
International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 9, No.2/3, June 2019

DOI: 10.5121/ijccsa.2019.9301 1

DYNAMIC TENANT PROVISIONING AND SERVICE

ORCHESTRATION IN HYBRID CLOUD

Dmitry Vasilenko and Mahesh Kurapati

IBM Watson and Cloud Platform, IBM, Chicago, USA

ABSTRACT

The advent of container orchestration and cloud computing, as well as associated security and compliance

complexities, make it challenging for the enterprises to develop robust, secure, manageable and extendable

architectures which would be applicable to the public and private cloud. The main challenges stem from

the fact that on-premises, private cloud and third-party, public cloud services often have seemingly

different and sometimes conflicting requirements to tenant provisioning, service deployment, security and

compliance and that can lead to rather different architectures which still have a lot of commonalities but

evolve independently. Understanding and bridging the functionality gaps between such architectures is

highly desirable in terms of common approaches, API/SPI as well as maintainability and extendibility. The

authors discuss and propose common architectural approaches to the dynamic tenant provisioning and

service orchestration in public, private and hybrid clouds focusing on deployment, security, compliance,

scalability and extendibility of stateful Kubernetes runtimes.

KEYWORDS

Kubernetes, Tenant Provisioning, Service Orchestration, Hybrid Cloud.

1. INTRODUCTION

Cloud computing has become one of the key components of enterprise IT systems. The benefits

of cloud computing include reduced IT costs, scalability, shorter time to market, improved

business continuity and collaboration efficiency. In cloud computing, the Kubernetes platform has

become de facto standard for automating deployment, scaling, and management of containerized

applications. The Kubernetes Control and Data Planes provide sound architectural foundation for

modern information systems. A number of cloud providers such as Amazon, Red Hat, Google,

Microsoft and IBM offer Kubernetes-based solutions for public and private cloud. Despite the

wide acceptance and aforementioned benefits there are still a few functionality, security and

compliance gaps which should be carefully considered and addressed before any service offering

utilizing the containerized frameworks will be ready for the prime time. This is especially true for

so-called runtimes or stateful applications which require per-tenant persistent storage or non-

trivial life cycle management. The analytical frameworks and applications such as Jupyter

Notebooks, RStudio/Shiny, OpenCPU and other allow the cloud users to deploy and run code of

arbitrary complexity. Such applications should be sandboxed to reduce the risk of security

breaches by restricting the running environment and allowing for the private view of the globally

shared kernel resources, such as the network stack, process and mount tables. Strict adherence to

the ISO27002 [1], GDPR [2], HIPAA [3] and other standards and legislations is often required or

mandatory. In this paper the authors discuss and propose approaches to the consolidated

Runtimes framework which extends the existing Kubernetes architecture and enables for secure

and complaint stateful applications deployed and managed in public, private and hybrid cloud

environments.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 9, No.2/3, June 2019

2

This paper is organized as follows. The section 2 provides an overview of the related works. The

section 3 describes designs approaches, API, SPI and core components of the proposed

architecture. The section 4 offers an overview of the persistent storage management for the cloud.

The last section provides conclusions and describes our next steps.

2. RELATED WORKS

Dynamic tenant and service provisioning in the cloud require an integrated solution across the

technology stack, including software, platform, and infrastructure, and combining functional,

non-functional and resource allocation requirements [4]. It was shown [5], that much of the

service development is still done in an ad hoc manner, without standardized API/SPI, thus

resulting in poor reuse of software assets. The resource provisioning problem is considered in [6]

as a Mixed Integer Linear Program (MILP). The authors assume that the underlying infrastructure

is based on a set of end-to-end connections with guaranteed sustainable bandwidth such as

Carrier-Grade Ethernet (CGE) circuits and investigate the impact of services on resource

allocation carried out by a Cloud Service Provider (CSP).

As discussed in [7], the service provisioning and deployment often refers to service selection and

service composition to satisfy functional and QoS requirements. In contrast to this, [8] focuses on

the pattern-based deployment, configuration and management of complex services including their

supporting middleware. Work that addresses this depth of deployment and configuration often

resorts to a simplified model such as common middleware already deployed [9] or knowledge of

the specific target environment so that provisioning steps are known in advance [10]. In [11]

paper the authors identified challenges in fulfilling the promise of simplification of distributed

software service composition and deployment and proposed an approach and architecture for

composition and deployment of virtual software services in cloud environments.

