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ABSTRACT 

 
In a wide range of applications, large amounts of floating-point data are generated by Wireless Sensor 

Networks (WSNs). This data is often transferred between several sensor nodes, in a multi-hop fashion, 

before reaching its ultimate destination (the base station). It is well known that data communications is the 

most energy-consuming task in sensor nodes [1]. This can be a great concern when the nodes are 

constrained in energy. Therefore, the amount of data to be transferred between nodes should be reduced to 

save energy. In this paper, we investigate data compression for resource-constraint WSNs; we introduce 

MAS as a novel adaptive lossless floating-point data compression algorithm for WSNs. MAS exploits the 

disproportionality in energy consumption between data transmission and processing. Simulation results, 

obtained from OMNeT++ and Atmel Studio, show that MAS surpasses other tested compression algorithms 

in terms of compression ratio, compression speed, memory requirements and most importantly energy 

savings.  
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1. INTRODUCTION 

 
In the last few decades, Wireless Sensor Networks (WSNs) has proven to be an interest grabbing 

technology, offering great contributions in several application domains. Wireless Sensor 

Networks can provide a low cost solution to a variety of real-world problems including but not 

limited to health care, industry process control, object tracking, volcanic and seismic monitoring, 

smart parking, home automation, etc. Moreover, WSNs can provide enhanced situation awareness 

in responding to today’s public safety situations. For example, Sleep Safe project is designed for 

monitoring infants while they sleep. Sleep Safe sensor nodes can prevent sudden infant death 

syndrome (SIDS) by autonomously detecting the sleeping position of an infant and alerting the 

parents wirelessly in real time when the infant is lying on its stomach [2]. 

 

Typical WSNs are composed of a relatively high number of sensor nodes communicating through 

an infrastructure-less multi-hop wireless network architecture. These nodes usually perform three 

main tasks: data collection, data processing and data communication. The nodes capture data 

from their surrounding environment, they process it and finally they transfer it to a base station 

where decision makers can make use of it. 

 

Sensor nodes are small, cheap and smart devices that are made up of four basic components [3], 

as shown in Figure 1:  
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1) A sensing unit which captures a physical quantity from the environment. 

2) A processing unit which processes and analyzes the captured data. 

3) A transceiver which is responsible for data communication.  

4) A power unit which is in most of the cases a battery.  

 

 

Figure 1. Main Components of a sensor node. [3] 

Despite their promising range of applications, most WSNs are constrained in resources; they have 

limited amount of energy, limited processing capabilities, short range of communication and 

limited memory size. Out of these constraints, energy is considered the primary concern 

especially for battery-operated sensors; this is true because when a sensor node is depleted of 

energy, it would be useless for the network. This could affect the performance of the whole 

network especially if the node is used in critical locations, such as mines, volcanoes, etc. 

 

Over the past years, different studies and techniques have been proposed for WSNs to reduce 

energy consumption and increase network performance and lifetime. Data compression has been 

adopted as a practical technique and reliable solution in terms of energy efficiency in WSNs. The 

efficiency of data compression techniques mainly bears on the drastically disproportionate energy 

cost between data transmission and processing. This can be seen in Figure 2, which shows how 

many compute cycles, on a Texas Instruments MSP430 microcontroller, would be performed for 

the same amount of energy required to transmit a single byte over three commonly used radios [7] 

(Chipcon CC2420 [4]: short range 125 m, the Chipcon CC1000 [5]: medium range 300 m, and 

MaxStream XTend [6]: long range 15 km). 

 

 

Figure 2. Number of TI MSP430F1611 compute cycles that can be performed for the same amount of 

energy as transmitting one byte over three radios. [7] 

It is obvious that the most energy consuming part in WSNs is the communication. Approximately 

80% of power consumed in each sensor node is used for data transmission [1]. Thus to save 
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energy and maximize network lifetime, data transmissions should be minimized without losing 

vital information. The lower the size of the transmitted data the lower the number of required 

transmissions. In our work, we study data compression as the technique for minimizing data size. 

