
International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

DOI : 10.5121/ijasuc.2013.4502 13

RESOURCE-EFFICIENT FLOATING-POINT DATA

COMPRESSION USING MAS IN WSN

Maher El Assi

1
, Alia Ghaddar

2
, Samar Tawbi

3
, Ghaddar Fadi

4

1, 2, 3
Lebanese University, Lebanon

4
Saint Joseph University, Lebanon

ABSTRACT

In a wide range of applications, large amounts of floating-point data are generated by Wireless Sensor

Networks (WSNs). This data is often transferred between several sensor nodes, in a multi-hop fashion,

before reaching its ultimate destination (the base station). It is well known that data communications is the

most energy-consuming task in sensor nodes [1]. This can be a great concern when the nodes are

constrained in energy. Therefore, the amount of data to be transferred between nodes should be reduced to

save energy. In this paper, we investigate data compression for resource-constraint WSNs; we introduce

MAS as a novel adaptive lossless floating-point data compression algorithm for WSNs. MAS exploits the

disproportionality in energy consumption between data transmission and processing. Simulation results,

obtained from OMNeT++ and Atmel Studio, show that MAS surpasses other tested compression algorithms

in terms of compression ratio, compression speed, memory requirements and most importantly energy

savings.

KEYWORDS

Wireless Sensor Networks, Lossless Compression, Floating-point Data, Energy Efficiency

1. INTRODUCTION

In the last few decades, Wireless Sensor Networks (WSNs) has proven to be an interest grabbing

technology, offering great contributions in several application domains. Wireless Sensor

Networks can provide a low cost solution to a variety of real-world problems including but not

limited to health care, industry process control, object tracking, volcanic and seismic monitoring,

smart parking, home automation, etc. Moreover, WSNs can provide enhanced situation awareness

in responding to today’s public safety situations. For example, Sleep Safe project is designed for

monitoring infants while they sleep. Sleep Safe sensor nodes can prevent sudden infant death

syndrome (SIDS) by autonomously detecting the sleeping position of an infant and alerting the

parents wirelessly in real time when the infant is lying on its stomach [2].

Typical WSNs are composed of a relatively high number of sensor nodes communicating through

an infrastructure-less multi-hop wireless network architecture. These nodes usually perform three

main tasks: data collection, data processing and data communication. The nodes capture data

from their surrounding environment, they process it and finally they transfer it to a base station

where decision makers can make use of it.

Sensor nodes are small, cheap and smart devices that are made up of four basic components [3],

as shown in Figure 1:

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

14

1) A sensing unit which captures a physical quantity from the environment.

2) A processing unit which processes and analyzes the captured data.

3) A transceiver which is responsible for data communication.

4) A power unit which is in most of the cases a battery.

Figure 1. Main Components of a sensor node. [3]

Despite their promising range of applications, most WSNs are constrained in resources; they have

limited amount of energy, limited processing capabilities, short range of communication and

limited memory size. Out of these constraints, energy is considered the primary concern

especially for battery-operated sensors; this is true because when a sensor node is depleted of

energy, it would be useless for the network. This could affect the performance of the whole

network especially if the node is used in critical locations, such as mines, volcanoes, etc.

Over the past years, different studies and techniques have been proposed for WSNs to reduce

energy consumption and increase network performance and lifetime. Data compression has been

adopted as a practical technique and reliable solution in terms of energy efficiency in WSNs. The

efficiency of data compression techniques mainly bears on the drastically disproportionate energy

cost between data transmission and processing. This can be seen in Figure 2, which shows how

many compute cycles, on a Texas Instruments MSP430 microcontroller, would be performed for

the same amount of energy required to transmit a single byte over three commonly used radios [7]

(Chipcon CC2420 [4]: short range 125 m, the Chipcon CC1000 [5]: medium range 300 m, and

MaxStream XTend [6]: long range 15 km).

Figure 2. Number of TI MSP430F1611 compute cycles that can be performed for the same amount of

energy as transmitting one byte over three radios. [7]

It is obvious that the most energy consuming part in WSNs is the communication. Approximately

80% of power consumed in each sensor node is used for data transmission [1]. Thus to save

1

10

100

1000

10000

100000

1000000

10000000

In
st

ru
ct

io
n
 C

y
cl

es
 f

o
r

sa
m

e

E
n

er
g

y
 a

s
O

n
e

B
y
te

T
ra

n
sm

it
te

d

Radio

CC2420 CC1000 Xtend

Power Unit

 Sensor ADC
Processor

Storage
Transceiver

Sensing Unit Processing

Unit

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

15

energy and maximize network lifetime, data transmissions should be minimized without losing

vital information. The lower the size of the transmitted data the lower the number of required

transmissions. In our work, we study data compression as the technique for minimizing data size.

