
International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

DOI : 10.5121/ijasuc.2012.3308 105

EXPERIMENTS FOR EVALUATING SENSORS’

PRECISION IN WIRELESS SENSOR NETWORKS

Ronald Beaubrun and Siarhei Smolau

Department of Computer Science and Software Engineering,

Laval University, Quebec, Canada
Email: Ronald.Beaubrun@ift.ulaval.ca; Siarhei.Smolau.1@ulaval.ca

ABSTRACT

In this paper, we propose a set of experiments for evaluating sensors’ precision in measuring received

signal strength indicator (RSSI) in wireless sensor networks (WSN). More specifically, a WSN application

is implemented for collecting RSSI measurements in different conditions. The application consists of two

parts: an experiment control script which runs on a computer, and an experiment sensor firmware which

runs on each WSN node. Statistical analysis of variance (ANOVA) is performed to determine if the WSN

nodes used are manufactured with enough precision. Obtained results demonstrate that the differences

between the sensors are insignificant, even if the RSSI measurements have significant variation.

KEYWORDS

Analysis of variance (ANOVA), received signal strength indicator (RSSI), wireless sensor networks

(WSN).

1. INTRODUCTION

A wireless sensor network consists of a large number of sensor nodes that may be randomly and

densely deployed. Current applications of sensor networks include: military sensing, physical

security, air traffic control, video surveillance, environment and building monitoring [1], [2],

[3]. Such applications require that each sensor knows its exact location. In this context, a

localization system is required to provide position information to the sensors. Such a system

uses a method for distance evaluation [4], [5].

The received signal strength indicator (RSSI) is one of the simplest methods that has been used

for estimation of distances between sensors [6], [7], [8]. The distance estimates are based on the

strength of the signal received by another sensor. The main advantage of this method is its low

cost, since most receivers are capable of estimating the received signal strength. However,

several questions arise. What would be the transmission range for real devices running in real

environments? Do RSSI measurements vary for different devices in the same conditions?

Should each WSN node be calibrated separately in order to take into account the differences

between individual sensors? Answers to all those questions affect the choice of the algorithm,

requirements and performance of localization application.

This paper proposes a set of experiments that have been made for sensors’ precision evaluation

in terms of RSSI measurements, and presents results obtained from such experiments. It is

organized as follows. Section 2 describes the experiment setup. Section 3 describes the

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

106

implementation of the WSN application used to collect RSSI data. Section 4 presents and

analyses the set of collected data. Section 5 gives some concluding remarks.

2. EXPERIMENT SETUP

2.1. Hardware and software platform

For the experiments, we are using Tmote Sky wireless sensor modules from Moteiv [9]. Each

module is controlled by Texas Instruments MSP430 microcontroller which has 10 kB RAM, 48

kB Flash memory, and runs at 8 MHz. Also, each module provides integrated light, temperature

and humidity sensors. For radio communication, each module uses a Chipcon CC2400 RF

transceiver chip. This chip is compliant with IEEE 802.15.4 standard and allows to measure

received signal strength. According to [10], the RSSI reading provides a measurement of the

signal power entering the RF input. The scale is logarithmic, so that RSSI_VAL provides a value

in dBm. The RSSI measurement can be referred to the power at the RF input pins by using the

following equation:

P = RSSI_VAL + RSSI_OFFSET [dBm] (1)

The nominal value of RSSI_OFFSET is -54 dBm. When presenting the experiment results, we

will present the direct measurements, without applying offsets. The firmware is running on a

Tmote Sky sensor, controlled by TinyOS [11]. TinyOS is a popular and widely used operating

system for WSN systems. It provides hardware abstraction for a wide range of commercially

available sensor nodes, implements several communication protocols and provides the library of

reusable components for developing WSN applications. TinyOS is implemented in nesC [12], a

special language which is designed for sensor node programming. More specifically, nesC is

designed to facilitate writing programs which are driven by the interaction with the

environment, have limited resources and should be reliable.

2.2. Requirements and deployment

The requirements for the WSN application are specified in accordance with the planned

experiment design. First, it should be possible to change the experiment parameters, i.e., the

transmission power, the number and coordinates of sensors, the number of beacons sent by each

sender. Second, deployments are expensive. In this context, it is needed to place sensors in

specific positions and measure distances, so that it should be possible to download all collected

samples or be able to detect missing data. Third, radio communications are unreliable and some

sensors may become inaccessible during an experiment (in case of battery failure). Thus, the

application should be robust against missing messages and single sensor failure. In other words,

data from the working sensors should be downloaded, and each experiment should be able to

continue with the working sensors.