In this paper, we propose an energy efficient floating-point data compression algorithm for WSNs 

called MAS. MAS is a new adaptive streaming lossless compression algorithm that relies on an 

accommodative coding technique to achieve compression at low processing costs. MAS offers 

great contributions to WSNs, because it is one of the first algorithms to specifically compress 

floating-point data. By focusing on floating-point data, it is possible to achieve much better 

compression ratios because we can exploit the characteristics and the nature of numbers to build 

our algorithm. In fact, floating-point data is generated in a wide range of applications such as 

weather monitoring (temperature, pressure…), healthcare (blood pressure, cardiac activity…), 

localization and tracking (position, height, coordinates…), industry (temperature, vibrations, 

radioactivity…), etc. 

 

The remainder of this paper is organized as follows: Section 2 gives an overview of common 

compression schemes specifically designed for WSNs. Section 3 presents our newly proposed 

algorithm. Section 4 presents an evaluation of the presented algorithms. Section 5 concludes this 

paper while Section 6 presents future works. 

 

2. RELATED WORK 
 
Energy efficiency has been a major concern in the design and development of WSNs. Since radio 

communication is known to be the main source of energy consumption, most of the proposed 

techniques in the literature, which aim to increase energy savings, have focused on reducing data 

communication (transmission/reception). Data compression is such a technique, which is often 

used in conjunction with data collection techniques to transmit the collected data in an energy 

efficient manner.  

 

Due to the distributed nature of WSN applications, and the resource-constrained nature of sensor 

nodes, traditional data compression techniques cannot be easily used. It may not be feasible to run 

sophisticated data compression algorithms on sensor nodes. The limited resources available in 

these nodes demand the development of specifically designed algorithms. In this section, we 

present two famous compression algorithms used in WSNs: SLZW [7] and K-RLE [8]. We also 

present our proposed compression algorithm MAS [9] and compare it with these algorithms. 

 

2.1. S-LZW 

 
S-LZW [7] (Sensor-LZW) is an adaptation of the popular lossless data compression algorithm 

LZW [10]. S-LZW follows the same procedure used by the LZW algorithm, but with little 

restrictions regarding the size of the used data structures. The added restrictions ensure that the 

requirements of the algorithm are still within the bounds of the available resources in sensor 

nodes. 

 

Before heading into the details of the modification, it is first important to understand why LZW is 

not suitable for WSN. LZW is a dictionary-based compression algorithm; it works by converting 

strings of symbols into integer codes. LZW does not use a static dictionary; instead, it builds the 

dictionary on the fly in a special way to allow both the encoder and the decoder to be able to 

generate the same dictionary from the input data. First, both the encoder and the decoder initialize 

the dictionary with 256 entries containing the symbols in the ASCII code. Then the dictionary 

continues to grow while parsing the input. 
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The dictionary is the main obstacle preventing LZW from being applicable to WSN. Throughout 

the compression mechanism, the dictionary keeps growing and can reach sizes much higher than 

the available RAM on sensor nodes, and this can clearly disrupt the stability of the system. 

Another problem that LZW faces is that it requires a predefined data volume, i.e. in order for it to 

start the compression procedure a significant amount of data must already be available. That is 

why S-LZW can only be used in delay tolerant networks. 

 

Several modifications were done on LZW to make it portable to WSNs. Most of these 

modifications focus on reducing the amount of RAM required for LZW to operate. Here is a list 

of modifications that gave the birth to S-LZW: 

 

• S-LZW uses a 512-entry dictionary. As we mentioned before, this dictionary will be 

initialized with 256 ASCII code symbols. With this size, the dictionary may get full while 

compressing or decompressing certain datasets. There are two protocols to follow when the 

dictionary fills, either fix the dictionary to its state whence it get full, or reset the dictionary to 

the 256 entries. The authors of S-LZW [7] proved that using the fixed protocol produces 

better results when compressing data of small block sizes (528 bytes).  