In this paper, we propose an energy efficient floating-point data compression algorithm for WSNs

called MAS. MAS is a new adaptive streaming lossless compression algorithm that relies on an

accommodative coding technique to achieve compression at low processing costs. MAS offers

great contributions to WSNs, because it is one of the first algorithms to specifically compress

floating-point data. By focusing on floating-point data, it is possible to achieve much better

compression ratios because we can exploit the characteristics and the nature of numbers to build

our algorithm. In fact, floating-point data is generated in a wide range of applications such as

weather monitoring (temperature, pressure…), healthcare (blood pressure, cardiac activity…),

localization and tracking (position, height, coordinates…), industry (temperature, vibrations,

radioactivity…), etc.

The remainder of this paper is organized as follows: Section 2 gives an overview of common

compression schemes specifically designed for WSNs. Section 3 presents our newly proposed

algorithm. Section 4 presents an evaluation of the presented algorithms. Section 5 concludes this

paper while Section 6 presents future works.

2. RELATED WORK

Energy efficiency has been a major concern in the design and development of WSNs. Since radio

communication is known to be the main source of energy consumption, most of the proposed

techniques in the literature, which aim to increase energy savings, have focused on reducing data

communication (transmission/reception). Data compression is such a technique, which is often

used in conjunction with data collection techniques to transmit the collected data in an energy

efficient manner.

Due to the distributed nature of WSN applications, and the resource-constrained nature of sensor

nodes, traditional data compression techniques cannot be easily used. It may not be feasible to run

sophisticated data compression algorithms on sensor nodes. The limited resources available in

these nodes demand the development of specifically designed algorithms. In this section, we

present two famous compression algorithms used in WSNs: SLZW [7] and K-RLE [8]. We also

present our proposed compression algorithm MAS [9] and compare it with these algorithms.

2.1. S-LZW

S-LZW [7] (Sensor-LZW) is an adaptation of the popular lossless data compression algorithm

LZW [10]. S-LZW follows the same procedure used by the LZW algorithm, but with little

restrictions regarding the size of the used data structures. The added restrictions ensure that the

requirements of the algorithm are still within the bounds of the available resources in sensor

nodes.

Before heading into the details of the modification, it is first important to understand why LZW is

not suitable for WSN. LZW is a dictionary-based compression algorithm; it works by converting

strings of symbols into integer codes. LZW does not use a static dictionary; instead, it builds the

dictionary on the fly in a special way to allow both the encoder and the decoder to be able to

generate the same dictionary from the input data. First, both the encoder and the decoder initialize

the dictionary with 256 entries containing the symbols in the ASCII code. Then the dictionary

continues to grow while parsing the input.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

16

The dictionary is the main obstacle preventing LZW from being applicable to WSN. Throughout

the compression mechanism, the dictionary keeps growing and can reach sizes much higher than

the available RAM on sensor nodes, and this can clearly disrupt the stability of the system.

Another problem that LZW faces is that it requires a predefined data volume, i.e. in order for it to

start the compression procedure a significant amount of data must already be available. That is

why S-LZW can only be used in delay tolerant networks.

Several modifications were done on LZW to make it portable to WSNs. Most of these

modifications focus on reducing the amount of RAM required for LZW to operate. Here is a list

of modifications that gave the birth to S-LZW:

• S-LZW uses a 512-entry dictionary. As we mentioned before, this dictionary will be

initialized with 256 ASCII code symbols. With this size, the dictionary may get full while

compressing or decompressing certain datasets. There are two protocols to follow when the

dictionary fills, either fix the dictionary to its state whence it get full, or reset the dictionary to

the 256 entries. The authors of S-LZW [7] proved that using the fixed protocol produces

better results when compressing data of small block sizes (528 bytes).

• S-LZW divides input data into block sizes of 528 bytes, and then it compresses these blocks

individually. It is important to note that S-LZW requires 528 bytes of data to be available in

order to compress it, if this amount of data is not available, it has to wait until data

accumulate and reach the required size because compressing data of smaller size will be

inefficient as shown in [7]. WSN data sampling rate is relatively low and it may take some

time to collect 528 bytes of data to be able to start the compression. This is why this

algorithm can only be used in delay tolerant networks.

• The last modification enhances S-LZW by allowing it to benefit from the similarity of data

generated by sensor nodes. This is done by adding a mini-cache, which is a hash-indexed

dictionary of size N, where N is a power of two, which stores recently used and created

dictionary entries. The authors show that it is best to use mini-caches of sizes 32 or 64

dictionary entries.

