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ABSTRACT 

This paper aims at evaluating the performance of various emotion classification approaches from 

psychophysiological signals. The goal is to identify the combinations of approaches that are most 

relevant for assessing human affective states. A classification analysis of various combinations of feature 

selection techniques, classification algorithms and evaluation methods is presented. The emotion 

recognition is conducted based on four physiological signals: two electromyograms, skin conductivity 

and respiration sensors. Affective states are classified into three different emotion classes: 2-category-

class (Arousal), 3-category-class (Valence) and 5-category-class (Valence/Arousal). The performance of 

the various combinations of approaches is evaluated by comparing the resulting recognition rates. For 

all the category-classes, the best results are obtained when considering skin conductivity combined with 

the respiration signals. Highest rates when fusing all physiological channels resulted when applying the 

SFS feature selection, the LDA classifier and the normal split evaluation approach, showing a robust 

combination of approaches leading to good performance. 
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1. INTRODUCTION 

Assessing individual human’s emotions can be useful in many scientific areas. Amongst these 

areas are the healthcare and educational fields, mobile and driving applications and the 

development of cognitive intelligent systems such as companion, prevention or elderly support 

systems. In order to approach such intelligent applications, one of the important prerequisites is 

to develop a reliable emotion recognition system, which can guarantee acceptable computational 

accuracy and adaptability to practical applications.  

Human affective states can be assessed based on the analysis of various modalities. Several 

studies on emotion recognition including facial expression, speech, body gestures, contexts and 

physiological signals have been performed in the past few decades [1,2,3]. Among these 

different modalities, psychophysiological signals have various considerable advantages in 

assessing human affective expressions. For instance, as honest signals, they are considered as 

the most reliable for human emotion recognition as they cannot be easily triggered by any 

conscious or intentional control [4].  

Various feature extraction and selection optimization approaches, classification algorithms, and 

evaluation methods are currently been used for the emotion recognition from 

psychophysiological data in recent years [5,6,7]. To adapt to the fast-changing technologies and 

recent applications, automatic recognition algorithms have been also applied to different 

psychophysiological signals in order to efficiently compute and classify human’s affective states 

[8,9]. Thereby, a variety of emotional models have been employed to describe the emotional 
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space for the affect recognition based on discrete and dimensional models. Subsequently, 

emotion classification based on psychophysiological signals, allows suitable categorization of 

the affective states, for instance in terms of valence, arousal and dominance (low / high) 

subspaces [10,11].  

Methods to induce various emotional states have been also developed and applied in different 

ways, including standardized images as induction stimuli, film-based induction to evoke 

affective and emotional changes, sounds, voices and music stimuli, posed depictions of emotion 

using facial expressions, bodily movements and posture, revitalization of experienced emotional 

situations (e.g. imagining the future, remembering the past or creating fictitious imaginings), 

physiological manipulations (e.g. through pharmacological means) or affective connotations in 

terms of evocative words [12,13,14,15]. Amongst all the emotion induction methods, visual 

induction stimuli can be easily categorized in terms of emotional content and are well controlled 

with regard to the size and duration of the material. Being also easy to integrate within 

experimental setups, standardized picture stimulus material is therefore often used for the 

elicitation of various human affective-states.  

In the following, we present a classification analysis for the human emotion recognition from 

psychophysiological signals. The aim of the study is to evaluate the performance of various 

combinations of emotion classification approaches in order to understand and identify the 

approaches that are most reliable for identifying different emotional states. The emotion 

induction is based on standardized image stimuli. The application of various combinations of 

feature selection techniques, classification algorithms and evaluation methods is thereby 

investigated and the results are evaluated and compared in terms of classification rates. 

2. METHODS 

2.1. Subjects Description 

The dataset used in this study is based on subjects previously recruited via bulletins distributed 

on the campus of the University of Ulm. The total sample size was n= 107 subjects (74 women, 

33 men) between the age of 20 and 75 years old. Seven subjects had to be excluded from the 

study due to technical problems and missing data, so that the final number of subjects left and 

considered in this study is n= 100 subjects. All subjects were right-handed, healthy and had 

normal vision or corrected normal vision. 

2.2. Emotion Elicitation 

Emotion induction was conducted using standardized stimuli from the International Affective 

Picture System (IAPS) and extended by the Ulm Picture Set [16] to represent the VAD 

(Valence, Arousal, Dominance) space [17]. Both picture systems allow a dimensional induction 

of emotions according to their ratings in the valence, arousal and dominance dimensions [17]. 

