
International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

DOI : 10.5121/ijccsa.2016.6103 23

COMPARATIVE STUDY OF VARIOUS PLATFORM AS A

SERVICE FRAMEWORKS

Mohan Krishna Varma

and Eunmi Choi*

DISC Lab, Graduate School of Business IT, Kookmin University, Seoul, South Korea

*Corresponding Author, School of Business IT, Kookmin University, Seoul, Korea

ABSTRACT

Cloud computing is an emerging paradigm with three basic service models such as Software as a Service

(SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS). This paper focuses on

different kinds of PaaS frameworks. PaaS model provides choice of cloud, developer framework and

application service. In this paper, detailed study of four open PaaS frameworks like AppScale, Cloud

Foundry, Cloudify, and OpenShift are explained with the architectural components. We also explained

more PaaS packages like Stratos, mOSAIC, BlueMix, Heroku, Amazon Elastic Beanstalk, Microsoft Azure,

Google App Engine and Stakato briefly. In this paper we present the comparative study of PaaS

frameworks.

KEYWORDS

Cloud Computing, AppScale, Cloud Foundry, Cloudify, OpenShift, Stratos, BlueMix, Heroku & Stackato

1. INTRODUCTION

Cloud computing [2] is a widely used technology in which computers are networked to provide

storage and compute services using virtualization technology. Cloud computing must satisfy five

essential characteristics. They are on demand service, access network, resource pooling, elasticity

and measured services. To achieve these five essential characteristics, cloud computing provides

three kinds of service models: Software as a Service (SaaS), Platform as a Service (PaaS) [8] and

Infrastructure as a Service (IaaS) [9]. Cloud computing service models are shown in Figure 1.

Customer Relationship Management (CRM) applications are widely used services in the SaaS.

Application platform delivered as a service is described as PaaS and it is used to deploy the user

code. AppScale [3], Cloud Foundry, Cloudify and OpenShift open-source environments can be

used as PaaS. IaaS is used to build their private infrastructure, which reduces the setup cost. IaaS

can provide virtualized resources such as computation, storage and communication. Eucalyptus

[1], open stack and cloud stack open-sources can be used to provide IaaS.

Figure 1. Cloud computing service models

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

24

This paper will focus on the PaaS service model. It is easy to deploy, run and scale application

using PaaS. Some of the PaaS have limited language and framework support. They do not deliver

key application services needed for cloud applications. They sometime restrict deployment to a

single cloud. Whereas open PaaS provides choice of cloud like private, public or hybrid, choice

of developer framework like spring, ruby, or java and application services like mongoDB,

MySQL, or PostgreSQL for running the applications. This paper deals with the architectural

components of major open PaaS frameworks like AppScale, Cloud Foundry, Cloudify and

OpenShift. And also given some explanation about PaaS frameworks such as Stratos, mOSAIC,

BlueMix, Heroku, Amazon Elastic Beanstalk, Microsoft Azure, Google App Engine and Stakato.

The paper is organized as follows. Section 2 introduces AppScale and its components, Cloud

Foundry architecture and component explanation given in Section 3, Cloudify open PaaS is

explained in Section 4, Section 5 deals with OpenShift, other PaaS frameworks are introduced in

Section 6, comparison of PaaS frameworks are given in Section 7 and finally Section 8 concludes

the paper.

2. APPSCALE

AppScale [4] is a scalable, distributed, and fault-tolerant cloud runtime system that executes over

cluster resources. It can be deployed on Xen [5], Kernel-based Virtual Machine (KVM), Amazon

EC2 or Eucalyptus. AppScale initial design utilizes the standard three-tier web deployment model

in the design. In the later design cycles more components are added to the AppScale. Table 1

shows the AppScale components, language used to design the component and their functionality.

