
International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

DOI : 10.5121/ijasuc.2012.3305 67

 A NOVEL THIN CLIENT ARCHITECTURE WITH

HYBRID PUSH-PULL MODEL, ADAPTIVE DISPLAY

PRE-FETCHING AND GRAPH COLOURING

Sumalatha.M.R
1
 Sridhar S

2
 Satish G

3

Department of Information Technology, Madras Institute of Technology, Anna

University, Chennai
{sumalatha.ramachandran,ssridhar2802,grn.satish}@gmail.com

ABSTRACT

The advent of cloud computing has driven away the notion of having sophisticated hardware devices for

performing computing intensive tasks. This feature is very essential for resource-constrained devices. In

mobile cloud computing, it is sufficient that the device be a thin client i.e. which concentrates solely on

providing a graphical user interface to the end-user and the processing is done in the cloud. We focus on

adaptive display virtualization where the display updates are computed in advance using synchronization

techniques and classifying the job as computationally intensive or not based on the complexity of the

program and the interaction pattern. Based on application, the next possible key-press is identified and

those particular frames are pre-fetched into the local buffer. Based on these two factors, a decision is

then made whether to execute the job locally or in the cloud or whether we must take the next frame from

the local buffer or pull it from server. Jobs requiring greater interaction are executed locally in the

mobile to reduce interaction delay. If a job is to be executed in the cloud, then the results of the

processing alone are sent via the network to the device. The parameters are varied in runtime based on

network conditions and application parameters to minimise the interaction delay.

KEYWORDS

Cloud Computing, Mobile devices, Thin clients, Virtualization, Remote display

1. INTRODUCTION

The user’s perspective on what can be done with a mobile device is changing. Not long ago, the

mobile devices were used just for the purpose of making phone calls and sending messages.

Users now need the complete graphic rich content rendered in their mobile device giving them

just as much experience as they would get in a fixed device like PC. The processing powers of

servers are increasing according to Moore’s law and the bandwidth of wireless links have also

improved with technologies like 3G, LTE. This has led to the development of a number of thin

client solutions. A thin-client computing system consists of a server and a client that

communicate over a network using a remote display protocol. The protocol allows graphical

displays to be virtualized and served across a network to a client device, while application logic

is executed on the server. Using the remote display protocol, the client transmits user input to

the server, and the server returns screen updates of the user interface of the applications from

the server to the client. The thin client remote computing displays are expected to be responsive

to the clients as if they are local machines. However, the complicated graphical interfaces and

multimedia applications present technical challenges to thin client developers for achieving

efficient transmissions with low bandwidth links. The main concern however though is the

Interaction Latency.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

68

Table 1. Requirements

Functional Requirement 1. The client should be able to access his

resources in the cloud.

2. The display rendering should be done in the

server side.

3. Access control mechanisms must be setup.

Non-functional Requirement 1. Interaction delay must be less than 2 ms.

2. Frame rate shouldn’t drop under low

bandwidth conditions.

Hardware Requirement Server side:

1. Multi-core processors supporting

virtualization

Client side:

1. Relatively thin clients suffice.

2. It should be able to access the internet.

Software Requirement Server side:

 Hypervisors:, vmware.

 Monitoring: ganglia.

Client side:

 Thin client session software.

Mobile and cloud computing have emerged as the new computing platforms and are converging

into a powerful cloud mobile computing platform. In a virtualized screen, screen rendering is

done in the cloud, and delivered as images to the client for interactive display. This enables

thin-client mobile devices to enjoy many computationally intensive and graphically rich

services. Hence, one can access even the most demanding applications in the cloud from

intrinsically resource-constrained mobile devices by physically separating the user interface

from the application logic. Table 1 gives the general requirements of the thin mobile client

system.

2. RELATED WORK

Reference [1] summarizes the solutions that have been proposed to tackle the main issues

associated with remote display systems such as battery life time, wireless bandwidth

availability. Optimal selection wireless network interface card sleep times to maximize the

energy efficiency in thin clients have been studied [2]. Motion based differential encoding for

transmitting only the essential information over the limited available wireless bandwidth has

been studied [3]. Reference [5] ensures availability of virtual resources by immediate

instantiation of VMs in a resource rich server or cloudlet accessing over wireless LAN.