2.2. K-RLE

K-RLE [8] is a new compression algorithm whose idea is inspired from the lossless data

compression algorithm RLE [11]. RLE stands for Run-Length Encoding, which is a very basic

and simple compression algorithm that works in this way: if a data item d occurs n consecutive

times in the input stream, we replace the n occurrences with a single pair nd.

RLE itself is very simple and can be used in WSN without any major changes, its RAM and

processing requirements are very low. However, there is a major limiting constraint in RLE, for

RLE to achieve good compression ratio, the input data must contain long sequences of repeated

characters, and this rarely occurs in the data generated from sensors. To solve this problem, K-

RLE algorithm has been proposed; K-RLE means RLE with K precision.

The idea behind this algorithm is: let K be a number, if a data item d, d+K, or d-K occur n

consecutive times in the input stream, we replace the n occurrences with a single pair nd [8]. The

new addition in K-RLE allows it to achieve higher compression ratios than RLE but at an even

cost, which is data loss. In contrary to RLE, K-RLE is a lossy compression algorithm, and the

amount of data loss is strongly related to the K parameter. Higher values for K means better

compression ratio but more data loss, while lower values of K means lower compression ratio but

less data loss.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

17

There are two main advantages of K-RLE over S-LZW:

1) K-RLE uses much less amount of RAM than S-LZW, so it can be used in several sensor

platforms where S-LZW cannot be used.

2) K-RLE has the streaming feature, which means it does not need to buffer data before

being able to start the compression process. So K-RLE can be used in networks that

cannot tolerate delay.

The main two disadvantages of K-RLE are:

1) It is a lossy algorithm, so it is not suitable for some applications

2) It requires the input data to contain long sequences of similar characters in order to have a

good compression ratio.

3. MAS COMPRESSION ALGORITHM

MAS stands for Minimalist, Adaptive and Streaming compression algorithm. Minimalist means

that it uses the minimum possible amount of resources. Adaptive means it generates variable-size

output according to the number of digits in the input, and Streaming means that it does not require

buffering of the data before starting the compression process.

MAS is a specialized lossless compression algorithm that only compresses single-precision

floating-point data. MAS’ implementation does not require any correlation or similarity in the

input data, which makes it general and applicable in various domains.

MAS can encode any floating-point number satisfying the following two conditions:

1) The number of significant digits should be at most 7, if a floating-point number exceeds 7

significant digits it would be truncated.

2) The floating-point number when put in scientific notation must have a power of 32 or

less.

Although these conditions mean that some numbers representable by IEEE standard 754 [12] will

not be representable in MAS. However, these numbers almost do not exist in the data generated

by WSN. Numbers that have decimal powers of more than ±32 are almost not found in any

application in WSN.

One of the greatest merits of MAS is that it does not require any floating-point operation

(addition, subtraction, multiplication, division) to compress floating-point numbers. This is very

important because most microcontrollers and processors in sensor platforms are not equipped

with an FPU (Floating point unit). The FPU is responsible for carrying out operations on floating-

point numbers. In the absence of an FPU, these operations are emulated in software but at the cost

of time and cycles, which could lead to higher energy consumption. Internally, MAS treats

floating-point numbers as strings of characters to carry out the needed operations with a low

number of cycles.

3.1. MAS Encoding Technique

The first step in encoding a floating-point number is to write it in scientific notation. Scientific

notation allows the representation of very small or big numbers with ease. So any number is first

written under the following format (d = digit, e = exponent):

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

18

± �. ������ � 10±�

To encode a number, the different parts in the above format must be encoded. MAS encodes them

in five sections detailed below and are shown in Figure 3 from left to right:

• Number of significant digits (n) (number of d’s): represented on 3 bits because its

maximum value is 7.

• The exponent (e): represented on 5 bits because its maximum value is 32.

• Number sign (ns): represented on 1 bit. (0 for positive, 1 for negative).

• Exponent sign (es): represented on 1 bit. (0 for positive, 1 for negative).

• The integer formed by the d’s without the decimal point (ddddddd): variable bit size

depending on the number of d’s (maximum 24 bits). Details are in Table 1.

Figure 3. MAS encoding of a real number.

Table 1.Number of bits needed to represent an integer in binary formed by a certain number of digits.

Number of digits Number of needed bits

1 4

2 7

3 10

4 14

5 17

6 20

7 24

It is clear that MAS exploits the significant number of digits to represent floating point numbers,

for example: -0.0001 is represented on 14 bits while 92301.1 is represented on 30 bits.

Integers form a large part of real numbers, but the above representation may be unfair for integers

because there is no need for the exponent and its sign when representing integers. Therefore, a

special encoding has been chosen for integers, but there should be a discriminator for the decoder

to know which type of number it is going to decode. We exploit the fact that the number of

significant digits cannot be zero, and use this as a discriminator between the 2 encodings. Integer

representation thus has four parts as shown in Figure 4:

• 3 bits that are all zeroes acting as a discriminator.