Table 1. AppScale Components

Component Language Functionality

AppController Ruby Executes on every node and starts automatically when

the guest virtual machine boots

AppLoadBalancer Ruby on Rails Processes arriving requests from users and forwards

them to the application server

AppServer Python Running through a number of distant hosts to support

automated execution of applications

Database Master Python Offers persistent storage for applications, processes

protocol buffers from apps and makes requests on its

behalf to read and write data to the data store

Database Slave Python Facilitate distributed, scalable, and fault tolerant data

management

AppScale Tools Ruby Starts an AppScale system, deploys and tear down

applications, queries the state and performance of

AppScale deployment or application, and manipulates

AppScale configuration and state

3. CLOUD FOUNDRY

Cloud Foundry [13] is an open PaaS, which provides choice of clouds, developer frameworks and

application services. Cloud Foundry makes application development faster and easier. We can

build, test, deploy and scale applications with help of Cloud Foundry. It is an open-source project

available through a variety of private cloud distributions and public cloud instances. Cloud

Foundry started as a platform to deploy Java Spring applications on Amazon Web Services.

VMware acquired the Cloud Foundry and made it into an open-source, multi-language and multi-

framework PaaS. Cloud Foundry supports multiple languages and multiple runtimes such as Java,

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

25

Ruby, Scala, spring and Node.js. Cloud Foundry can run on anything like laptop, desktop, micro

cloud, private cloud or public cloud. So, it is called as open PaaS as shown in Figure 2. Cloud

Foundry has three dimensions to the platform: choice of frameworks, choice of application

services and the deployment choice. Cloud Foundry supports spring for Java, Rails and Sinatra

for Ruby, Node.js and JVM languages like Groovy, Grails and Scala. It also supports Microsoft

.NET Framework and became the first non-Microsoft platform to support .NET.

Figure 2. Cloud Foundry as Open PaaS

Cloud Foundry supports RabbitMQ for messaging, MongoDB and Redis for NoSQL, relational

databases MySQL and PostgreSQL. Cloud Foundry can be deployed on notebooks through Micro

Cloud Foundry. It is the complete version of Cloud Foundry designed to run in a virtual machine.

It can also be deployed on Private Cloud or Public Cloud. These features made Cloud Foundry as

a flexible PaaS.

Cloud Foundry components perform routing, authentication, messaging, logging, application

storage and execution, provide services and take care of application life cycle. The router routes

incoming traffic to the appropriate component, usually the Cloud Controller or a running

application on a DEA (Droplet Execution Agent) node. The User Account and Authentication

(UAA) server work with Login Server to provide identity and authentication management.

OAuth2 Server is uses as the user account and authentication server. Cloud controller and health

manager components take care of the application lifecycle in the cloud foundry. Cloud controller

is responsible for managing the lifecycle of applications. When a developer pushes an application

to cloud foundry, application is targeting the cloud controller. Cloud controller then stores the raw

application bits, creates a record to track the application metadata, and directs a DEA node to

stage and run the application. Health manager monitor applications to determine their state,

version, and number of instances. Applications state may be running, stopped, or crashed. Health

manager determine applications expected state, version, and number of instances. It reconciles the

actual state of applications with their expected state. Health manager directs the cloud controller

to take action to correct any discrepancies in the state of applications. The Droplet Execution

Agent manages application instances, tracks, started instances, and broadcasts state messages.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

26

Application instances live inside warden containers. Containerization ensures that application

instances run in isolation, get their fair share of resources, and are protected from noisy

neighbours. Blob Store holds the application code, build packs, and droplets. Applications

typically depend on services like databases or third-party SaaS providers. When a developer

provisions and binds a service to an application, the service broker for that service is responsible

for providing the service instance. Cloud Foundry uses a lightweight publish-subscribe and

distributed queueing messaging system for internal communication between components. This

internal communication performed via message bus. The metrics collector gathers metrics from

the components. Operators can use this information to monitor an instance of Cloud Foundry. The

application logging aggregator streams the application logs to the corresponding developers.

Cloud Foundry components are shown in Figure 3.

Figure 3. Cloud foundry components

4. CLOUDIFY

Cloudify [14] is another open PaaS cloud application manager. It automates common processes

needed to perform and to manage the applications in a cloud environment. Cloudify composed of

three main components. The components are Command line interface client, Agents, and

Manager. Command line interface client is an executable file which is written in Python. It is

packaged with python and relevant dependencies in an executable file. Command line interface

client can run on Windows, Linux and Mac operating systems. Command line interface client

preform two tasks. First one is manager bootstrapping and another is managing applications.