Reference [6] discusses the rendering of graphical intensive content in thin clients with end to

end streaming, rate control policies and buffer management mechanisms. Reference [7]

proposes a system where a cluster of PCs, equipped with accelerated graphic cards managed by

Chromium software, is able to handle remote visualization sessions based on MPEG video

streaming involving complicated 3D models. Reference [8] virtualizes the entire personal

environment on server. They have also added diverse functions intended to adjust the balance

of load on virtual PCs, as well as improve operability.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

69

Limitations with existing system:

The operational time of mobile devices is often limited when extensively used. These battery

capacity shortcomings result in short recharge cycles and refrain users from relying completely

on their mobile device. Over the last decade, the advances in nominal battery capacity have

been modest. Consequently, extending device autonomy should primarily be realized by making

the device itself more energy efficient.

Compared with fixed access networks, bandwidth availability on modern broadband mobile and

wireless technologies is limited, variable and expensive. Typically, UMTS users receive up to

384 kbps, practical throughputs of 347 kbps for LTE and up to 6.1 Mbps for WiMAX.

Moreover, the actual throughput will vary due to user mobility and interference and fading

effects. Besides technological limitations, economical considerations drive the demand for

highly efficient remote display compression technologies. More and more, users are confronted

with volume based subscription plans and hence will not tolerate any redundant byte to be sent

on the network.

Interaction latency, i.e. the delay a user experiences between generating some user input and

having the result presented on his display, is key challenge of mobile cloud computing. Whereas

bandwidth limitations are likely to disappear with technological advancements, interaction

latency is an intrinsic key challenge of mobile cloud computing because even the most trivial

user operations need to be communicated to the server.

3. SYSTEM DESIGN

3.1. Overview of the Thin Client Architecture

The system is architected as a coordinator-assisted server cloud, comparable to systems

deployed today by infrastructure service providers. The overall architecture of the system is

depicted in Figure 1. It is composed of a coordinator, a group of clusters comprised of nodes

connected in a LAN, a storage server infrastructure within a cluster, and a number of external,

heterogeneous clients through which users access the system. The coordinator acts as a broker

that allocates the best cluster based on the requests from clients across the Internet. The back-

end compute servers host completely virtualized environments within which the computing

sessions of our users run. The network storage server infrastructure is used for all persistent file

storage. The clients are merely inputting and outputting devices connected to the cloud

providers across the Internet.

Users interact with our sessions through a thin-client session viewer, a simple device or

application that relays the user’s input and the session’s output between the client and the server

through a secure channel. Each user in the system is issued credentials by the coordinator to

connect to the cloud. The user gets a complete set of operating system resources. The cloud

setup is multitenant and the resources and data of each of the clients are isolated from each

other. Multiple users can share sessions with credentials. This gives the ability to access remote

sessions of any client from anywhere. Sharing of data can also be done by copying the data into

the respective user sessions.

The thin clients behave just like the normal clients but the display they must render is computed

in the cloud. The client software just transfers the user input to the cloud. Thus in the client

side the display is virtualized and in the cloud side, the user input is virtualized and behaves as

though the user actually keyed it in that system. Hence, it is easily compatible with the existing

systems and applications needn’t be modified.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

70

The system follows a push pull model. The clients can request for the next display update from

the server (pull) and the server can also compute display updates in advance and stream it to

client (push). Pull is used in interactive processes and push is used when idle time during

interaction is more. Pull methodology is generally not used much because they add to the

additional network latency.

In the thin client architecture, a mechanism is devised to minimise the interaction latency due to

network limitations like computing display updates in advance.

Figure 1. Architecture of coordinator assisted Mobile cloud computing system

3.1. Methodology Proposed

The system uses a display update pre-fetching mechanism similar to [6] to minimize the

interaction latency in the system. The idea is to have all possible states that the user can

go to during the next step available on the client side. This makes use of the fact that,

the idle time in the client side is generally high and the updates can be conveniently

pushed into the thin client. At the server side, the application decides what display

states will be requested to the rendering engine based on the application metadata. For

example if there are ‘n’ possible key presses all possible display updates are computed

by the cloud and the frames are sent. Only the first frame is sent fully, and the

successive frames are sent only in the form of differences from the previous frame since

there won’t be significant differences in adjacent states. The server side components

will also issue priorities to each of these states and higher priority states are buffered

first. A graph is constructed in the server side with sophisticated machine learning

techniques to predict the next key press and assign a high priority to it. The neighbour

of any node in a graph is the next possible state to which we can move from the current

state. The states are numbered by a sequence number so that they needn’t be

transmitted again in case it is present locally in the buffer in the client side.