A WSN application is a distributed program which consists of several modules that are executed

on different computers. Such modules are illustrated in the deployment diagram presented in

Figure 1. In such a diagram, the nodes represent different software packages, and the lines

represent the data flow between them. The application execution is controlled by a host

computer. The host computer is connected with a gateway sensor with a USB cable. It runs two

modules: the serial forwarder application and the experiment control application. The serial

forwarder is an application written in Java provided as a part of Tmote Sky sensors distribution.

It reads data from the gateway sensor via USB, detects when a complete message from a node is

available and forwards it to any other application using TCP socket. The experiment control

script is written in python in order to control the experiments.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

107

Figure 1. Deployment diagram

The gateway sensor executes a standard base station application which is a part of TinyOS

distribution. This application listens to the radio, and when a message from the radio is

received, this message is resent via a serial interface, so that it becomes available to the serial

forwarder. Each other WSN node executes an experiment application. There is only one kind of

experiment application which allows a sensor to play the role of sender or receiver, depending

on the commands received from the application control script. Each sensor has a unique address.

The experiment control script knows the addresses of all sensors in the network. There is no

multi-hop communication, i.e., every sensor sends messages to the gateway sensor directly.

2.3. Application behavior

The application behavior is represented by the activity diagram illustrated in Figure 2. The

nodes of the activity diagram represent operations performed by the application, whereas the

lines represent the control flow of the application. Logically, the application operation can be

divided into the following stages:

1) At the initialization stage, the experiment control script loads a scenario file, and then

establishes a connection to communicate with the gateway sensor.

2) At the deployment stage, the experiment control script displays the sensor coordinates at the

screen, and waits for the user to place the sensors in a proper location and to press the “Start”

button.

3) Based on the scenario file, the control script chooses one of the sensors as a sender. All the

other sensors are commanded to become receivers. The command is sent to the sender to start

sending beacons, starting the measuring stage.

4) A message from the sender informs the experiment control script that sending of all beacons

is finished. The experiment control script loops through each receiver sending the transfer

request, starting the transfer stage. On reception of the transfer request, each receiver starts

sending all collected RSSI data to the gateway sensor. During the transfer, the transmission

power level is set to the maximum value. Each transfer message holds a message number, as

missed packets are detected and retransmitted.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

108

Figure 2. Activity diagram

Measuring and transfer stages are repeated for each deployment accordingly to the experiment

scenario. The experiment parameters are set up by using an XML scenario file as follows:

<scenario>

<deployment>

<trialbeacons_number="6" tx_power="30"

delay="900"/>

<mote id="1" x="0" y="0" z="0" />

<mote id="2" x="1" y="0" z="0" />

</deployment>

<deployment>

<trial beacons_number="6" tx_power="30"

delay="900"/>

<mote id="1" x="0" y="0" z="0" />

<mote id="2" x="2" y="0" z="0" />

</deployment>

</scenario>

Each deployment is specified by the number of sensors and their coordinates, as well as the

number and parameters of the trials. Each sensor has a network address and its coordinates.

Each trial specifies the number of beacons to be sent by the sender, as well as the number, delay

between beacons and transmitted power.

The logic of an experiment may be expressed as the following pseudocode:

scenario = scenario.load(’scenario.xml’)

 for d in scenario.deployments(){

 for t in d.trials(){

 for s in t.motes(){

 for r in t.receivers(s){

 r.start_beacon(s, t.params)

 }

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

109

 s.start_beacon(s,t.params){

 }

 for r in t.receivers(s){

 r.start_transfer()

 }

 }

 }

 }

This pseudocode describes the application logic in a procedural manner, as if it is executed by a

single computer sequentially. In reality, an application logic is implemented via collaboration of

many sensors and the host computer. Several modules of the WSN application are executed in

parallel, exchanging information via messages. Thus, the real behavior of each module is

reactive, whereas the computation performed by each sensor is specified as a response to

external and internal events.