• Number of significant digits (n) in the integer: 3 bits.

• Number sign (ns): 1 bit.

• The integer: variable bit size following Table 1 (maximum 24 bits).

Figure 4. MAS encoding of an integer.

We also exploit the fact that in an integer the number of significant digits cannot be zero to make

a special representation for the actual zero. A zero is represented in MAS as 6 zero bits: 000000.

Finally, since our algorithm generates codes of variable size, we need to make sure that the

overall output is aligned to memory; we do this by filling the required number of bits by 1s. The

 n n n | e e e e e | ns | es | _

 0 0 0 | n n n | ns | _

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

19

number of alignment bits is between 1 and 7, and they are added only once at the end of the

output.

3.2. MAS Decoding Technique

The decoding technique is straightforward and is done following these steps:

1) Read the first three bits.

2) If the bits are zeroes, the encoded number is an integer.

a. Read the next three bits to extract the number of significant digits.

b. Read the next bit to determine the number’s sign.

c. Read the number of bits required to extract the number referring to Table 1, then

extract the integer.

d. Combine the readings so far to decode the integer.

3) If the bits are non-zeros, the encoded number is a real.

a. The already read bits represent the number of significant digits.

b. Read the next five bits to extract the exponent.

c. Read the next bit to determine the number’s sign.

d. Read the next bit to determine the exponent’s sign.

e. Read the number of bits required to extract the number referring to Table 1, then

extract the integer.

f. Combine the readings so far to decode the real number.

The explanation of MAS’ encoding and decoding techniques clarifies why MAS is considered a

streaming algorithm. MAS can compress or decompress even one single value, and does not

require predefined data volume as S-LZW.

4. EVALUATION

The evaluation metrics of any compression algorithm for WSN are based on the resource

limitations of sensor nodes. Thus, we chose the following metrics to evaluate the presented

algorithms: compression ratio, processing cost, memory requirements, and energy savings.

In the following sub-sections, we will start by describing the chosen platform and the chosen

simulators, and then we will move to present the simulation results and evaluate the algorithms

performance.

4.1. Platform Overview

Our chosen platform is the Waspmote [13] because of its interesting characteristics. A Waspmote

can be connected to 60 sensor types and can support up to 8 different wireless technologies.

A Waspmote uses an 8-bit AVR microcontroller called ATmega1281 [14], which is low power

microcontroller provided by Atmel [15]. It is supplied with a 128 KB flash (program) memory

and an 8 KB RAM. The microcontroller can have frequencies between 0 and 16 MHz at an

operating voltage of 1.8/5.5 V. In the active mode, as shown in Figure 5, the microcontroller

consumes 1 mA at a voltage of 3.3 V and frequency of 1 MHz; this means this microcontroller

consumes 3.3 nJ for one computation cycle in its active mode. This microcontroller does not have

an FPU unit.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

20

Figure 5. Active Supply Current vs. frequency (0.1MHz - 1.0MHz) on ATmega1281 microcontroller. [14]

We chose the wireless technology to be CC2420 RF [16] transceiver, which complies with the

IEEE 802.15.4 standard [17]. This transceiver is designed for low-power and low-voltage

wireless applications. It has low current consumption; for transmission, it consumes 17.4 mA and

for reception, it consumes 18.8 mA. It has an effective data rate of 250 kbps.

4.2. Simulators Overview

In order to calculate the total energy consumed, we need to calculate two different kinds of

energy, the computation energy, and the communication energy. To calculate the computation

energy, we calculate the number of cycles needed to achieve the required computation and this is

done by using the Atmel AVR Studio [18]. To calculate the communication energy, we calculate

the transmission energy only at the node performing the compression using OMNeT++ [19].

Atmel AVR Studio [18] is an Integrated Development Environment (IDE) for writing and

debugging AVR/ARM applications. It supports the complete range of Atmel AVR tools and

devices. The simulator in AVR Studio can simulate the CPU, including all instructions, interrupts,

and most of the on-chip I/O modules. We use Atmel AVR Studio to calculate the required

number of cycles as well as the memory requirements of the algorithms.

OMNeT++ [19] is an object-oriented modular discrete-event network simulation framework.

OMNeT++ itself is not a simulator, but rather provides infrastructure and tools for writing

simulations. It is considered the best simulation framework for WSN as demonstrated in [20]. In

order to simulate WSN, we use MiXiM [21], which is an OMNeT++ modelling framework

created for mobile and fixed wireless networks. We use OMNeT++ to calculate transmission

energy consumption and to model realistic behaviour of nodes in an environment close to reality.

4.3. Datasets

To make our results more realistic, we use real-world datasets from various application domains.