A generic cloud computing stack that classifies technologies and services into different layers was

proposed in [12]. The authors showed how the cloud computing stack facilitates communication

between different technologies and services. As indicated by a number of surveys on cloud

adoption, security, privacy and compliance remain the number one concerns for cloud providers.

Also, compute isolation between tenants is important when multiple tenants are served by the

same application instance. These concerns become even more stringent for GDPR and HIPAA

complaint applications. Cloud applications increasingly rely on complex middleware solutions to

support the above requirements [13, 14, 15]. These solutions can involve complex policy engines

[14, 15].

Embracing Privacy by Design principles [17] will ensure that tenant data in-transit and at-rest is

protected and at the same time provide appropriate access and integrity. Addressing the identified

tenant provisioning, service orchestration, security and compliance challenges will ensure that the

proposed API/SPI for the participating service components are sound and devise better

architectural approaches that observe these design principles. Through this, the authors of this

paper propose an efficient way of architecting the service components to support cloud

requirements for stateful Kubernetes runtimes.

In [18] authors indicate that there is a clear lack of documented best practices on how to

orchestrate cloud environments, either public, private or hybrid. The paper targets DevOps

practitioners and defines solutions for cloud orchestration, describing them as three core patterns

of software containerization, local reverse proxy and orchestration by resource offering. The

approach enables effective resource sharing with minimal virtualization overhead and allows

clients to access any service in a cluster abstracting its placement. In [19] the authors present an

orchestrator for the Software-Defined Data Center, and the strategies used to allocate and

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 9, No.2/3, June 2019

3

provision resources, basing decisions on the current state of the system. The comprehensive

survey of cloud resource orchestration techniques is provided in [20].

3. RUNTIMES ARCHITECTURE

The proposed architecture defines two Kubernetes clusters depicted in Figure 1. The Runtimes UI

microservice cluster incorporates stateless services to handle UI rendering and user interactions

for the runtimes. The Runtimes cluster hosts instances of the stateful runtimes allocated for the

given tenant.

Figure 1. Runtimes and UI microservices clusters

The core services for the Runtimes cluster are defined in the runtimes-admin namespace as shown

in Figure 2.

Figure 2. Runtimes admin namespace ecosystem

The runtimes-admin namespace hosts the generic Proxy, Admin, Backup and Monitoring

components as well as runtime specific plugins, modules and secrets. The following sections of

this paper provide further architectural details for each component.

The Figure 3 depicts the simplified network topology diagram for the Runtimes cluster. As shown

below, the tenant namespaces are segregated to ensure compute isolation. In multizone clusters at

least 2 instances of the Proxy and Admin components should be deployed per availability zone.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 9, No.2/3, June 2019

4

Figure 3. Network topology diagram for Kubernetes Runtimes clusters

3.1. RUNTIMES REVERSE PROXY

As shown in Figure 2, the Proxy component expose a single HTTP endpoint to the Runtimes

cluster. The Proxy handles requests to the Admin as well as to the tenant containers. To inject

service specific behaviour to the request processing workflow the Proxy supports Service Module

SPI shown in Table 1.
Table 1. Runtimes service module SPI

Function Parameters Description
init 1. Initialization

parameters

Initializes the service module. Called by the

Proxy during startup and on service module

secret changes.

http 1. HTTP request

2. HTTP response

3. Proxy options

Optional. Called by the Proxy to allow the

service module to participate in the HTTP

processing.

wss 1. HTTP request

2. Network socket

between the server and

client

3. The first packet of the

upgraded stream (may

be empty)

4. Proxy options

Optional. Called by the Proxy to allow the

service module to participate in the Web Socket

processing.

The service modules for the Proxy are optional and can be used for service-specific authorization

and authentication as well as for handling web socket requests. The parts of the HTTP routes for

the Proxy should be encrypted and obfuscated for security reasons.

3.2. RUNTIMES ADMIN

The Admin component handles the dynamic tenant provisioning and service lifecycle

management. The Admin allocates a Kubernetes namespace for a tenant as needed and applies

namespace isolation policies to allow intra-namespace and disable inter-namespace

communication for the tenants.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 9, No.2/3, June 2019

5

Figure 4. Multi-tenant namespace compute isolation

The requirements for the tenant namespace isolation are mandatory for the public clouds but can

be relaxed for the private clouds. In some cases, for the private cloud deployments the Admin and

tenants can use the same namespace. If the tenant namespaces are segregated, the Kubernetes

DNS records for the services will have the form of service-instance.tenant-

namespace.svc.cluster.local. In the case of combined Runtime namespace for the private cloud

the records will have the form of tenant-service-instance.runtimes-namespace.svc.cluster.local.