Bootstrapping is the process of installing the Cloudify manager. Command line interface client

provides the user with the full set of functions for deploying and managing applications including

log and event browsing.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

27

Cloudify Agents are responsible for managing the manager’s command execution using a set of

plugins. There is a manager side agent per application deployment and optional agent on each

application Virtual Machine (VM). The manager side agents handle IaaS related tasks, like

creating a VM or a network, and binding a floating IP to a VM. Manager side agents can also be

used with other tools such as REST to remotely execute tasks. The application side agents are

optionally located on application VM’s. The user can state in the blueprint which VM’s will have

an agent installed on them. The application side agents are installed by the manager side agent as

part of the VM creation task. Once running, the application side agent can install plugins and

execute tasks locally. Typical tasks will be middleware installation and configuration, and

application modules deployment.

Cloudify Manager deploys and manages applications described in blueprints. The manager’s

main responsibilities are to run automation processes described in workflow scripts and issue

execution commands to the agents. Cloudify is controlled via a REST API. The REST API covers

all the cloud orchestration and management functions. Cloudify’s Web GUI works with the REST

API to add additional value and visibility. Cloudify uses a Workflow engine to allow automation

process through built-in and custom workflows. Workflow engine is responsible of timing and

orchestrating tasks for creating or manipulating the application components. The user can write

custom workflows in Python using API’s that provide access to the topology components.

Figure 4. Cloudify Stack

Cloudify uses different databases as data store, some of the technologies for processing and

messaging, and different servers as front end. Total stack is shown in Figure 4. Cloudify uses

elastic search as its data store for deployment state. The deployment model and runtime data are

stored as JSON documents. Blueprints are stored in the elastic search and it is used as runtime

DB. Cloudify uses InfluxDB as the monitoring metrics repository. Influx provides flexible

schema for metrics and metrics metadata as well as a query language. Cloudify stores every

metric reported by a monitoring tool into influxdb and define time based aggregations as well as

statistic calculations. Clodify uses RabbitMQ task broker for messaging. Cloudify offers a policy

engine that runs custom policies in order to make runtime decisions about availability, service

level agreement, etc. For example, during installation, the policy engine consumes streams of

events coming from monitoring probes or tools. The policy engine analyses these streams to

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

28

decide if a specific node is up and running and provides the required functionality. Policies are

registered, activated, deactivated and deleted by the Workflow Engine. For logging purpose

logstash is used and agent play main role in processing. Nginx proxy and file server, Flask or

Gunicorn REST server, and Node.js GUI servers can be used as front end in the Cloudify.

5. OPEN SHIFT

OpenShift [15] enables us to create, deploy and manage applications within the cloud. Two basic

functional units of the Openshift are the Broker and Node servers. Communication between the

Broker and Nodes is done through a message queuing service. Broker is the single point of

contact for all application management activities. It is responsible for managing user logins, DNS,

application state, and general orchestration of the applications. Customers don’t contact the

broker directly; instead they use the Web console or CLI tools to interact with Broker over a

REST based API. Nodes are the systems that host user applications. In order to do this, the Nodes

are configured with Gears and Cartridges. The division is shown in Figure 5.

Figure 5. OpenShift

A gear represents the part of the Node’s CPU, RAM and base storage that is made available to

each application. An application can never use more of these resources allocated to the gear, with

the exception of storage. OpenShift supports multiple gear configurations, enabling users to

choose from the various gear sizes at application setup time. When an application is created, the

Broker instructs a Node to create a new gear to contain the application. Cartridges represent

pluggable components that can be combined within a single application. These include

programming languages, database engines, and various management tools. Users can choose from

built-in cartridges that are served directly through OpenShift, or from community cartridges that

can be imported from a git repository. The built-in cartridges require the associated languages and

database engines to be installed on every Node.