The experimental design is thereby based on a previous experiment [6], adapted to stimulate 

prolonged emotion induction. Prolonged presentations consisting of 10 pictures with similar 

rating à 2s each (total of 20s per presentation) are used to intensify the elicitation [18]. A total of 

10 sets of these picture-presentations à 20s each were presented to induce a total of 10 different 

VAD-states. Thus, the induced VAD-space for the 10 sets of picture-presentations included 

combinations of positive/negative/neutral (+/-/0) Valence (V), positive/negative (+/-) Arousal 

(A), and positive/negative (+/-) Dominance (D) values. In order to neutralize the user’s affective 

state between 2 different sets of presentations, 20s of neutral fixation crosses were introduced as 

baseline inbetween. In total, 100 pictures were used for the emotion induction. While the order 

of pictures in each presentation-set was fixed, the display of the 10 sets was randomized.  
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In terms of classification, picture-presentation with similar ratings in terms of Arousal (+/-) 

and/or Valence (+/-/0) and/or Dominance were combined into one category. In this study, we 

defined and evaluated three different category-classes presented in Table 1. 

Table 1.  Overview of the three different category classes used for the evaluation. 

2-category-class    Arousal A: + / -  

3-category-class   Valence V: + / - / 0 

5-category-class    VA: 0- / ++ / -+ / +- / --  

 

2.3. Physiological Signals 

The physiological signals analyzed in this study were acquired via electrodes connected to the 

subjects. They  include: 

Skin Conductivity (SC):  

Two electrodes connected to the sensor were positioned on the index and ring fingers. Since the 

sweat glands are innervated sympathetically, electrodermal activity is a good indicator of the 

inner tension of a person. 

Respiration (RSP):  

The respiration sensor was used to measure the abdominal breathing frequency, as well as the 

relative depth of breathing. It was placed tight enough in the abdominal area just above the 

navel. 

Electromyography (EMG):  

Electrical muscle activity is related to the activity of the sympathetic nervous system. We used 

two-channel electromyography signals for the zygomaticus major (Zyg.) and the corrugator 

supercilii, (Corr.) muscles, which are expected to be active during different emotions. 

2.4. Data Processing 

The processing of the physiological biosignals includes the pre-processing of the raw data, the 

feature extraction and the emotion classification. These steps are described in the following 

subsections. 

2.4.1. Pre-Pocessing 

The raw data were first pre-processed by extracting the relevant signals and picture-sessions 

from the whole dataset. Then, the extracted data were further processed and prepared to meet 

the AuBT (Augsburg Biosignal Toolbox) file format requirements [19]. The toolbox provides 

tools to analyze physiological signals for the emotion recognition [20]. It is used in this study 

for the later signal processing and analysis including the feature extraction and feature selection 

as well as the emotion classification and the evaluation analysis. For the application of these 

pre-processing steps and for the optimization of the quality of the signals, various automation 

scripts and filtering techniques were additionally composed and implemented as Matlab-based 

functions. 

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.9, No.4, July 2018

33



2.4.2. Feature Extraction and Emotion Classification 

In the next step, the AuBT toolbox was used to extract features from the physiological signals 

including skin conductivity and respiration, as well as the electromyography signals, EMG 

corrugator and EMG zygomaticus. All acquired signals were thereby examined both 

individually as well as in various combinations among each other. For each of the resulting 

signal configuration, the selection of the features was optimized and the resulting selected 

features were used to train and evaluate a classifier. Feature selection was thereby optimized 

using the Sequential Forward Selection (SFS) and the Sequential Backward Selection (SBS) 

algorithms. As classification methods, the k-Nearest-Neighbors (kNN) and the Linear 

Discriminant Analysis (LDA) models were adopted. Finally, the classifiers were evaluated 

using three different evaluation methods including the normal split, the random split and the 

one-leave-out methods.  

Each of the mentioned approaches was executed using various combinations of strategies and 

parameters: The SFS and SBS feature selection algorithms were tested using both “break” 

(stops as soon as increasing SFS or decreasing SBS results in a feature set, that has a lower 

recognition rate) and “best” (picks the subset consisting of the first n features – n<20 with the 

highest recognition rate) strategies. The kNN classifier was applied using k closest training 

samples in the feature space, with k varying between 3 and 8 nearest neighbors. On the other 

hand, the statistical LDA classifier requires no parameter input and was used with no variation. 

In addition to the feature selection, feature reduction based on the Fisher transformation was 

also applied and the recognition rates are compared to the classification results without 

reduction of dimensionality (Fisher vs. none).  