 

• S-LZW divides input data into block sizes of 528 bytes, and then it compresses these blocks 

individually. It is important to note that S-LZW requires 528 bytes of data to be available in 

order to compress it, if this amount of data is not available, it has to wait until data 

accumulate and reach the required size because compressing data of smaller size will be 

inefficient as shown in [7]. WSN data sampling rate is relatively low and it may take some 

time to collect 528 bytes of data to be able to start the compression. This is why this 

algorithm can only be used in delay tolerant networks. 

 

• The last modification enhances S-LZW by allowing it to benefit from the similarity of data 

generated by sensor nodes. This is done by adding a mini-cache, which is a hash-indexed 

dictionary of size N, where N is a power of two, which stores recently used and created 

dictionary entries. The authors show that it is best to use mini-caches of sizes 32 or 64 

dictionary entries.  

 

2.2. K-RLE 

 
K-RLE [8] is a new compression algorithm whose idea is inspired from the lossless data 

compression algorithm RLE [11]. RLE stands for Run-Length Encoding, which is a very basic 

and simple compression algorithm that works in this way: if a data item d occurs n consecutive 

times in the input stream, we replace the n occurrences with a single pair nd.  

 

RLE itself is very simple and can be used in WSN without any major changes, its RAM and 

processing requirements are very low. However, there is a major limiting constraint in RLE, for 

RLE to achieve good compression ratio, the input data must contain long sequences of repeated 

characters, and this rarely occurs in the data generated from sensors. To solve this problem, K-

RLE algorithm has been proposed; K-RLE means RLE with K precision. 

 

The idea  behind this algorithm is: let K be a number, if a data item d, d+K, or d-K occur n 

consecutive times in the input stream, we replace the n occurrences with a single pair nd [8]. The 

new addition in K-RLE allows it to achieve higher compression ratios than RLE but at an even 

cost, which is data loss. In contrary to RLE, K-RLE is a lossy compression algorithm, and the 

amount of data loss is strongly related to the K parameter. Higher values for K means better 

compression ratio but more data loss, while lower values of K means lower compression ratio but 

less data loss. 
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There are two main advantages of K-RLE over S-LZW:  

 

1) K-RLE uses much less amount of RAM than S-LZW, so it can be used in several sensor 

platforms where S-LZW cannot be used. 

2) K-RLE has the streaming feature, which means it does not need to buffer data before 

being able to start the compression process. So K-RLE can be used in networks that 

cannot tolerate delay. 

 

The main two disadvantages of K-RLE are:  

 

1) It is a lossy algorithm, so it is not suitable for some applications  

2) It requires the input data to contain long sequences of similar characters in order to have a 

good compression ratio. 

 

3. MAS COMPRESSION ALGORITHM 
 
MAS stands for Minimalist, Adaptive and Streaming compression algorithm. Minimalist means 

that it uses the minimum possible amount of resources. Adaptive means it generates variable-size 

output according to the number of digits in the input, and Streaming means that it does not require 

buffering of the data before starting the compression process. 

 

MAS is a specialized lossless compression algorithm that only compresses single-precision 

floating-point data. MAS’ implementation does not require any correlation or similarity in the 

input data, which makes it general and applicable in various domains. 

 

MAS can encode any floating-point number satisfying the following two conditions: 

 

1) The number of significant digits should be at most 7, if a floating-point number exceeds 7 

significant digits it would be truncated.  

2) The floating-point number when put in scientific notation must have a power of 32 or 

less.  

 

Although these conditions mean that some numbers representable by IEEE standard 754 [12] will 

not be representable in MAS. However, these numbers almost do not exist in the data generated 

by WSN. Numbers that have decimal powers of more than ±32 are almost not found in any 

application in WSN.  

 

One of the greatest merits of MAS is that it does not require any floating-point operation 

(addition, subtraction, multiplication, division) to compress floating-point numbers. This is very 

important because most microcontrollers and processors in sensor platforms are not equipped 

with an FPU (Floating point unit). The FPU is responsible for carrying out operations on floating-

point numbers. In the absence of an FPU, these operations are emulated in software but at the cost 

of time and cycles, which could lead to higher energy consumption. Internally, MAS treats 

floating-point numbers as strings of characters to carry out the needed operations with a low 

number of cycles.  