The Admin provides container lifecycle management REST API summarized in Table 2. The

endpoints are only accessible to the Proxy and Agents running in the tenant pods. While the

Proxy can invoke any REST API methods the Agent calls are limited to the session invalidation

and service removal for the same tenant. The Proxy can also support authority delegation when

the particular REST API call is performed on behalf of another user, typically an administrator.

The common use cases include stopping a runtime for the user by the administrator from the web

interface.
Table 2. Runtimes container lifecycle management REST API

Method Endpoint Description

POST /services/<user>/<service>/<instance> Starts the runtime pod for the given

user, service and specified service

instance. The JSON payload of the

POST request should include

parameters used to generate all-in-one

deployment YAML for the service.

DELETE /services/<user>/<service>/<instance>/stop Invalidates the runtime session and

removes Kubernetes pod deployment

and service. This REST API call is

typically performed by the agent

running in the runtime pod.

DELETE /services/<user>/<service>/<instance> Deletes the service instance. This

includes the Kubernetes pod

deployment, service, persistent volume

claims and secrets.

GET /services/<user>/<service>/<instance> Returns the status of the runtime:

HTTP 200 if the service is up and

running and HTTP 503 otherwise.

The Admin component works in concert with the service plugins. The service plugin design for

the Runtimes was inspired by the Kubernetes flex volume drivers [16] and defines a set of

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 9, No.2/3, June 2019

6

callouts to be implemented by the plugins. The plugins are implemented and deployed as

Kubernetes daemon sets. The summary of the plugin callout SPI is shown in Table 3.

Table 3. Runtimes plugin callout SPI

Callout Parameters Description

init None Initializes the service plugin. Called by the

Admin during plugin registration and

initialization. On success, the function returns a

capabilities map showing capabilities supported

by the plugin.

deploy-service 1. User identifier

2. Service name

3. Service instance

4. Runtime registration

information

5. Runtime configuration

information

Called by the Admin during the service startup

sequence. The function returns all-in-one

deployment YAML for the service including

deployment, service, persistent volume claims

and secrets.

check-service 1. User identifier

2. Service name

3. Service instance

4. Runtime configuration

information

Optional. Called by the Admin during the

service startup sequence to identify

discrepancies between existing and proposed

configuration. The function returns failure status

if the configurations are incompatible.

deregister-

service

1. Runtime registration

information

Optional. Called by the Admin during session

invalidation or service deletion to allow for

service specific deregistration actions.

image-pull 1. Image pull

specification

Optional. Called from the service plugin daemon

set init containers during deployment to prepull

container images to the worker nodes.

image-cleanup 1. Image pull

specification

Optional. Called from the service plugin daemon

set process to check and remove unused images

from the worker node image cache. It is

important to note that the Kubernetes manages

lifecycle of all images through imageManager,

with the cooperation of cadvisor which should

be sufficient for most applications. Authors

found, however, that proactive image cleanup

can improve overall stability of the cluster.

3.3. RUNTIMES BACKUP SERVER

The Backup Server component handles regular user metadata backups as well as backups of the

persistent volumes allocated for tenants. The frequency of the backups and other characteristics

are defined by the service level agreement. As the Kubernetes persistent volumes claims are

namespace-bound the Backup Server spawns an Agent in the tenant namespace to perform the

data backup. The backups can be stored in the cloud object storage such as Amazon S3. The

Backup Server also performs tenant namespace backups if the services deployed into the

namespaces were not accessed during defined period of time. The tenant namespace as well as

associated services and persistent volumes can be recreated when the user logs back in again.

3.4. RUNTIMES MONITOR SERVER

The Monitor Service handles alerts, notifications and remediation actions for the Runtimes

cluster. While existing application performance management (APM) frameworks such as

Prometheus and New Relic can be used to handle variety of alert conditions authors found that in

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 9, No.2/3, June 2019

7

some cases the custom, dedicated monitoring service is still beneficial. The Runtimes Monitor

Service works in concert with the existing APM frameworks and handles pod, persistent volume

claim (PVC) and node conditions listed in Table 4.