As for the classifier evaluation methods, the normal split and random split methods were 

applied using both x= 0.75 and x= 0.90 parameters; In the normal split, the first x(%) of the 

samples are taken for training and the rest for testing, while in the random split, x(%) of the 

samples are taken for training and the rest for testing but the data are divided randomly. Further, 

in the random split method, the procedure is repeated iter times and the average recognition rate 

of all runs is calculated. The iter parameter was set to both 10 and 20 iterations. Finally, the one 

leave out method was applied with no variation, using only one sample at a time for testing and 

the rest to train the classifier. This is repeated for each sample and the final result is the average 

of all runs. 

The presented choice of signal combinations, feature extraction and selection approaches as 

well as the classification techniques and evaluation methods adopted here are based on a pre-

selection from a previous study [21]. In Zhang et al. we conducted a preliminary explicit 

analysis of various approaches and their combinations in order to evaluate their efficiency in the 

emotion recognition process [21]. For the present analysis, we only adopt the approaches which 

best performed in the previous study. Therefore we exclude ANOVA feature selection from the 

feature selection methods and the multilayer perceptron (MLP) neural network from the 

classification algorithms as these did not show advantageous results compared to the other 

approaches. 

An overview of all the used physiological signals, feature selection techniques, classification 

algorithms, and evaluation methods is presented in Table 2. 
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Table 2  Overview of all used physiological signals, feature selection, classification and 

evaluation approaches. 

 Physiological Signals 

 - Skin Conductivity (SC) 

 - Respiration (RSP) 

 - SC & RSP 

 - EMG-Corr  

 - EMG-Zyg 

 - EMG-Corr & EMG-Zyg 

 - ALL signals combined 

 Feature Selection 
 - Sequential Forward Selection (SFS) 

 - Sequential Backward Selection (SBS)  

 Classification Algorithms 
 - k-Nearest-Neighbors (kNN)  

 - Linear Discriminant Analysis (LDA)  

 Evaluation Methods 

 - Normal Split 

 - Random Split 

 - One-Leave-Out 

 

3. RESULTS 

For each category-class, the classification rates result from two feature selection approaches 

(SFS and SBS), four classification approaches (LDA-none, LDA-Fisher, kNN-none and kNN-

Fisher) combined with seven evaluation approaches (normal split 0.75, normal split 0.9, random 

split 0.75 10, random split 0.9 10, random split 0.75 20, random split 0.9 20 and one leave out). 

This is conducted for each of the seven signal configurations (SC, RSP, SC & RSP, EMG-Corr, 

EMG Zyg, EMG-Corr & EMG Zyg, ALL signals combined). Empty fields in the following 

tables were not obtained due to execution errors in the combination of the associated algorithms. 

3.1. Results of the 2-category-class (Arousal) 

For the 2-category-class (A: +/-), the range of classification rates varies from 36.3% to 65%. 

The highest recognition rate of 65% is obtained when including respiration and skin 

conductivity signals in the analysis. This result is obtained using the SBS feature selection, the 

LDA-none classification algorithm and the normal split 0.75 evaluation method. Considering all 

physiological signals results in a comparable recognition rate of 64.5%, using the SFS feature 

selection, the LDA-none classification and the normal split 0.75 evaluation method. 

Considering only a single physiological channel in the 2-category-class, the respiration signal 

seems to best contribute to the performance, with a classification rate of 64.6% obtained using 

the SBS feature selection, kNN-none classifier and the normal split 0.9 evaluation method. The 

least recognition rate of 36.3% is obtained -similar to the best recognition rate- when including 

respiration and skin conductivity signals in the analysis, and using the SBS feature selection and 

the normal split 0.75 evaluation method. However, the difference is in applying the LDA-Fisher 

instead of the LDA-none classification.  

An overview of all classification rates obtained for the 2-category-class of Arousal is 

summarized in Table 3. 
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Table 3  Results of the 2-category-class (Arousal) classification. Best & 2nd best rates are 

marked in red & orange, respectively. 

 

 

3.2. Results of the 3-category-class (Valence) 

For the 3-category-class defined by the valence dimension (V: +/-/0), the classification rates 

range from 14.8% to 45.7%. The performance is always better when fusing two or more 

physiological signals than considering single signal channels. The highest recognition rate of 

45.7% appears four times and seems to give a robust predication about the best performing 

methods for this category class for the differentiation of various valence states. This result is 

obtained when using both LDA-none and LDA-Fisher classification algorithms each combined 

with the SFS feature selection approach and the normal split 0.75 evaluation method. Further, 

this result is obtained for the skin conductivity signal combined with the respiration signal 

channels as well as when fusing all physiological signals together. The least recognition rate of 

14.8% is obtained when only considering the skin conductivity signal channel and applying the 

LDA-Fisher classification algorithm combined with the SFS feature selection approach and the 

one-leave-out evaluation method.  

An overview of all classification rates obtained for the 3-category-class of Valence is 

summarized in Table 4. 
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Table 4  Results of the 3-category-class (Valence) classification. Best & 2nd best rates are 

marked in red & orange, respectively. 