 

3.1. MAS Encoding Technique 

 
The first step in encoding a floating-point number is to write it in scientific notation. Scientific 

notation allows the representation of very small or big numbers with ease. So any number is first 

written under the following format (d = digit, e = exponent): 
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± �. ������ � 10±� 

 

To encode a number, the different parts in the above format must be encoded. MAS encodes them 

in five sections detailed below and are shown in Figure 3 from left to right: 

 

• Number of significant digits (n) (number of d’s): represented on 3 bits because its 

maximum value is 7. 

• The exponent (e): represented on 5 bits because its maximum value is 32. 

• Number sign (ns): represented on 1 bit. (0 for positive, 1 for negative). 

• Exponent sign (es): represented on 1 bit. (0 for positive, 1 for negative). 

• The integer formed by the d’s without the decimal point (ddddddd): variable bit size 

depending on the number of d’s (maximum 24 bits). Details are in Table 1. 

 

 

Figure 3. MAS encoding of a real number. 

Table 1.Number of bits needed to represent an integer in binary formed by a certain number of digits. 

Number of digits Number of needed bits 

1 4 

2 7 

3 10 

4 14 

5 17 

6 20 

7 24 

 

It is clear that MAS exploits the significant number of digits to represent floating point numbers, 

for example: -0.0001 is represented on 14 bits while 92301.1 is represented on 30 bits. 

 

Integers form a large part of real numbers, but the above representation may be unfair for integers 

because there is no need for the exponent and its sign when representing integers. Therefore, a 

special encoding has been chosen for integers, but there should be a discriminator for the decoder 

to know which type of number it is going to decode. We exploit the fact that the number of 

significant digits cannot be zero, and use this as a discriminator between the 2 encodings. Integer 

representation thus has four parts as shown in Figure 4: 

 

• 3 bits that are all zeroes acting as a discriminator. 

• Number of significant digits (n) in the integer: 3 bits. 

• Number sign (ns): 1 bit. 

• The integer: variable bit size following Table 1 (maximum 24 bits). 

 

 

Figure 4. MAS encoding of an integer. 

We also exploit the fact that in an integer the number of significant digits cannot be zero to make 

a special representation for the actual zero. A zero is represented in MAS as 6 zero bits: 000000. 

 

Finally, since our algorithm generates codes of variable size, we need to make sure that the 

overall output is aligned to memory; we do this by filling the required number of bits by 1s. The 

 n n n | e e e e e | ns | es | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

 0 0 0 | n n n | ns | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
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number of alignment bits is between 1 and 7, and they are added only once at the end of the 

output. 

 

3.2. MAS Decoding Technique 

 
The decoding technique is straightforward and is done following these steps: 

 

1) Read the first three bits. 

 

2) If the bits are zeroes, the encoded number is an integer. 

 

a. Read the next three bits to extract the number of significant digits. 

b. Read the next bit to determine the number’s sign. 

c. Read the number of bits required to extract the number referring to Table 1, then 

extract the integer. 

d. Combine the readings so far to decode the integer. 

 

3) If the bits are non-zeros, the encoded number is a real. 

 
a. The already read bits represent the number of significant digits. 

b. Read the next five bits to extract the exponent. 

c. Read the next bit to determine the number’s sign. 

d. Read the next bit to determine the exponent’s sign. 

e. Read the number of bits required to extract the number referring to Table 1, then 

extract the integer. 

f. Combine the readings so far to decode the real number. 

 

The explanation of MAS’ encoding and decoding techniques clarifies why MAS is considered a 

streaming algorithm. MAS can compress or decompress even one single value, and does not 

require predefined data volume as S-LZW. 

 

4. EVALUATION 
 
The evaluation metrics of any compression algorithm for WSN are based on the resource 

limitations of sensor nodes. Thus, we chose the following metrics to evaluate the presented 

algorithms: compression ratio, processing cost, memory requirements, and energy savings.  

 

In the following sub-sections, we will start by describing the chosen platform and the chosen 

simulators, and then we will move to present the simulation results and evaluate the algorithms 

performance. 