Our datasets include carbon dioxide monthly measurements in ppm above Mauna Loa (CO2),

monthly mean water levels in meters in the lake of the wood at Warroad (Water), the radioactivity

in the ground at one minute intervals over one day (Radio) [22], temperature measurements in a

garden (Temp) [23], average humidity at Limoges (Hum), sea low level pressure (Pressure) [24].

Table 2 shows the sizes in bytes of the used datasets.

1.8V

2.7V

3.3V

4.0V

4.5V

5.0V

5.5V

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ic
c

(
m

A
)

Frequency (MHz)

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

21

Table 2. The different used datasets and their sizes in bytes.

Dataset CO2 Hum Radio Temp Pressure Water

Size (bytes) 3070 264 49450 10192 2405 5395

4.4. Simulation Scenario

Our OMNeT++ simulation model consists of two sensor nodes that are 100 meters apart. One of

these nodes sends the data in compressed form while the other one only receives them and replies

with MAC acknowledgements. We assume that the data is transmitted in packets having payloads

of 64 bytes. No noise or interference was added to the simulation model so no packets were

dropped. Sensor nodes are equipped with battery having a nominal voltage of 3.3 V and a

nominal capacity of 1000 mAh. Regarding the algorithms, we use S-LZW-MC32 (mini cache of

size 32) and K-RLE with K = 2.

4.5. Simulation Results and Analysis

The following subsections present the simulation results along with their respective analysis.

4.5.1. Compression Ratio

The compression ratio is a very important metric when comparing compression algorithms. In

WSNs, having higher compression ratios means lesser amount of data to be transmitted, which

means more energy savings. The compression ratio is calculated according to the following

equation:

	
��
����
�
���
 = 1 −
�
��
�����. ����

������. ����

Figure 6. Compression ratios on various datasets.

The results shown in Figure 6, show that MAS beats both S-LZW and K-RLE in all the datasets.

MAS’ highest compression ratio is about 68.7% and its lowest compression ratio is 57.5%, S-

LZW highest compression ratio is 57.7% and its lowest compression ratio is 31.1%, K-RLE does

not perform well in compressing these data sets, its highest compression ratio is 8.3% while its

lowest is 0%. This could be justified by the fact that numbers found in datasets generated by

sensor nodes often do not contain long sequences of repeated symbols.

0%

10%

20%

30%

40%

50%

60%

70%

80%

CO2 Hum Radio Temp Pressure Water

C
o

m
p
re

ss
io

n
 R

at
io

 (
%

)

Compression Ratios on Various Datasets

MAS S-LZW K-RLE

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

22

These results show a great advantage of using MAS to compress floating-point data, since it

always achieves better results than the other algorithms.

4.5.2. Computation Time and Energy

After compression ratios have been presented it is important to see how much computation cycles

does the microcontroller run in order to achieve these results. From computation cycles, we can

calculate the compression time required by the microcontroller by assuming that the

microcontroller is operating at a frequency of 1 MHz.

Figure 7 shows that in all cases K-RLE requires the least number of computation cycles. This is

justified by the fact that K-RLE compression ratios are low, thus the algorithm is not performing

all the required procedures. The results for the K-RLE algorithm are not reliable to be used for

comparison with the other algorithms since they do not reflect the actual performance of the K-

RLE algorithm. For the other algorithms, we notice that S-LZW requires more computation

cycles than MAS in all the datasets. In most cases, MAS requires about one-third the amount

required by S-LZW. The same justification applies to compression time and computation energy

(shown in Figure 8) since they are directly proportional to computation cycles.

Compression time is calculated using the following formula:

	
��
����
� ���� =
�����

� �
�������
� ������

�
� �����

In our experimentation, the microcontroller has in its active state a frequency of 1 MHz.

As for the computation energy, it is calculated using the following formula:

	
�������
� ���
�� = 	
�������
� ������ � !��
��
�
�� �����

The energy of one cycle is calculated in section 4.1, and was found to be 3.3 nJ.

Figure 7. Required computation cycles and compression time on ATmega1281 microcontroller.

0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

CO2 Hum Radio Temp Pressure Water

C
o
m

p
re

ss
io

n
 T

im
e

(s
)

C
y
cl

es
 (

m
il

li
o

n
 c

y
cl

e)

Computation Cycles and Compression Time

MAS S-LZW K-RLE

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

23

Figure 8. Computation energy cost.

4.5.3. Transmission Energy

Computation energy alone is not sufficient to reflect the energy efficiency of an algorithm. The

energy efficiency depends on both computation and transmission energy. Transmission energy is

the energy consumed by the sensor to send the compressed data wirelessly. Figure 9 shows the

energy required to transmit the compressed form of the datasets.