 

 

3.3. Results of the 5-category-class (Valence/Arousal) 

For the 5-category-class defined by the valence and arousal dimensions (VA: 0-/++/-+/+-/--), 

the range of classification rates varies from 16% to 36%. We obtained the highest recognition 

rates of 36% when combining the skin conductivity signal with the respiration signal. This is 

obtained using the SBS feature selection approach with the kNN-Fisher classification algorithm 

and the normal split 0.9 evaluation method. Fusing all physiological signals together, resulted in 

a recognition rate of 32.4%. This was obtained using the SFS feature selection approach and the 

LDA-none classification algorithm combined with the normal split 0.75 evaluation method. 

When considering only single channels, the performance is always below 30%, which is below 

the rates obtained when fusing two or more signal channels. The least recognition rate of 16% is 

obtained when only considering the EMG-Corrugator muscle signal and applying the LDA-

Fisher classification algorithm combined with the SFS feature selection approach and the 

normal split 0.9 evaluation method.  

An overview of all classification rates obtained for the 5-category-class of Valence and Arousal 

is summarized in Table 5.  

International Journal of Artificial Intelligence and Applications (IJAIA), Vol.9, No.4, July 2018

37



Table 5  Results of the 5-category-class classification. Best & 2nd best rates are marked in red 

& orange, respectively. 

 
 

4. DISCUSSION 

Overall, the classification results show recognition rates of up to 65%, 45.7% and 36% obtained 

for the 2-category-class, 3-category-class and 5-category-class, respectively. For all the 

category-classes, the best results are obtained when considering skin conductivity combined 

with the respiration signals. However, including all the signals resulted in very comparable 

highest rates of 64.5%, 45.7% and 32.4% for the 2-category-, 3-category- and 5-category-

classes, respectively. All three best rates for ALL signals combined are obtained using the SFS 

feature selection, the LDA classifier and the normal split evaluation method, showing a robust 

combination of approaches leading to the best performance. Table 6 summarizes the 

combination of approaches resulting in the best recognition rates and thus presenting the highest 

performance in terms of classification rates. The results are illustrated for all the three different 

category-classes and for all signal configurations defined and investigated in this study. 

Although the best recognition results are above the probability for random hits due to chance 

(50%, 33.3% and 20%, respectively) the highest rates present only a satisfactory result. Also 

large deviations within the results of each of the category-classes could be observed. The 

resulting least classification rates of all category-classes are all obtained with the LDA-Fisher 

classification, that is, when the feature reduction technique using the Fisher transformation is 

applied. Especially for the 2-category-class of Arousal, the least recognition rate of 36.3% is 

observed using the SBS feature selection, the LDA-Fisher classification and the normal split 

0.75 evaluation method, for the skin conductivity combined with the respiration signals. This 

finding is interesting because the highest classification rate for the 2-category-class is obtained 

using exactly the same combination of approaches, but without the Fisher transformation. This 

result reminds us that high caution must be taken when reducing the dimension of the original 
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data in order to decrease the execution time and space complexity. While transforming the high 

dimensional data into low dimensional data, some important information will be lost. The 

results we obtained show that the Fisher transformation is not suitable in all cases and that other 

feature reduction techniques (e.g. Principal Component Analysis (PCA)) should be further 

investigated on their performance. 

Further, the respiration channel seems to best contribute to the classification rates of the 2-

category-class. This can be explained by the fact that respiration is quite sensitive to the level of 

arousal, which means people breathe fast and deep when they are highly aroused. On the other 

side, the EMG-zygomaticus signal seems to make the least contribution on the classification 

performance compared to the other physiological signals. Compared to the single channels, 

multi-channels recognition, combining two or more signals, shows advantageous classification 

performance. This finding is reasonable and consistent with current researchers’ results. 

Table 6.  Approaches with the highest performance in terms of classification rates. 

 
 

5. CONCLUSION 

In this study, we present a classification analysis using various combinations of approaches and 

physiological signals for different emotional category classes. The goal was to evaluate the 

performance of those approaches in terms of classification rates for the recognition of human 

affective states. Highest rates obtained when fusing all physiological signals resulted when 

applying the SFS feature selection, LDA classifier and normal split evaluation method, showing 

a robust combination of approaches leading to the best performance. On the other hand, the 

Fisher transformation seems to be not always advantageous for the performance rates. In future, 

further analysis could include other classification algorithms, such as support vector machine, 

random forest or Bayesian classifiers to obtain higher and more stable results. Also an extensive 

feature analysis could also be performed to investigate the effects of individual features on the 

classification performance. 
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