 

4.1. Platform Overview 

 
Our chosen platform is the Waspmote [13] because of its interesting characteristics. A Waspmote 

can be connected to 60 sensor types and can support up to 8 different wireless technologies. 

A Waspmote uses an 8-bit AVR microcontroller called ATmega1281 [14], which is low power 

microcontroller provided by Atmel [15]. It is supplied with a 128 KB flash (program) memory 

and an 8 KB RAM. The microcontroller can have frequencies between 0 and 16 MHz at an 

operating voltage of 1.8/5.5 V. In the active mode, as shown in Figure 5, the microcontroller 

consumes 1 mA at a voltage of 3.3 V and frequency of 1 MHz; this means this microcontroller 

consumes 3.3 nJ for one computation cycle in its active mode. This microcontroller does not have 

an FPU unit. 
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Figure 5. Active Supply Current vs. frequency (0.1MHz - 1.0MHz) on ATmega1281 microcontroller. [14] 

We chose the wireless technology to be CC2420 RF [16] transceiver, which complies with the 

IEEE 802.15.4 standard [17]. This transceiver is designed for low-power and low-voltage 

wireless applications. It has low current consumption; for transmission, it consumes 17.4 mA and 

for reception, it consumes 18.8 mA. It has an effective data rate of 250 kbps. 

 

4.2. Simulators Overview 

 
In order to calculate the total energy consumed, we need to calculate two different kinds of 

energy, the computation energy, and the communication energy. To calculate the computation 

energy, we calculate the number of cycles needed to achieve the required computation and this is 

done by using the Atmel AVR Studio [18]. To calculate the communication energy, we calculate 

the transmission energy only at the node performing the compression using OMNeT++ [19]. 

 

Atmel AVR Studio [18] is an Integrated Development Environment (IDE) for writing and 

debugging AVR/ARM applications. It supports the complete range of Atmel AVR tools and 

devices. The simulator in AVR Studio can simulate the CPU, including all instructions, interrupts, 

and most of the on-chip I/O modules. We use Atmel AVR Studio to calculate the required 

number of cycles as well as the memory requirements of the algorithms. 

 

OMNeT++ [19] is an object-oriented modular discrete-event network simulation framework. 

OMNeT++ itself is not a simulator, but rather provides infrastructure and tools for writing 

simulations. It is considered the best simulation framework for WSN as demonstrated in [20]. In 

order to simulate WSN, we use MiXiM [21], which is an OMNeT++ modelling framework 

created for mobile and fixed wireless networks. We use OMNeT++ to calculate transmission 

energy consumption and to model realistic behaviour of nodes in an environment close to reality. 

 

4.3. Datasets 

 
To make our results more realistic, we use real-world datasets from various application domains. 

Our datasets include carbon dioxide monthly measurements in ppm above Mauna Loa (CO2), 

monthly mean water levels in meters in the lake of the wood at Warroad (Water), the radioactivity 

in the ground at one minute intervals over one day (Radio) [22], temperature measurements in a 

garden (Temp) [23], average humidity at Limoges (Hum), sea low level pressure (Pressure) [24]. 

Table 2 shows the sizes in bytes of the used datasets. 
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Table 2. The different used datasets and their sizes in bytes. 

Dataset CO2 Hum Radio Temp Pressure Water 

Size (bytes) 3070 264 49450 10192 2405 5395 

 

4.4. Simulation Scenario 

 
Our OMNeT++ simulation model consists of two sensor nodes that are 100 meters apart. One of 

these nodes sends the data in compressed form while the other one only receives them and replies 

with MAC acknowledgements. We assume that the data is transmitted in packets having payloads 

of 64 bytes. No noise or interference was added to the simulation model so no packets were 

dropped. Sensor nodes are equipped with battery having a nominal voltage of 3.3 V and a 

nominal capacity of 1000 mAh. Regarding the algorithms, we use S-LZW-MC32 (mini cache of 

size 32) and K-RLE with K = 2.  