3. IMPLEMENTATION PARAMETERS

3.1. Implementation of the communication protocol

There are 9 types of messages exchanged between the sensors and the host computer. Among

them, 3 types are used to allow the application to measure RSSI values. They are denoted:

BeaconStartMsg, BeaconMsg and BeaconFinishedMsg. Also, 3 types of messages are needed to

allow the application to collect measured RSSI data. They are denoted: TransferStartMsg,

TransferMsg and TransferFinishedMsg. Moreover, 3 types of messages are used to allow

debugging and reliability of the WSN application in situations where some sensor is

malfunctioning or some radio messages are lost. They are denoted: ResetMsg, ConfirmationMsg

and LogMsg.

Depending on the experiment stage, each message should be properly processed. So, the

application logic is translated into a state machine, where each step of an experiment represents

a separate state. There are several state machines running concurrently: one state machine

controlling the experiment control script, and one state machine for each experiment sensor. The

state machine for the experiment control script behavior is illustrated in Figure 3, and consists

of the following states:

• Start allows users to choose an experiment scenario and establish connection to a serial

forwarder software to communicate with the gateway sensor. If the scenario file is

loaded and connection to a WSN sensor is established, state Deploy is started.

• Deploy keeps track of the current deployment, and increments the current deployment

counter. If the current deployment counter is equal to the number of deployments in an

experiment scenario, all deployments were performed and state Finish is started.

Otherwise, the coordinates of each sensor are displayed and the script waits while the

user places the sensors as described and presses the button. Then, state Trial is started.

• Trial tracks the parameters of the trial. Each trial is specified by the number of beacons

to be sent, the transmission power level and the delay between the beacons. The current

trial counter is incremented, and if it is equal to the number of trials in a current

deployment, the state is changed back to Deploy. Otherwise, state Sender is started.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

110

• Sender chooses one sensor to play the sender role. The sensor counter is incremented,

and if it is equal to the number of sensors in the current deployment, all sensors were

given the sender role for the given trial, as the state is changed to Trial. Otherwise,

measurements are started by state Reset.

• Reset sends the ResetMsg to each sensor to provide synchronization between the

sensors. When all sensors are reset, state Prepare is started.

• Prepare prepares all receivers for beacon reception. It sends BeaconStartMsg to every

sensor, except the sender node allowing them to be prepared for the reception of beacon

messages. When all receivers are ready, state Measure is started.

• Measure allows the sender to start sending beacons. It sends BeaconStartMsg to the

sender node and waits for the notification that all beacons were sent in form of

BeaconFinishedMsg messages. This notification is expected during the particular time

for recovery in case of sender failure. If no confirmation is received, the next sensor in

the scenario is tried for the role of sender. When BeaconFinishedMsg is received or the

measurement task timeout is expired, state Transfer is started.

• Transfer enables the receiver sensors to transfer collected measurements to the host

machine. It sends TransferStartMsg to each receiver node. On reception of an RSSI

sample via TransferMsg, data are logged for further analysis. The end of transfer is

signalled by the reception of TransferFinishedMsg. The transfer task timeout is set to be

able to continue experiment execution in case of receiver node failure. After all data are

transferred, the state is changed to Sender to give another sensor the opportunity to send

beacons.

• Finish finishes the experiment, and saves collected data.

Figure 3. State machine diagram for the experiment control script software behavior

The state machine for the experiment sensor firmware behaviour is illustrated in Figure 4, and

consists of the following states:

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

111

• Wait enables each sensor to wait for the trial start. When the BeaconStartMsg message

from the host computer is received, the sensor checks the sender field of the message. If

the value of this field is equal to the sensor’s address, the sensor sets the trial parameters

using the values from beacon_ number, tx_power and delay message fields, and

changes the state to Beacon. Otherwise, it changes the state to Sample.

• Beacon broadcasts beacons to the receiver nodes. It sets the timer to fire with

appropriate frequency, according to the trial parameters. When the timer is expired, the

sensor sets the transmission power level to a proper value and sends BeaconMsg to the

receiver nodes. Also, StateBeacon keeps track of the number of beacons sent. When this

number becomes equal to the number of beacons in the trial, the BeaconFinishedMsg

message is sent to the host machine to inform the host machine that measurements were

finished, then changes the state to Wait. If ResetMsg is received during the operation,

the measurement is aborted, and the state is changed to Wait.

• Sample measures RSSI values when beacons from the sender are received. When

BeaconMsg from the sender is received, the RSSI value is measured and stored into

memory. When TransferStartMsg from the host computer is received, the state is

changed to Transfer. If ResetMsg is received during sampling, the operation is aborted

and the state is changed to Wait.