The system employs a job classification scheme with which, small jobs are processed

locally, and computationally intensive tasks are submitted to the cloud. The rendering

and display are also adaptive. If the bandwidth of the wireless link is low, then the

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

71

resolution is scaled down having fixed frame rate instead of having high resolution and

lower frame rates.

We have also applied Graph colouring algorithm for allocation of the pre-fetched frame

in buffer. Buffer allocation is extremely important as the gap between memory latency

and network latency widens. We construct a graph such that every vertex represents a

unique frame in the thin client. Interference edges connect pairs of vertices which are

live at the same time, and preference edges connect pairs of vertices which are involved

in move instructions. Frame allocation in the buffer can then be reduced to the problem

of K-coloring the resulting graph, where K is the number of chunks of memory

available on the target architecture where a chunk represents the maximum possible size

of frame. No two vertices sharing an interference edge may be assigned the same color,

and vertices sharing a preference edge should be assigned the same color if possible. As

graph coloring in general is NP-complete, so is frame allocation.

Figure 2, shows the sequence of steps involved in client and server side. Based on the

user input, if the next frame exists in the buffer, it is taken from the local buffer else

retrieved from the server. In the server side, the display updates are captured, encoded

and sent to the client as shown.

Figure 2. Flow diagram indicating the sequence of steps involved in the cloud provider and the

client side.

Server:

Module serverSidePush

Input: user session request.

Output: Pushing updated data to client thereby keeping the client synchronized with the cloud.

Module priorityCompute

Input: Current Job j

Output: Highest priorityKeypress

 Lookup application metadata or learn next possible keypress from the user to compute

highest priority keypress

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

72

Module: ContentEncoder

Input: Two successive frames.

Output: Encoding of second frame.

1. Check for differences between two successive frames.

2. If(there is no difference between two frames)

Skip the frame from transmitting.

3. Else

Use Block classification and entropy coding to localize the different block and transmit that

block alone with the corresponding frame sequence number.

Module: UserInputTransform

Input: key press interrupt

Output:TransformedInput

Map the entered input with the corresponding transformed input from the lookup table.

Client

Module: Job submission agent

Input: Job j

Output: 0 if job not submitted successfully

 1 if job is in the local execution queue.

 2 if job is submitted to the cloud.

1. If(jobqueue full)

Wait()

 Else

Classify the job as computationally intensive or less intensive

If(job = intensive)

 Execute job locally.

Else

 Dispatch the job to the cloud.

Module: DisplayUpdate

Input: Job j

Output: Rendering of the frames on client’s device

1. If dataFlowModel == PULL

 If(prefetched frame available)

 Render it in the client screen.

 Else

 Request the server for new frame.

2. If dataFlowModel == PUSH

 If(message available in push queue)

 Perform an incremental update on the screen with the help of metadata.

Module: dataFlowModelSelect

Input: Two adjacent frames fk, fk+1 where each frame is an m X n array of pixels.

Output: 0 if job is executed by pull model

 1 if job is executed by push model.

1. For every time period τ

 For each i in m

 For each j in n

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

73

 Diff = Diff + f(fk(i,j),fk+1(i,j))

(where f(A, B) = 1 if two pixels are same, 0 otherwise.)

 If Diff > Threshold

 dataFlowModel = PULL

 else

 dataFlowModel = PUSH

Module: Graph colour

Input: Frame Occurence Graph

Output: Frames allocated correspondingly in buffer

Use breadth first search to determine the frames which will be alive at the same time.

• For every node n in CFG, we have out[n]

– Set of temporaries live out of n

• Two variables interfere if

– both initially live (ie: function args), or

– both appear in out[n] for any n, or

– one is defined and the other is in out[n]

find a node with at most K-1 edges and cut it out of the graph, push it to stack

When the simplified subgraph has been colored, add back the node on the top of the stack and

assign it a color not taken by one of the adjacent nodes.

once all nodes have K or more neighbors, pick a node for spilling using heuristics

– Storage on the stack

rewrite code introducing a new temporary; rerun liveness analysis and frame allocation

4. PERFORMANCE EVALUATION

4.1. Mathematical Analysis

Response time in Pull model=Propagation time + Processing time.