Figure 9. Transmission energy cost

Regarding transmission energy consumption, it is obvious that K-RLE consumes the most energy.

This is because K-RLE compression ratio is low, thus it is transmitting larger amounts of data

than the other algorithms. Again, MAS consumes the least amount of transmission energy and

beats the other algorithm.

4.5.4. Total Consumed Energy

The total energy consumed could better reflect the energy efficiency of the three algorithms.

Despite the fact that K-RLE consumes the least amount of computation energy, results in Figure

10 show that it consumes the most amount of total energy. This is because it sends large amounts

of data over the network. For the other two algorithms, MAS consumes the least energy and thus

proves to be a strong candidate for compression in WSN.

0

10

20

30

40

50

CO2 Hum Radio Temp Pressure Water

E
n
er

g
y
 (

m
J)

Computation Energy Cost

MAS S-LZW K-RLE

0

100

200

300

400

500

CO2 Hum Radio Temp Pressure Water

E
n
er

g
y
 (

m
J)

Transmission Energy Cost

MAS S-LZW K-RLE

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

24

Figure 10. Total energy cost when using compression.

To be able to calculate energy savings of each algorithm, we have to calculate the energy

consumed when not using any compression algorithm. The energy consumed when not using a

compression algorithm is the energy required to send the data in uncompressed form, so it

depends greatly upon the data sizes. That is why we see, in Figure 11, that the Radioactivity

dataset is consuming the most energy since it has the largest size.

Figure 11. Total energy cost when not using compression.

4.5.5. Energy Savings

Figure 12 shows the percentage of energy saved when using each of the three compression

algorithm. Energy savings is calculated according to the following formula:

"�#�� ���
�� = 1 −
!��
�� $��ℎ �
��
����
�

!��
�� $��ℎ
�� �
��
����
�

0

50

100

150

200

250

300

350

400

450

CO2 Hum Radio Temp Pressure Water

E
n
er

g
y
 (

m
J)

Total Energy Cost when Using Compression

MAS S-LZW K-RLE

0

50

100

150

200

250

300

350

400

450

500

CO2 Hum Radio Temp Pressure Water

E
n
er

g
y
 (

m
J)

Total Energy Cost when not Using Compression

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

25

Figure 12. Energy saved when using compression algorithms.

It is clear that MAS achieves the most energy savings with results better than both S-LZW and K-

RLE. MAS’ energy savings are more than that of S-LZW by an average of 20%, and better than

that of K-RLE by an average of 48%.

In some datasets, when using the K-RLE algorithm, the saved energy is negative, it means that

the compression algorithm is not saving energy; instead, it is leading to more energy

consumption. This is due to the low compression ratios of K-RLE on some datasets.

4.5.6. Memory Requirements

To complete the evaluation we must calculate the amount of memory consumed by each

algorithm. As a reminder, our platform has a flash memory of 128 KB and a RAM of 8 KB. It is

important to note that the memory results are independent of the datasets used. This is because

these results are obtained just when building the algorithm and before running any operation or

procedure. So these values represent the amount of memory allocated by the algorithm when they

are loaded into RAM and before operating on any dataset. Figures 13 and 14 show the absolute

and relative memory consumption of each algorithm for flash memory and RAM respectively.

Figure 13. Flash memory consumption.

MAS consumes the largest amount in the flash memory. In fact, MAS program code is a little

long since it has two representations for integers and real numbers. Flash memory consumption is

not important and it is not a concern, since flash memory is always of a large size, and MAS is

-10%

0%

10%

20%

30%

40%

50%

60%

70%

CO2 Hum Radio Temp Pressure Water

S
av

ed
 E

n
er

g
y
 (

%
)

Energy Savings

MAS S-LZW K-RLE

[VALUE], 2.8%

[VALUE], 1.5%

[VALUE], 0.9%

0

1000

2000

3000

4000

M
em

o
ry

 (
B

y
te

s)

Flash Memory Consumption

MAS S-LZW K-RLE

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

26

only using 2.8% of that memory. This does not introduce any problems in performance since the

flash memory is reserved for program code and not for random access.

Figure 14. RAM consumption.

In terms of RAM usage, which is the important memory concern, MAS consumes only 44 bytes

while K-RLE consumes almost zero bytes. S-LZW turns out to be the most RAM consuming

algorithm, and this is because of the dictionary it uses, S-LZW consumes 3240 bytes, which is

equivalent to about 40% of the RAM.