• Transfer transfers RSSI samples collected by the receiver to the host computer. It loads

previously stored measurements, and sends them to the host machine sending

TransferMsg. When all samples are transferred, it sends TransferFinishedMsg to the

host machine. If ResetMsg is received during the transmission, the transfer is aborted,

and the state is changed to Wait.

Figure 4. State machine diagram for the experiment sensor firmware behavior

3.2. Implementation of the experiment control script

The experiment control script is implemented in python and consists of several modules which

can be semantically grouped into 3 layers. The upper layer consists of two modules: Application

and GUI (Graphical User Interface), which allows users to interact with the application. The

Application module starts the script and initializes the other modules. The GUI module displays

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

112

a user interface window, and allows users to control the application. The user interface is

implemented using the wxPython library.

The middle layer of the script implements the experiment design logic and consists of 3

modules: Behavior, Data and Scenario. The Behavior module is responsible for appropriate

processing of the WSN messages depending of the current experiment stage. The Scenario

module deals with experiment scenario files. The Data module is responsible for saving the

experiment result data for further analysis. The experiment results are saved in a CSV (Comma-

Separated-Value) format convenient for further analysis.

The lower level of the script implements the services and utility functions used by the upper

levels. It consists of 3 modules: WSN (Wireless Sensor Network), MVC (Model-View-

Controller) and Statemachine. The WSN module allows the application to send and receive

messages to and from the WSN nodes. It is implemented using Twisted library, implementing

the proper processing of data received from the serial forwarder application via TCP/IP socket.

The binary data are grouped accordingly to the TinyOS message format. When a complete

package is received, the application is notified.

The Statemachine module is a generic state machine engine. It allows to implement the

Behavior module as a set of separate classes, where each class is responsible for the single stage

of each experiment.

The MVC module allows to eliminate dependencies between other modules of the program,

allowing all of them to be changed independently. The functionality of the application is

represented as an exchange of events. The MVC module provides a mechanism which allows

any module of the application to post events or subscribe to be notified when an event occurs.

For example, the MVC module is used for implementing the state machine engine. The

Statemachine module is keeping the list of the application states. When a specific state becomes

current, it is subscribed to the application events to implement the script behavior. When the

state stops being current, it is unsubscribed from the event notification.

3.3. Implementation of the experiment sensor firmware

The experiment sensor firmware consists of the following modules: Experiment, Behavior,

Transport, Data and Logger. Like the main module of the application, the Experiment module

provides the initialization of the firmware parameters, and implements application-specific

functions, such as measuring RSSI, setting transmission power, saving and restoring collected

data into memory before they are transferred to the host computer. The Behavior module

implements the program logic, as defined by the experiment design. It contains 4 components:

StateWaitP, StateBeaconP, StateSampleP and StateTransferP. Each component implements 4

interfaces: StateMachine, StateEvent, AppEvent and AppFunction. Interfaces StateMachine and

StateEvent allow a component to change the current state of the behavior and respond to state

transition events. Interfaces AppEvent and AppFunction allow the component to perform

application-related functions (for example, save/load last measured RSSI values to/from

memory) and respond to application-related events (for example, to start sending beacon or to

start collected data transfer). This approach is proven to facilitate the debugging of the firmware

and allows to change the application behavior in order to support different experiments in a

flexible manner. The Transport module detects situations where a radio message was lost, and

resends data, providing reliable communication. The Logger transmits trace information to

facilitate firmware debugging.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

113

3.4. Implementation of the communication protocol

During running pretests, we have observed that several messages sent by the sensors are getting

lost. No component providing reliable information transport was present in the version of

TinyOS that we were using. In this context, a communication protocol capable of detecting data

loss and retransmitting lost messages was implemented. This communication protocol is a

variation of the Automatic Repeat Request protocol described in [13]. Both experiment control

script and sensor firmware maintain two sequence numbers. One number keeps the track of the

next outgoing messages to be transmitted. Another number holds the sequence number of the

next message expected. Sequence numbers of 1-bit (0 or 1) are sufficient in the given case,

because the sender will not send the next message unless the acknowledgment for the previous

message is received. At each moment, the receiver expects a particular sequence number. Any

arriving frame containing the wrong sequence number is rejected as a duplicate. When a frame

containing the correct sequence number arrives, it is accepted and passed to the network layer.

Then the expected sequence number is incremented modulo 2 (i.e., 0 becomes 1, and 1 becomes

0).