6. MORE PAAS FRAMEWORKS

In this section we are going to give brief introduction about Stratos, mOSAIC, IBM BlueMix,

Heroku, Amazon Elastic Beanstalk, Microsoft Azure and Google App Engine, and Stakato PaaS

frameworks.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

29

6.1. STRATOS

Apache Stratos [6] is a highly-extensible PaaS framework that helps to run Apache Tomcat, PHP,

and MySQL applications, and can be extended to support many more environments on all major

cloud infrastructures. For developers, Stratos provides a cloud-based environment for developing,

testing, and running scalable applications. In Single JVM deployment model Stratos could

accommodate up to 100 cartridge instances. In a distributed deployment model Stratos could

accommodate up to 1000 cartridge instances.

6.2. MOSAIC

mOSAIC [10] is an open-source API and platform for designing and developing multi-Cloud-

oriented applications. The architecture has been designed with open and standard inter faces. The

main goal is to provide a unified cloud programming interface which enables flexibility to build

applications across different cloud providers. The main middleware components providing

integration features are the Cloudlet, Connector, Interoperability, and Driver API. The Cloudlet

and Connector API layers facilitate the integration into the target language environment which is

used by the developers in their applications. The Driver API layer provides abstraction over

resource allocation on top of the native resource API. Interoperability API is the middleware layer

that integrates the connector API and compatible driver API implementations that could be

written in different languages. It is a remote API that follows the model of RPC with

functionalities including marshalling, request/response correlation, and error detection. Apart

from its cloud integration features, mOSAIC framework is promised to have a semantic-oriented

ontology for describing cloud resources.

6.3. BLUEMIX

Bluemix [16] is the newest cloud offering from IBM. BlueMix allows developers to create,

deploy, and manage applications on the cloud. It is an implementation of IBM’s Open Cloud

Architecture based on Cloud Foundry, an open source Platform as a Service (PaaS). It delivers

enterprise-level services that can easily integrate with cloud applications without requiring to

know how to install or configure them.

6.4. HEROKU

Heroku [17] is a PaaS solution created on top of the Amazon EC2 that allows to deploy, run and

manage applications written in Ruby, Node.js, Java, Python, Clojure, Scala and PHP. It runs on

top of Amazon EC2 VMs and offers a readymade set up environment in which the developer can

upload code, compile it and run it. All these things can be done with some simple commands. The

developer has the opportunity to test and deploy applications without necessary knowledge of

underlying infrastructure. Heroku can manage the resources required to scale the project.

6.5. ELASTIC BEANSTALK

Amazon Elastic Beanstalk [12] supports users to deploy their applications on Amazon Web

Service (AWS) cloud platform. AWS Elastic Beanstalk PaaS framework allows users to create

applications and push them to a definable set of AWS services, including Amazon EC2, Amazon

S3, Amazon Simple Notification Service (SNS), Amazon CloudWatch, auto scaling, and elastic

load balancers. Elastic Beanstalk frameworks support different languages for cloud development.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

30

6.6. AZURE

Microsoft Windows Azure [11] allows the application deployment and management on Azure

cloud platform. The Microsoft Azure framework offers a cloud services operating system and a

set of services to support easy development and operation of applications for cloud platform.

Azure provides functionality to build and manage applications that span from consumer Web to

enterprise scenarios.

6.7. APP ENGINE

Google App Engine [18] allows developers to deploy their application on Google cloud platform.

App Engine framework allows developers to use Java, Python and some other languages for

developing their web applications.

6.8. STAKATO

Stackato [7] is open PaaS software based on Cloud Foundry, Docker and other open-source

components. It has multi-tenancy capabilities and can be installed on internal infrastructure or

public cloud. Multi-tenancy capabilities are important because they allow us to run multiple

applications on the same IaaS infrastructure. Stackato allows developers to automatically package

applications into their own Docker containers and scales instances up or down on demand.

Stackato provisions all required components, including languages, frameworks and service

bindings, automates logging and monitoring, allows for automated application versioning and

rollback.

7. COMPARISON OF MAJOR PAAS

In this section major PaaS frameworks comparison is given in the table format. Table 2 shows the

basic functionality and its corresponding AppScale, Cloud Foundry, Cloudify, and OpenShift

architectural components.