These results prove that MAS is a strong candidate for compression in WSNs, since it beats the

other algorithms in all the proposed metrics. It achieves compression ratios better than S-LZW by

an average of 13% and better than K-RLE by an average of 59%. MAS saves the most amount of

energy, it saves by an average of 20% more than S-LZW and 54% more than K-RLE. In terms of

memory, MAS and K-RLE use a very little amount of RAM, MAS uses only 0.5% of the total

amount of RAM, while K-RLE consumes almost zero bytes of RAM. S-LZW uses the most

amount of RAM; it consumes 3240 bytes that is equivalent to 39.6% of the total available RAM.

5. CONCLUSIONS

In this paper, we propose MAS, a new lossless floating-point data compression algorithm for

WSNs. MAS is applicable to a variety of sensor hardware and platforms due to its low memory

and processing requirements.

Simulation results show that MAS’ energy savings are on average 54% on all the tested datasets,

while maintaining the highest compression ratios. MAS surpasses the other tested compression

algorithms in terms of compression ratio, compression speed, memory requirements and energy

savings. These results, which are obtained from accurate and trustworthy simulators, present

MAS as a strong and competing candidate for data compression in WSN.

6. FUTURE WORKS

As a short-term step, we would like to improve MAS to exploit the correlation and the similarity

in the data generated by sensor nodes. Such an improvement would allow MAS to achieve higher

compression ratios. We would also like to implement a transformation that aims at reducing the

number of digits in the input. This transformation is expected to increase MAS’ compression ratio

since MAS relies mainly on the number of digits in the data to achieve compression

As a long-term step, we would like to study the efficiency of using MAS with an aggregation

technique. The main challenge here is to prove that introducing MAS to aggregated networks

[VALUE], 0.5%

[VALUE], 39.6%

0, 0.0%
0

1000

2000

3000

4000
M

em
o
ry

 (
B

y
te

s)

RAM Consumption

MAS S-LZW K-RLE

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

27

does not lead to more energy consumption at the level of aggregators, which are supposed to

follow this cycle to achieve their job: decompression – aggregation – compression.

REFERENCES

[1] N. Kimura and S. Latifi. “A survey on data compression in wireless sensor networks,” In

Information Technology: Coding and Computing, 2005. ITCC 2005. International Conference on,

volume 2, pages 8–13 Vol. 2, 2005.

[2] Jennifer Yick, Biswanath Mukherjee and Dipak Ghosal, "Wireless sensor network survey”,

Department of Computer Science, University of California, Davis, CA 95616, United States, 2008.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam and E. Cayirci, “A survey on sensor networks,” in IEEE

Communications Magazine, Vol. 40, No. 8, August 2002, pp. 102-114.

[4] Chipcon AS. Chipcon SmartRF CC2420 Datasheet rev. 1.3. http://www.ti.com/product/cc2420,

October. 2005.

[5] Chipcon AS. Chipcon SmartRF CC1000 Datasheet rev. 2.3. http://www.ti.com/product/cc1000,

August. 2005.

[6] MaxStream, Inc. XTend OEM RF Module: Product Manual v1.2.4. http://www.maxstream.net/,

October. 2005.

[7] C. M. Sadler and M. Martonosi, “Data compression algorithms for energy-constrained devices in

delay tolerant networks,” in Proceedings of the 4th International Conference on Embedded

Networked Sensor Systems (SenSys), 2006.

[8] Capo-chichi, E. P., Guyennet, H. and Friedt, J, “K-RLE a new data compression algorithm for

wireless sensor network,” in Proceedings of the 2009 Third International Conference on Sensor

Technologies and Applications.

[9] Maher Assi, Alia Ghaddar, Samar Tawbi, Ali Jaber, Rami Tawil. MAS: A New Floating Point

Compression Algorithm for Wireless Sensor Networks. In Ocean & Coastal Observation: Sensors

and observing systems, numerical models & information Systems (OCOSS 2013), October (28-31),

Nice, France, in press.

[10] Mark Nelson, “LZW revisited”, in Dr. Dobb's Journal, Volume 15 Issue 6, June 1990, Pages 126 –

127, CMP Media, Inc., USA.

[11] Heinola, Finland, "RLE compression", Baltic Olympiad in Informatics, BOI 2006, DAY-2.

[12] IEEE 754: Standard for Binary Floating-Point Arithmetic, http://grouper.ieee.org/groups/754.

[13] Libelium Company, Waspmote wireless sensor platform,

http://www.libelium.com/products/waspmote.

[14] ATmega1281, Atmel 8-bit AVR RISC-based microcontroller, ATmega640/1280/1281/2560/2561

Datasheet, revision P, 10/2012.

[15] Atmel Corporation, http://www.atmel.com.

[16] Texas Instruments, CC2420: Single-Chip 2.4 GHz IEEE 802.15.4 Compliant and ZigBee™ Ready

RF Transceiver, Datasheet Rev. C, http://www.ti.com/product/cc2420, 07 Mar 2013.