4. RESULTS AND ANALYSIS

The goal of the experiments is to determine if all the sensors can be considered equivalent in

their abilities to measure RSSI levels. For this purpose, each experiment was containing 4

deployments. Each deployment was using 9 sensors with addresses equal to 9, 1, 2, 3, 4, 5, 6, 7,

8. Sensor 9 was used as a reference sensor. In each deployment, sensors 1, 2, 3, 4, 5, 6, 7, 8

were positioned at the same distance from sensor 9. This distance was equal to 1, 3, 7, 12 meters

for each deployment, as shown in Figure 5. During each deployment, reference sensor 9 was

sending 15 beacons with transmission power levels equal to 3, 5, 10, 20, 30 respectively.

Figure 5. Picture from the experiment deployment

The mean values of RSSI measurements for all devices at different transmission power levels

are shown in Figures 6 to 10. For graphical comparison of RSSI values for each distance,

boxplot diagrams are used. A boxplot is a way to graphically represent groups of data through

five-number summaries: the smallest observation, the lower quartile, the median, the upper

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

114

quartile and the largest observation. A box in the middle of each boxplot depicts the range

between the lower and the upper quartiles. A thick solid line across the box locates the median.

To verify if the differences in mean RSSI values can be attributed to the differences in the

sensors’ behavior, analysis of variance (ANOVA) is performed. Such analysis is based on

randomized block design [14]. A randomized block design allows to study the variation in the

means of dependent variable called score (in our case, mean of RSSI values) in relation to two

independent variables. The first independent variation is called treatment (parameter A), and

represents the factor of the main interest in the studied phenomena (in the given experiment, it is

the distance). The value of the j
th
 distance level is denoted as aj (in our case, a1 = 1, a2 = 3, a3 =

7, a4 = 12). The second independent variable (parameter BL) represents the differences among

the experiment units which may make a contribution to error variation, and thereby mask or

obscure the treatment effects (in the given experiment, it is the variation in sensors’ behavior).

The variation in the dependent variable attributable to such sources is called nuisance variation.

Figure 6. RSSI vs Distance for all sensors for TX=3

To isolate nuisance variation, a blocking procedure is used. The blocking procedure involves

forming n blocks of m homogeneous experimental units, where m is the number of treatment

levels and n is the number of levels of nuisance variable. In the given experiments, n is equal to

the number of sensors and equal to 8, and m is the number of different distance levels and is

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

115

equal to 4. The value of the i
th
 level of nuisance variable is denoted si. In our case, si

corresponds to the different sensor addresses, s1 = 1, s2 = 2, s3 = 3, s4 = 4, s5 = 5, s6 = 6, s7 = 7, s8

= 8. This design is denoted by letters RB-m, as the experiment is called an RB-4 experiment.

Figure 7. RSSI vs Distance for all sensors for TX=5

In a randomized block design, a score Yij is a mean value that reflects the effects of distance

level i, for sensor j, and all other sources of variation that affect Yij. These latter sources of

variation are collectively referred to as residual effects or error effects. The expectation Yij is

expressed more formally as follows:

Yij = µ + αj + πi + εij, (i = 1, n, n = 8; j = 1, m, m = 4) (2)
where

Yij is the mean RSSI value for distance level j and sensor i;

µ is the grand mean of the RSSI values µ11, µ12, ... , µnm, where µnm is the RSSI value

measured by sensor n at distance m, with n = 8, and m = 4;
αj is the treatment effect and is equal to µ j- µ , the deviation of the grand mean from the

mean RSSI values for distance level j. The j
th
 treatment effect is a constant for mean

RSSI values in distance aj, and is subject to the restriction Ʃ
m

j=1 αj = 0;

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

116

πi is the block effect for particular sensor i, and is equal to µ i - µ , the deviation of the

grand mean from the RSSI mean value for sensor i. The block effect is a normally and

independently distributed random variable with mean 0 and standard deviation σπ
2

(denoted as NID(0, σπ
2

));

εij is the error associated with Yij, and is equal to Yij - µ j - µ i + µ . The error effect is a

random variable that is NID(0, σε
2
) and independent of πi.