Table 2. Open PaaS Components comparison

Functionality AppScale Cloud Foundry Cloudify OpenShift

Core functionality AppController Cloud controller Manager Broker

Providing third party

database services

Database Master Service Broker Agent Cartridge

Routing of incoming

traffic

AppLoadBalancer Router Manager REST API

Querying the state of

apps

AppScale Tools Cloud controller CLI client Broker

Messaging AppController Message Bus Manager Broker

Application instance

management

AppServer Droplet Execution

Agent

Agent Node

Application state

change

AppLoadBalancer Health Manager Manager Broker

Containerization Database Slave Warden Agent Gear

Load balancing of user

requests

AppLoadBalancer Droplet Execution

Agent

Manager Broker

Framework provider AppServer Blob Store Agent Cartridge

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

31

Table 3 shows the AppScale, Cloud Foundry, Cloudify, OpenShift, Apache Stratos, mOSAIC,

IBM BlueMix, Heroku, Amazon Elastic Beanstalk, Microsoft Azure and Google App Engine

PaaS environment’s supported languages (java, python, ruby, perl, groovy), databases

(MongoDB, MySQL, HBase, PostgreSQL), frameworks (spring, rails, and flask), and

deployments (private or public). In OpenShift, languages and databases are supported in the form

of cartridges. User defined cartridges are also allowed in OpenShift. Cloud Foundry provisions

languages in the form of build packs. Users can also pick to write their own build packs.

Cloudify, Cloud Foundry and Openshift have extensible language support feature. AppScale,

Cloud Foundry, Cloudify, OpenShift, Apache Stratos and mOSAIC are open source cloud

platforms, for this reason their deployment is given as private PaaS. IBM BlueMix, Heroku,

Amazon Elastic Beanstalk, Microsoft Azure and Google App Engine PaaS environments can be

deployed on public cloud and these are not open source, so these things are considered as Public

PaaS.

Table 3. Language, Database and Frameworks supported by open PaaS

PaaS Languages Databases Frameworks Deployment

AppScale
Python, Java, Go,

PHP

Cassandra,

HBase,

Hypertable,

MongoDB,

SimpleDB,

MySQL

Django,

Flask, Spring
Private PaaS

Cloud

Foundry

Java, Ruby, Scala,

Node.js, Groovy,

Grails, PHP, Go,

Python

MonogoDB,

MySQL,

PostgreSQL

Spring,

Rails, Grails,

Play, Sinatra

Private PaaS

Cloudify Java, PHP, Ruby
MySQL,

MongoDB

Not

supported
Private PaaS

OpenShift

Java, PHP, Ruby,

Python, Perl,

JavaScript,

Node.js

PostgreSQL,

MySQL,

MongoDB

Rails, Flask,

Django,

Drupal,

Vert.x

Private PaaS

Stratos Java, PHP MySQL
Not

supported
Private PaaS

mOSAIC Java Not supported
Not

supported
Private PaaS

BlueMix

PHP, Python,

Ruby, Java,

Node.js, Go

Cleardb,

Elephantsql
Sinatra, Rails Public PaaS

Heroku

Scala, Ruby,

Python, PHP,

Node.js, Java,

Groovy, Go,

Clojure

PostgreSQL

Django,

Flask, Rails,

Grails, Play

Public PaaS

Amazon

Elastic

Beanstalk

.Net, Go, Java,

Node.js, PHP,

Python, Ruby

Not supported
Not

supported
Public PaaS

Microsoft

Azure

Java, .Net,

Node.js, Ruby,

Python, PHP

Not supported
CakePHP,

Django
Public PaaS

Google App

Engine

Go, Java, PHP,

Python
Not supported Django Public PaaS

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

32

Table 4 compares the relational database support, NoSQL Support, horizontal scaling, vertical

scaling, auto scaling, spring framework support, Add-ons and language extensibility features of

AppScale, Cloud Foundry, Cloudify, OpenShift, Apache Stratos, mOSAIC, IBM BlueMix,

Heroku, Amazon Elastic Beanstalk, Microsoft Azure and Google App Engine PaaS Frameworks.

The Table 4 shows “yes” for supported features and “no” for the unsupported features in the

corresponding framework columns.

