∗. Since we deal with 

unsupervised classification, there is no correspondence between the class assignments of the 

different partitions of P. To avoid this problem, we use an intermediate representation of P, called 

the co-association matrix: CA. CA is a n×n matrix which entries are defined by 
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where Pt(Ωi) is the label associated with object Ωi and generated by partition Pt, and δ(a,b) is the 

Kronecker symbol, which is 1 if a = b and 0 otherwise. Entry (i,j) of CA measures how many 

times objects Ωi and Ωj have been classified together by the different partitions. Finally, let C∗ be 

any connectivity-based clustering algorithm. For instance, C∗ can be variants of agglomerative 

clustering or spectral clustering. The consensus partition is obtain by applying C∗ using CA as the 

precomputed similarity measure between objects. 

 

 

 

 

A schematic representation for the MVEC pipeline can be found in Figure 5. In our 

implementation, image sampling for partition generation is uniform, C∗ is agglomerative 

clustering and the number of partitions generated is N = 1000. 

 

5.2. Results 

 
The results using MVEC with the clustering pipeline chosen above are reported in Table 7. 

MVEC consistently performs significantly better than the corresponding single view approach 

(written in parenthesis in Table 7 as a reminder). It is more robust to poor background (BLC4) 

and lighting (Very bright) conditions. 

 

The excellent results obtained by MVEC were expectable. Indeed, by increasing the number of 

views, we introduce complementary information available for clustering. MVEC 

 

 

 

 

 

 

 
 Figure 5: Proposed MVEC approach to use multiple views of each object. 

 

 

 

  

 
Figure 5: Proposed MVEC approach to use multiple views of each object. 

 

is naturally more robust to the unlucky event of selecting a poor view. Robustness to poor 

lighting conditions also makes sense as light comes from a certain direction and there are always 

better angles to observe the objects. Moreover, the same object, observed from different angles, 

can look very different, hence, by increasing the number of views, we also make more likely the 

event of having similar images for similar objects. 

 

Regarding computation time, although MVEC takes longer, this time can be drastically reduced 

by parallelizing both the partition generation process and the co-association matrix computation. 
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Table 7: Clustering results of MVEC for different BLC. For comparison, we remind the corresponding 

results using single views, in parenthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. CONCLUSION 
 

6.1. Conclusive remarks  

 
In this paper, we introduced a new kind of robotics pick-and-place application, called 

Unsupervised Robotic Sorting, which consists in physically grouping together previously unseen 

objects in a way that makes sense at a human level. We propose an implementation in which 

objects are represented by images and the unsupervised classification module is composed of a 

pretrained Xception feature extractor and Agglomerative Clustering. This pipeline was shown to 

be good through experiments on several public datasets, as well as a specifically created 

robustness testing dataset. This approach is shown to work in a practical implementation, in a 

real-world industrial environment. 

 

The robustness testing dataset, which is challenging for image-set clustering, is made publicly 

available to help other researchers to test their image clustering algorithms. We also show, 

through further experimentation on this dataset, that using multiple images for each object can 

increase URS performance. By embedding the chosen image clustering pipeline into a co-

association ensemble clustering framework, we obtain more accurate and more robust clustering 

results. 

 

6.2. Future working directions  
 

The proposed approach to solve URS demonstrates good results and is very encouraging. 

However, we have also shown that URS would benefit from using multiple views. Future work 

will consist in implementing such multi-view URS on a real robot. To do so, we first need to 

solve another problem of view selection. We have already started to investigate the question of 

autonomous optimal view selection [55], by training a neural network to predict the camera pose 

which is best suited for clustering. Further developments will consist in combining this approach 

with the multi-view framework proposed in this paper. 

In this paper, the focus is placed on the decision making module of the autonomous sorting 

application. For this reason, the scene segmentation, data gathering and grasping were simple 

fixed modules. Now that the intelligent unsupervised sorting module has been shown to work, it 
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will be interesting to include it in a more complete pick-and-place pipeline, which handles 

automatic scene segmentation and robotic grasp detection. 
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