 

4.5. Simulation Results and Analysis 

 
The following subsections present the simulation results along with their respective analysis. 

 

4.5.1. Compression Ratio 

 
The compression ratio is a very important metric when comparing compression algorithms. In 

WSNs, having higher compression ratios means lesser amount of data to be transmitted, which 

means more energy savings. The compression ratio is calculated according to the following 

equation: 

 

	
��
����
� 
���
 = 1 −
�
��
�����. ����



������. ����
 

 

Figure 6. Compression ratios on various datasets. 

The results shown in Figure 6, show that MAS beats both S-LZW and K-RLE in all the datasets. 

MAS’ highest compression ratio is about 68.7% and its lowest compression ratio is 57.5%, S-

LZW highest compression ratio is 57.7% and its lowest compression ratio is 31.1%, K-RLE does 

not perform well in compressing these data sets, its highest compression ratio is 8.3% while its 

lowest is 0%. This could be justified by the fact that numbers found in datasets generated by 

sensor nodes often do not contain long sequences of repeated symbols.  
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These results show a great advantage of using MAS to compress floating-point data, since it 

always achieves better results than the other algorithms.  

 

4.5.2. Computation Time and Energy 

 
After compression ratios have been presented it is important to see how much computation cycles 

does the microcontroller run in order to achieve these results. From computation cycles, we can 

calculate the compression time required by the microcontroller by assuming that the 

microcontroller is operating at a frequency of 1 MHz. 

 

Figure 7 shows that in all cases K-RLE requires the least number of computation cycles. This is 

justified by the fact that K-RLE compression ratios are low, thus the algorithm is not performing 

all the required procedures. The results for the K-RLE algorithm are not reliable to be used for 

comparison with the other algorithms since they do not reflect the actual performance of the K-

RLE algorithm. For the other algorithms, we notice that S-LZW requires more computation 

cycles than MAS in all the datasets. In most cases, MAS requires about one-third the amount 

required by S-LZW. The same justification applies to compression time and computation energy 

(shown in Figure 8) since they are directly proportional to computation cycles. 

 

Compression time is calculated using the following formula: 

 

	
��
����
� ���� =
�����
 
� �
�������
� ������

�
� �����
 

In our experimentation, the microcontroller has in its active state a frequency of 1 MHz. 

 

As for the computation energy, it is calculated using the following formula: 

 

	
�������
� ���
�� = 	
�������
� ������ � !��
�� 
� 
�� ����� 

 

The energy of one cycle is calculated in section 4.1, and was found to be 3.3 nJ. 

 

 

Figure 7. Required computation cycles and compression time on ATmega1281 microcontroller. 
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Figure 8. Computation energy cost. 

4.5.3. Transmission Energy 

 
Computation energy alone is not sufficient to reflect the energy efficiency of an algorithm. The 

energy efficiency depends on both computation and transmission energy. Transmission energy is 

the energy consumed by the sensor to send the compressed data wirelessly. Figure 9 shows the 

energy required to transmit the compressed form of the datasets. 

 

 

Figure 9. Transmission energy cost 

Regarding transmission energy consumption, it is obvious that K-RLE consumes the most energy. 

This is because K-RLE compression ratio is low, thus it is transmitting larger amounts of data 

than the other algorithms. Again, MAS consumes the least amount of transmission energy and 

beats the other algorithm.  

 

4.5.4. Total Consumed Energy  

 
The total energy consumed could better reflect the energy efficiency of the three algorithms. 

Despite the fact that K-RLE consumes the least amount of computation energy, results in Figure 

10 show that it consumes the most amount of total energy. This is because it sends large amounts 

of data over the network. For the other two algorithms, MAS consumes the least energy and thus 

proves to be a strong candidate for compression in WSN. 
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Figure 10. Total energy cost when using compression. 

To be able to calculate energy savings of each algorithm, we have to calculate the energy 

consumed when not using any compression algorithm. The energy consumed when not using a 

compression algorithm is the energy required to send the data in uncompressed form, so it 

depends greatly upon the data sizes. That is why we see, in Figure 11, that the Radioactivity 

dataset is consuming the most energy since it has the largest size. 