Table 4. PaaS framework’s Considerable Feature Support

Features

A
p

p
S

ca
le

C
lo

u
d

F
o
u

n
d

ry

C
lo

u
d

if
y

O
p

en
S

h
if

t

S
tr

a
to

s

m
O

S
A

IC

B
lu

eM
ix

H
e
ro

k
u

E
la

st
ic

B
ea

n
st

a
lk

M
ic

ro
so

ft

A
zu

re

A
p

p

E
n

g
in

e

Relational

database

support

Yes Yes Yes Yes Yes No No Yes No No No

NoSQL

database

support

Yes Yes Yes Yes No No No No No No No

Horizontal

Scaling
Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Vertical

Scaling
No Yes No Yes No No Yes Yes Yes Yes No

Auto Scaling Yes No Yes Yes Yes Yes Yes No Yes Yes Yes

Spring

Framework

support

Yes Yes No No No No No No No No No

Add-ons

support
No No No No No No Yes Yes No Yes Yes

Language

Extensibility
No Yes Yes Yes Yes No Yes Yes No Yes No

8. CONCLUSIONS

Cloud computing service models like Software as a Service (SaaS), Platform as a Service (PaaS),

and Infrastructure as a Service (IaaS) are introduced in this paper. PaaS is explained in detail with

the help of open PaaS packages like AppScale, Cloud Foundry, Cloudify, and OpenShift.

AppScale components are explained in table format, Cloud Foundry, Cloudify and OpenShift

components are explained in detailed with a diagrams. Apache Stratos, mOSAIC, IBM BlueMix,

Heroku, Amazon Elastic Beanstalk, Microsoft Azure, Google App Engine, and Stakato PaaS

frameworks are also explained in this paper. Comparative study is performed among the

AppScale, Cloud Foundry, Cloudify and OpenShift open PaaS componets. Supported language,

databases, frameworks, and deployments like public PaaS or Private PaaS are also listed for

AppScale, Cloud Foundry, Cloudify, OpenShift, Apache Stratos, mOSAIC, IBM BlueMix,

Heroku, Amazon Elastic Beanstalk, Microsoft Azure and Google App Engine PaaS

environments. Relational database support, NoSQL Support, horizontal scaling, vertical scaling,

auto scaling, spring framework support and language extensibility features are compared among

the AppScale, Cloud Foundry, Cloudify, OpenShift, Apache Stratos, mOSAIC, IBM BlueMix,

Heroku, Amazon Elastic Beanstalk, Microsoft Azure and Google App Engine frameworks.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

33

ACKNOWLEDGEMENTS

This research was supported by Basic Science Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education. (Grant Number: 2011-

0011507).

REFERENCES

[1] Daniel Nurmi, Richard Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia Youseff

& Dmitrii Zagorodnoy, (2009) “The Eucalyptus Open-Source Cloud-Computing System”, CCGrid,

pp124-131.

[2] Rimal, B. P., Choi, E., & Lumb, I., (2009) “A taxonomy and survey of cloud computing systems”,

Fifth International Joint Conference on INC, IMS and IDC, pp. 44-51, IEEE.

[3] Bunch, C., Chohan, N., Krintz, C., Chohan, J., Kupferman, J. & Lakhina, P., et al., (2010) “An

Evaluation of Distributed Datastores Using the AppScale Cloud Platform”, IEEE International

Conference on Cloud Computing.

[4] Bunch, Chris, Navraj Chohan & Chandra Krintz, (2011) “Appscale: open-source platform-as-a-

service”, UCSB Technical Report.

[5] Varma, N. M. K., Min, D. & Choi, E. (2011) “Diagnosing CPU utilization in the Xen virtual machine

environment”, In Computer Sciences and Convergence Information Technology (ICCIT), 6th

International Conference, pp. 58-63, IEEE.

[6] Pawluk, P., Simmons, B., Smit, M., Litoiu, M. & Mankovski, S. (2012) “Introducing STRATOS: A

cloud broker service”, In 2012 IEEE Fifth International Conference on Cloud Computing, pp. 891-

898, IEEE.