[17] 802.15.4e-2012 - IEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate

Wireless Personal Area Networks, http://standards.ieee.org/about/get/802/802.15.html.

[18] Atmel AVR Studio, version 6.1, http://www.atmel.com/tools/ATMELSTUDIO.aspx.

[19] OMNeT++, version 4.3, http://www.omnetpp.org

[20] Xiaodong Xian, Weiren Shi and He Huang, “Comparison of OMNeT++ and other simulator for

WSN simulation,” college of automation, Chongqing university, Chongqing, 400044, China, 2008.

[21] MiXiM an OMNeT++ modeling framework, version 2.2.1, http://mixim.sourceforge.net

[22] Hyndman, R.J. Time Series Data Library, http://data.is/TSDLdemo

[23] Mischa Dohler Jialiang Lu, Fabrice Valois, « Optimized data aggregation in WSNs using adaptive

arma”. SensorComm, July 2010.

[24] Weather Forecast and Reports, http://www.wunderground.com

[25] Sameer Tilak, Nael B. Abu-Ghazaleh, and Wendi Heinzelman, “Taxonomy of wireless micro-sensor

network models”. Mobile Computing and Communication Review, 6, April 2002.

[26] Subhankar Mishra, Sudhansu Mohan Satpathy and Abhipsa Mishra, “Energy efficiency in ad hoc

networks”, in International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.2,

No.1, March 2011.

[27] Stephen Wolfram. A New Kind of Science, Wolfram Media, Inc. Champaign IL 2002, United States.

IBSN: I-57955-088-8.

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.4, No.5, October 2013

28

[28] Zeeshan Ali Khan and Mustafa Shakir, “Interplay of communication and computation energy

consumption for low power sensor network design”, in International Journal of Ad hoc, Sensor &

Ubiquitous Computing (IJASUC) Vol.3, No.4, August 2012.

[29] D. Salomon, Data Compression: The Complete Reference, Second edition, 2004.

[30] Alia Ghaddar, Tahiry Razafindralambo, Isabelle Simplot-Ryl, David Simplot-Ryl, Samar Tawbi and

Abbas Hijazi. “Investigating Data Similarity and Estimation through Spatio-Temporal Correlation to

enhance Energy Efficiency in WSNs”. In International Journal of Ad Hoc & Sensor Wireless

Networks, Vol. 16, pp. 273-295, 2012.

[31] K.Ramanan and E.Baburaj, “Data gathering algorithms for wireless sensor networks: a survey”, in

International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol.1, No.4, December

2010.

[32] C.Y. Chong and S. Kumar, “Sensor networks: evolution, opportunities, and challenges”, in

Proceedings of the IEEE, Vol. 39, No. 8, pp. 1247-1256, 2003.

[33] Eduardo F. Nakamura, Fabiola G. Nakamura, Carlos M. S. Figueiredo, and Antonio A. F.Loureiro.

“Using information fusion to assist data dissemination in wireless sensor networks”.

Telecommunication Systems, pages 237–254, November 2005.

AUTHORS

EL ASSI Maher is a PhD student starting from October 2013. His PhD is arranged by joint supervision

between the University of Franche Comte, Besançon – France, and the Lebanese University, Beirut –

Lebanon. He received M.S. degree in the Lebanese University in 2012. He also graduated as a Civil

Engineer in 2012 from the Lebanese University. His research interests include Internet of Things (IoT),

Wireless Sensor Networks (WSN), energy efficiency in embedded devices, network modelling and

simulation and lightweight data analysis techniques.

GHADDAR Alia has PhD in Computer Science with more than 6 years of teaching experience and 4 years

of web development. Obtained her Master degree in Computer Science from the Lebanese University. She

started her PhD at the University of Lille-1, Science and technology in France. During that time, she was

member in POPS-project team; A joint project of INRIA, University of Lille-1 and CNRS. Her interests

now lie in the Internet of things, mobile sensors, data communication and knowledge discovery in the

wireless sensor networks.

TAWBI Samar, PhD in Computer Science. She is an associate professor in the Computer Sciences

department in the Lebanese University since 2005. She received the M.S. degree in “Mathematical

Modelling and Scientific Software Engineering” by the Lebanese University and the universities of Rennes,

Reims (France) and EPFL (Switzerland). She obtained her PhD in 2004 at ‘Paul Sabatier’ University,

France. Her research interests include data aggregation and communication in wireless sensors networks,

auto configurable WSN, Internet of things and Cloud computing.

GHADDAR Fadi, MS in Network and System Security. He has more than 15 years of experience in

software analysis and development, network and system security and team leading. He obtained recently

his Master degree from Saint Joseph University. His research interests include information security, data

aggregation and security in wireless sensors networks.