Figure 8. RSSI vs Distance for all sensors for TX=10

The values of parameters µ , αj, πi and εij in model (2) are unknown. But, they can be estimated

from sample data as follows:

 Grand Mean

 () Effect of the distance

 () Effect of the sensor

 + () Residual effect

ij

j

i

ij j i

Y Y

Y Y

Y Y

Y Y Y Y

=

+ −

+ −

− − + (3)

Equation (3) can be rearranged as follows:

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

117

() + () + ()
ij j i ij j i

Y Y Y Y Y Y Y Y Y Y− = − − − − + (4)

Next, we square both sides of (4) as follows:

2 2

() + () + ()
ij j i ij j i

Y Y Y Y Y Y Y Y Y Y − = − − − − +
 (5)

Figure 9. RSSI vs Distance for all sensors for TX=20

From (5), the total sum of squares (SSTO) could be partitioned into three parts: the sum of

squares due to distance A (SSA), the sum of squares due to sensors’ difference (SSBL), and the

sum of squares due to residual errors (SSRES). The mean squares (MS) are obtained by dividing

each sum of squares by its degree of freedom [14]. More precisely, we have:

 MSTO =
SSTO

 nm − 1

 MSA =
SSA

 m − 1

 MSBL =
SSBL

 n − 1

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

118

 MSRES =
SSRES

 (m – 1) (n – 1)

The randomized block design operates by calculating the total sum of squares SSTO and

partitioning this sum into three parts: SSA, SSBL and SSRES.

Figure 10. RSSI vs Distance for all sensors for TX=30

The goal of the analysis is to check two hypotheses H0 and H1, first for the distance effect, then

for the sensors’ effect. The statistical hypotheses for the distance effect are:

0 1 2 3 4

0

:

(or : , 0 for 1,4)j

H

H j j

µ µ µ µ

α

= = =

∀ = ∈
 (6)

1 '

1

: for ' where , ' 1, 4

(or : , 0 for 1,4)

j j

j

H j j j j

H j j

µ µ

α

≠ ≠ ∈

∃ ≠ ∈
 (7)

A test of null hypothesis is given by FA = MSA/MSRES [14]. If the null hypothesis is true, the F

statistic is distributed as the F distribution with m - 1 and (n - 1)(m - 1) degrees of freedom. An

F statistic and F distribution are used to test a hypothesis about two population variances, rather

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

119

than a single variance. An F random variable is defined as the ratio of two independent chi-

square variables, each divided by its degree of freedom. It can be expressed as follows:

2
()1

1

2
()2

2

d

d

d

d

F

χ

χ
= (8)

The distribution F is used to determine probability p of observing the F statistic as large as or

larger than the statistic obtained. According to convention, an F statistic that falls in the upper

5% of the sampling distribution of F is considered to be sufficient evidence for rejecting the null

hypotheses.

Moreover, the statistical hypotheses for the sensor differences are:

2

0

2

1

: 0

: 0

H

H

π

π

σ

σ

=

≠
 (9)

A test of null hypothesis for sensor differences is given by FBL = MSBL/MSRES [14]. If the null

hypothesis is true, this F statistic is distributed as F with n-1 and (n-1)(m-1) degrees of freedom.

The analysis for the situation where sensors 1-8 were receiving beacons from the reference

sensor, and the situation where sensors 1-8 were sending beacons to the reference sensor were

performed separately. The results for the situation where sensors 1-8 was receiving beacons

from reference sensor 9 are presented in Table 1, whereas the analysis results for the situation

where sensors 1-8 were sending beacons from reference sensor 9 are presented in Table 2.

These tables specify the degree of freedom (df), the sum of squares (SS), the mean square (MS),

as well as the F statistic and the probability (p) for each variable.

Table 1. Variation of RSSI due to the sensors difference (reception)

Source df SS MS F p

Receiver 7 484.29 69.18 0.55 0.79

Distance 3 585.83 195.28 1.556 0.23

Residuals 21 2635.44 125.50

Table 2. Variation of RSSI due to the sensors difference (transmission)

Source df SS MS F p

Sender 7 2535.83 362.26 0.96 0.48

Distance 3 1814.2 604.7 1.5955 0.22

Residuals 21 7959.3 379.0

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

120

For the situation where sensors 1-8 were receiving beacons, we obtained: FBL = 0.55, p = 0.79

> 0.05. It means that the differences in RSSI values due to the sensors’ difference are non

significant. Similarly, we obtained: FA = 1.56, p = 0.23. As a result, the variation due to the

distance is not significant.

For the situation where sensors 1-8 were sending beacons, we obtained: FBL = 0.96, p = 0.48 >

0.05. It means that the differences in RSSI values due to the difference in sensors are non

significant. Similarly, we obtained: FA = 1.60, p = 0.22. So, the variation due to the distance is

not significant.