[7] Fortiş, T. F., Munteanu, V. I., & Negru, V., (2012) “Towards a service friendly cloud ecosystem”, In

Parallel and Distributed Computing (ISPDC), 11th International Symposium, pp. 172-179, IEEE.

[8] Hossny, E., Khattab, S., Omara, F. & Hassan, H., (2013) “A Case Study for Deploying Applications

on Heterogeneous PaaS Platforms”, In Cloud Computing and Big Data (CloudCom-Asia),

International Conference, pp. 246-253, IEEE.

[9] Varma, N. M. K. & Choi, E., (2013) “Extending Grid Infrastructure Using Cloud Computing”, In

Ubiquitous Information Technologies and Applications, pp. 507-516, Springer Netherlands.

[10] Marpaung, J., Sain, M. & Lee, H. J., (2013) “Survey on middleware systems in cloud computing

integration”, In Advanced Communication Technology (ICACT), 15th International Conference, pp.

709-712, IEEE.

[11] Lima, R. C., Hollanda Filho, R., Sampaio, A., & Mendonca, N., (2013) “TREXCLOUD: Java EE

IaaS Cloud Deployment Made Easy”, Sixth International Conference on Cloud Computing, pp. 470-

477, IEEE.

[12] Akinbi, A., Pereira, E., & Beaumont, C., (2013) “Evaluating security mechanisms implemented on

public Platform-as-a-Service cloud environments case study: Windows Azure”, Internet Technology

and Secured Transactions (ICITST), 8th International Conference, pp. 162-167, IEEE.

[13] D. Bernstein, (2014) “Cloud Foundry Aims to Become the OpenStack of PaaS”, IEEE Cloud

Computing, (2), 57-60.

[14] Graham, S. T. & Liu, X., (2014) “Critical evaluation on jClouds and Cloudify abstract APIs against

EC2, Azure and HP-Cloud”, In Computer Software and Applications Conference Workshops

(COMPSACW), IEEE 38th International conference, pp. 510-515, IEEE.

[15]A. Lomov, (2014) “OpenShift and Cloud Foundry PaaS: High-level Overview of Features and

Architectures”, Available at www.altoros.com/openshift_and_cloud_foundry_paas.html.

[16] Dettori, P., Frank, D., Seelam, S. R., & Feillet, P., (2014) “Blueprint for Business Middleware as a

Managed Cloud Service”, In Cloud Engineering (IC2E), IEEE International Conference, pp. 261-270,

IEEE.

[17] Chenaru, O., Stanciu, A., Popescu, D., Sima, V., Florea, G., & Dobrescu, R., (2015), “Open cloud

solution for integrating advanced process control in plant operation”, In Control and Automation

(MED), 23rd Mediterranean Conference, pp. 973-978, IEEE.

[18] Ferriman, B., Hamed, T., & Mahmoud, Q. H., (2015) “Storming the cloud: A look at denial of service

in the Google App Engine”, Computing, Networking and Communications (ICNC), International

Conference, pp. 363-368, IEEE.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 6, No. 1, February 2016

34

AUTHORS

Mohan Krishna Varma Nandimandalam is Completed Bachelor of Computer

Applications degree in 2002 and Received Master of Science in Information Systems

degree in 2004 from Sri Venkateswara University, Tirupati, Andhra Pradesh, India, and

Master of Technology in Computer Science and Engineering in 2007 from VIT University,

India. Currently working as a full time researcher in Distributed information Systems and

Cloud computing lab and doing Ph.D. in Graduate School of Business IT, Kookmin

University, South Korea.

Eunmi Choi is a Professor in the School of Business IT,Chairperson of School of

Management Information Systems, Head of Distributed Information System & Cloud

Computing Lab., and Executive Chief of Business IT Graduate School at Kookmin

University, Korea, Her current research interests include big data infra system and

processing, cloud computing, cyber physical system, information security, distributed

system, SW meta-modelling, and grid & cluster computing. Professor Choi received and MS

and PhD in computer science from Michigan State University, U.S.A., in 1991 and 1997,

respectively, and BS in computer science from Korea University in 1988.