 Tr = ((α · Old_RTT) + ((1 − α) · New_RTT_sample))*(s1+s2)/B + δ (1)

where B is the Bandwidth in Bytes per second.

s1 is the size of the request packet.

s2 is the size of the response content.

δ is the processing time.

Response time in Hybrid Push Pull model

 Tr=(P*τb) + (1-P)((α · Old_RTT) + ((1 − α) · New_RTT_sample))*(s1+s2)/B + δ) (2)

 where P is the probability of buffer hit.

 τb is the time taken to retrieve from the local buffer.

The value of P should be maximum for minimum latency. Consider a priority based pre-

fetching scheme consisting of ‘n’ priorities {p1,p2…pn}. Assume there are m items in

each priority category.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

74

Time taken to transfer packets of priority p1,

 Tp1= (m*b)/B (3)

Where m is the no of data items of priority p1.

 b is the size of the data item.

Time taken to transfer packets of priority pn,

 Tpn =(n*m*b)/B

(4)

When an arbitrary request of priority pi arrives and the idle time of the client is Ti, the

probability that packet will be available in buffer is

 (5)

4.2. Experimental Design

The system is tested with one coordinator and 3 clusters each consisting of 5 nodes running

VMware hypervisors. The mobile devices connect to the cloud via the coordinator. The setup

time, interaction latency under various conditions is measured. The latency varies according to

the nature of the application. Two types of tasks are chosen for this purpose, one is an

interactive task such as a game and another task which requires relatively lesser interaction such

as switching between screens, pointing.

While creating multiple VMs for a single session, it is ensured that they’re mostly allocated in

the single node so that synchronization of VMs takes minimal time.

2.5. Results

Figure 3. The graphs show the variation in interaction latency with respect to the interaction

rate for both pre-fetching and non pre-fetching schemes. The non pre-fetching scheme has a

fairly constant latency whereas the pre-fetching scheme performs extremely well under low

interaction patterns since the next frames can be retrieved locally without much processing and

the latency increases rapidly with the interaction rate. This is because of the time required to

pre-fetch the pages exceed the inter-key-press time leading to poor performance under high

interaction rates. Thus the amount of pre-fetching that should be done must be varied according

to the interaction pattern.

Figure 4 gives the plot between the bandwidth of the wireless link and the frame rate of the thin

client displays for two buffer sizes 1 Mb and 2 MB. Since the successive frames are stored in

the buffer, the frame rate is limited by the size of the buffer. So, the frame rate cannot exceed

the threshold value which is determined by the buffer size.

If a frame to be displayed is available locally in the buffer, a buffer hit occurs and if a miss

occurs, the client needs to pull the update frame from the server. The presence of a frame in the

local buffer is dependent on the parameters like bandwidth and buffer size. If the bandwidth is

more, the server can push more number of frames by pre-computation within a given time

frame. Buffer size is also an important requirement to store the frames as and when they arrive

from the server side.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

75

Figure 3. The graphs show the variation in interaction latency with respect to the interaction

rate for both pre-fetching and non-prefetching schemes. The non-pre-fetching scheme has a

fairly constant latency whereas in pre-fetching scheme, the latency increases rapidly with the

interaction rate.

Figure 4. Variation of frame rate in the client’s display vs bandwidth for given buffer size.

Figure 5. 3d plot showing relationship between frequency of buffer misses, Bandwidth and size

of the buffer.

A combination of good bandwidth as well as buffer size is necessary for good performance.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

76

3. CONCLUSIONS

The integration of mobile and cloud has given an entirely new perspective on what can be done

using the simple handheld mobile phones. Users can share data, safeguard their data and access

it from anywhere with credentials, and run any applications which can run in a powerful

desktop computer over their mobile phones. Cloud offers SMS’s and all can be sent merely

through TCP by copying the message into the receiver’s address space. The idea presented in

this paper takes into the fact that the client has a high speed internet connectivity to push

advance updates during idle time. Future work is to render the display updates to users with

low-bandwidth connectivity. Also the pre-fetching module used consumes relatively high

battery power and methods to reduce the battery consumption should be looked upon. While we

create multiple virtual machines for client, instead of maintaining separate mirrored ram’s for

each VM, we can have a single copy and store the dirty pages particular VMs separately. This

could make synchronization easier and less resource consuming.