It may be noted that, in both cases, the effect of the distance is not significant. We attribute this

to the fact that our statistics were taking into account the performance of the sensors at all

transmission power levels together, as the difference at RSSI recorded for different transmission

power masks the effect of the changing distance. The results allow to conclude that the sensors

are manufactured with enough precision, so that no calibration is needed to compensate

differences in the sensors’ behavior.

5. CONCLUSION

In this paper, we presented an experiment for evaluating the sensors’ behavior in wireless sensor

networks (WSN). More specifically, a WSN application was implemented for collecting RSSI

measurements in different conditions. The application consists of two parts: an experiment

control script which runs on a computer, and an experiment sensor firmware which runs on each

WSN node. The experiment control script sends experiment configuration parameters to each

sensor, commands each sensor to start measurements accordingly to experiment scenarios, and

collects measured data. The experiment sensor firmware performs RSSI measurements.

Statistical analysis of variance (ANOVA) was performed to determine the factors affecting the

RSSI measurements. Results analysis shows that the sensors are manufactured with enough

precision, so that no calibration is needed to compensate differences in the sensors’ behavior.

Future work should be oriented towards implementing the positioning methods which take into

account the variability in RSSI measurements.

REFERENCES

[1] N. Wang, N. Zhang, and M. Wang, “Wireless sensors in agriculture and food industry recent

development and future perspective,” Computers and Electronics in Agriculture, vol. Volume

50, Issue 1, pp. 1 – 14, January 2006.

[2] M. Kuorilehto, M. H¨annik¨ainen, and T. D. H¨am¨al¨ainen, “A survey of application

distribution in wireless sensor networks,” EURASIP J. Wirel. Commun. Netw., vol. 5, no. 5, pp.

774–788, 2005.

[3] K. Romer and F. Mattern, “The design space of wireless sensor networks,” Wireless

Communications, IEEE [see also IEEE Personal Communications], vol. 11, no. 6, pp. 54–61,

Dec. 2004.

[4] A. Savvides, C.-C. Han, and M. B. Srivastava, “Dynamic fine-grained localization in ad-hoc

networks of sensors,” in MOBICOM, 2001, pp. 166–179.

[5] N. Patwari, J. Ash, S. Kyperountas, I. Hero, A.O., R. Moses, and N. Correal, “Locating the

nodes: cooperative localization in wireless sensor networks,” Signal Processing Magazine, IEEE,

vol. 22, no. 4, pp. 54–69, July 2005.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.3, No.3, June 2012

121

[6] C. Alippi and G. Vanini, “A RSSI-based and calibrated centralized localization technique for

Wireless Sensor Networks,” in Pervasive Computing and Communications Workshops, 2006.

PerCom Workshops 2006. Fourth Annual IEEE International Conference on, 13-17 March 2006,

pp. 301–305.

[7] X. Li, H. Shi, and Y. Shang, “A sorted RSSI quantization based algorithm for sensor network

localization,” in Parallel and Distributed Systems, 2005. Proceedings. 11th International

Conference on, vol. 1, 20-22 July 2005, pp. 557–563Vol.1.

[8] H. Chen, D. Ping, Y. Xu, and X. Li, “A novel localization scheme based on RSS data for

Wireless Sensor Networks,” in APWeb Workshops, ser. Lecture Notes in Computer Science, H.

T. Shen, J. Li, M. Li, J. Ni, and W. Wang, Eds., vol. 3842. Springer, 2006, pp. 315–320.

[9] Moteiv, “Tmote Sky ultra low power IEEE 802.15.4 compliant wireless sensor module

datasheet,” 2006.

[10] Chipcon, “CC2400 2.4 GHz low-power RF transceiver datasheet,” Texas Instruments, 2004.

[11] “TinyOS: An open-source OS for the wireless embedded sensor networks,”

http://www.tinyos.net. [Online]. Available: http://www.tinyos.net

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler, “The nesC language: A

holistic approach to networked embedded systems,” ACM SIGPLAN Notices, vol. 38, no. 5, pp.

1–11, May 2003.

[13] A. S. Tanenbaum, Computer networks, 4th ed. Prentice Hall, March 17 2003.

[14] R. E. Kirk, Experimental design: procedures for the behavioral sciences, 3rd ed. Brooks/Cole

Publishing Company, 1995.