 

 

Figure 11. Total energy cost when not using compression. 

4.5.5. Energy Savings 

 

Figure 12 shows the percentage of energy saved when using each of the three compression 

algorithm. Energy savings is calculated according to the following formula: 
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Figure 12. Energy saved when using compression algorithms. 

It is clear that MAS achieves the most energy savings with results better than both S-LZW and K-

RLE. MAS’ energy savings are more than that of S-LZW by an average of 20%, and better than 

that of K-RLE by an average of 48%.  

 

In some datasets, when using the K-RLE algorithm, the saved energy is negative, it means that 

the compression algorithm is not saving energy; instead, it is leading to more energy 

consumption. This is due to the low compression ratios of K-RLE on some datasets. 

 

4.5.6. Memory Requirements 

 
To complete the evaluation we must calculate the amount of memory consumed by each 

algorithm. As a reminder, our platform has a flash memory of 128 KB and a RAM of 8 KB. It is 

important to note that the memory results are independent of the datasets used. This is because 

these results are obtained just when building the algorithm and before running any operation or 

procedure. So these values represent the amount of memory allocated by the algorithm when they 

are loaded into RAM and before operating on any dataset. Figures 13 and 14 show the absolute 

and relative memory consumption of each algorithm for flash memory and RAM respectively. 

 

 

Figure 13. Flash memory consumption. 

MAS consumes the largest amount in the flash memory. In fact, MAS program code is a little 

long since it has two representations for integers and real numbers. Flash memory consumption is 

not important and it is not a concern, since flash memory is always of a large size, and MAS is 
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only using 2.8% of that memory. This does not introduce any problems in performance since the 

flash memory is reserved for program code and not for random access. 

 

 

Figure 14. RAM consumption. 

In terms of RAM usage, which is the important memory concern, MAS consumes only 44 bytes 

while K-RLE consumes almost zero bytes. S-LZW turns out to be the most RAM consuming 

algorithm, and this is because of the dictionary it uses, S-LZW consumes 3240 bytes, which is 

equivalent to about 40% of the RAM.  

 

These results prove that MAS is a strong candidate for compression in WSNs, since it beats the 

other algorithms in all the proposed metrics. It achieves compression ratios better than S-LZW by 

an average of 13% and better than K-RLE by an average of 59%. MAS saves the most amount of 

energy, it saves by an average of 20% more than S-LZW and 54% more than K-RLE. In terms of 

memory, MAS and K-RLE use a very little amount of RAM, MAS uses only 0.5% of the total 

amount of RAM, while K-RLE consumes almost zero bytes of RAM. S-LZW uses the most 

amount of RAM; it consumes 3240 bytes that is equivalent to 39.6% of the total available RAM. 

 

5. CONCLUSIONS 
 
In this paper, we propose MAS, a new lossless floating-point data compression algorithm for 

WSNs. MAS is applicable to a variety of sensor hardware and platforms due to its low memory 

and processing requirements. 

 

Simulation results show that MAS’ energy savings are on average 54% on all the tested datasets, 

while maintaining the highest compression ratios. MAS surpasses the other tested compression 

algorithms in terms of compression ratio, compression speed, memory requirements and energy 

savings. These results, which are obtained from accurate and trustworthy simulators, present 

MAS as a strong and competing candidate for data compression in WSN. 

 

6. FUTURE WORKS 
 
As a short-term step, we would like to improve MAS to exploit the correlation and the similarity 

in the data generated by sensor nodes. Such an improvement would allow MAS to achieve higher 

compression ratios. We would also like to implement a transformation that aims at reducing the 

number of digits in the input. This transformation is expected to increase MAS’ compression ratio 

since MAS relies mainly on the number of digits in the data to achieve compression 

 

As a long-term step, we would like to study the efficiency of using MAS with an aggregation 

technique. The main challenge here is to prove that introducing MAS to aggregated networks 
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does not lead to more energy consumption at the level of aggregators, which are supposed to 

follow this cycle to achieve their job: decompression – aggregation – compression. 
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