REFERENCES

[1] Baratto Ricardo A , Potter Shaya, Su Gong, Nieh Jason (2004) “MobiDesk: Mobile Virtual

Desktop Computing”, MobiCom '04 Proceedings of the 10th Annual International Conference

on Mobile Computing and Networking, pp. 1-15.

[2] Boukerche A, Pazzi R W N, Feng J (2008), “An End-To-End Virtual Environment Streaming

Technique for Thin Mobile Devices Over Heterogeneous Networks”, Computer

Communications, vol. 31, no. 11, pp. 2716–2725.

[3] Chee Yik Keong, Poo Kuan Hoong, Choo-Yee Ting (2011), “Efficient Hybrid Push-Pull Based

P2P Media Streaming System”, IEEE 17th International Conference on Parallel and Distributed

Systems (ICPADS), pp. 725-730.

[4] Giacomazzi P, Poli A (2010), “Push-Pull Techniques in Peer-To-Peer Video Streaming Systems

with Tree/Forest Topology”, International Congress on Ultra-Modern Telecommunications and

Control Systems and Workshops (ICUMT), pp. 89-95.

[5] Huang Dijiang, Zhou Zhibin, Xu Le, Xing Tianyi, Zhong Yunji (2011) “Secure Data Processing

Framework for Mobile Cloud Computing ”, IEEE Conference on Computer Communications

Workshops, pp. 614-618.

[6] Kawashima H, Koshiba K, Tuchimochi K, Futamura K, Enomoto M, Watanabe M (2007),

“Virtual PC-Type Thin Client System,” NEC Technical Journal, vol. 2, no. 3, pp. 42–47.

[7] Kovachev Dejan, Renzel Dominik, Klamma Ralf, Cao Yiwei(2010) “Mobile Community Cloud

Computing: Emerges and Evolves ”, IEEE International Conference on Mobile Data

Management, pp. 393-395.

[8] Lamberti F, Sanna A (2007), “A Streaming-Based Solution for Remote Visualization of 3D

Graphics on Mobile Devices”, IEEE Transactions on Visualization and Computer Graphics, vol.

13, no. 2, pp. 247–260.

[9] Pendyala V S, Shim S S Y (2009), “The Web as the Ubiquitous Computer”, IEEE Computer,

vol. 42, no. 9, pp. 90–92.

[10] Satyanarayanan M, Bahl P, Caceres R, Davies M (2009), “The Case for VM-Based Cloudlets in

Mobile Computing”, IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23.

[11] Simoens P, Ali F A, Vankeirsbilck B, Deboosere L, De TurckF , Dhoedt B, Demeester P,

Torrea-Duran B (2010) “Cross-Layer Optimization of Radio Sleep Intervals to Increase Thin

Client Energy Efficiency”, IEEE Communications Letters, vol. 14, no. 12, pp. 1095-1097.

[12] Simoens Pieter, De Turck Filip, Dhoedt Bart, Demeester Piet (2011), “Remote Display Solutions

for Mobile Cloud Computing”, IEEE Computers, vol. 44, no .8, pp. 46-53.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

77

[13] Tan K J, Gong J W, Wu B T, Chang D C, Li H Y, Hsiao Y M, Chen Y C, Lo S W, Chu Y S,

Guo J I (2010) “A Remote Thin Client System for Real Time Multimedia Streaming Over

VNC”, IEEE International Conference on Multimedia and Expo (ICME), pp. 992–997.

[14] Sridhar S, Satish G, Raja G, Sumalatha Ramachandran (2012), “Adaptive Display Virtualization

and Dataflow model Selection for Reducing Interaction Latency in Thin Clients”, International

Conference on Recent Trends in Information Technology (ICRTIT 2012), pp. 233-238.

Authors

Sumalatha.M.R is currently the Associate

Professor in Department of Information

Technology in Madras Institute of

Technology, Anna University Chennai. She

has 7+ Years of Teaching Experience as

Guest Faculty, Teaching Research Associate

and Lecturer in the Department of Information

Technology, Madras Institute of Technology,

Anna University.

 Sridhar S has completed his B.Tech

Information Technology in Madras Institute of

Technology, Anna University Chennai. He

has published two papers in International

Conferences.

Satish G has completed his B.Tech

Information Technology in Madras Institute of

Technology. He has published a paper in

International Conference. He is also an IEEE

member.