Table 4. Runtimes container lifecycle management REST API

Object Condition Parameters Description

Pod long-running cut-off-minutes The alert is triggered if the pod was running

longer than the cut-off-minutes.

long-pending cut-off-minutes The alert is triggered if the pod was in the pending

state longer than the cut-off-minutes.

long-terminating cut-off-minutes The alert is triggered if the pod was in the

termination state longer than the cut-off-minutes.

last-restart cut-off-minutes The pod has been restarted within the last the cut-

off-minutes.

endpoint-probe endpoint-url

timeout-seconds

retries

status-code

The alert is triggered when the HTTP endpoint

fails to respond to the GET request. The value for

the endpoint-url can be a template using the pod

specific parameters in run-time.

PVC long-pending cut-off-minutes The alert is triggered if the persistent volume

claim was in the pending state longer than the cut-

off-minutes.

Node not-ready cut-off-minutes The alert is triggered if the node did not become

ready within cut-off-minutes.

4. PERSISTENT STORAGE MANAGEMENT

Kubernetes offers a wide breadth of persistent volume options for storage integration. One of the

important requirements for the public clouds is to have transparent, reliable and high performant

storage support across availability zones in the multizone cluster. Kubernetes virtualization

infrastructure also lends itself particularly well to bare metal server deployments when setting up

persistent storage. A number of software defined storage solutions such as Amazon Elastic File

System, Google Regional Persistent Discs, Portworx and other are readily available. For the

private and hybrid clouds, however, there are still situations when the persistent storage, such as

NFS, for the given service should be allocated in the particular availability zone due to the

volume affinity. As a result, the services pods will have node affinity to that particular availability

zone even if deployed into the multizone cluster. Another important aspect is the observed

latency of the persistent volume provisioning for the given tenant. While the storage provisioning

process is typically automated, the dynamic tenant provisioning can still be visibly delayed if the

volumes are not pre-allocated based on anticipated demand. To achieve low-latency for the NFS

persistent volume provisioning the authors designed and implemented Kubernetes flex volume

provisioner and driver for sparse files. The sparse files approach allows for per-tenant encryption

at rest using Linux Unified Key Setup (LUKS). The simplified diagram for dynamic storage

provisioning is shown in Figure 4.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 9, No.2/3, June 2019

8

Figure 4. Dynamic persistent storage provisioning

There are four main actors that support NFS flex volume sparse file functionality: Advisor,

Supplier, Provisioner and Driver. The Advisor forecasts the sparse file demand using

exponentially weighted moving average (EWMA) technique and provides the estimation for the

Supplier. The Supplier uses the estimation for the anticipated sparse file demand from the

Advisor and allocates and encrypts sparse files using large provisioned NFS mount. If the current

mount is exhausted the Supplier will pre-allocate new NFS mounts as needed to meet demand.

The Provisioner implements the Kubernetes Provisioner interface and is responsible for creating

persistent volumes (PV) for the given claim. The Provisioner looks up the available, pre-allocated

and encrypted sparse file and creates PV accordingly. The PV also includes the flex volume

specification used by the Driver. The Driver implements Kubernetes flex volume mount/unmount

call-outs for the encrypted sparse files. Additionally, the Driver mounts the NFS mount point if it

was not yet mounted on the worker node. The sparse mount and file metadata are stored in

Kubernetes Third Party Resource tables. The described technique was tested internally and can be

beneficial for private as well as for public clouds. For the public cloud scenarios, the approach

can be used to support large number of trial, free or limited plan users with relatively small

persistent volumes. There could be hundreds of thousands of accounts for such users in public

clouds and direct NFS storage provisioning for these accounts can be rather time consuming and

inefficient.

5. CONCLUSIONS

In this paper the authors discussed architectural approaches to the dynamic tenant provisioning

and service orchestration in public and private clouds with the focus on bridging the gaps related

to the deployment, security, compliance, scalability and extendibility of stateful Kubernetes

runtimes applications. We introduce a notion of clear separation between stateless UI

microservices and stateful Runtimes clusters as well as defined REST API for the generic Proxy

and Admin services. We also discussed the SPI for the Runtimes service modules and plugins to

enable efficient collaboration between core and application-specific services. As the stateful

runtimes require high-performant, reliable and secure persistent storage, just-in-time provisioning

and per-tenant encryption at rest as well as transparent support for cross-AZ deployments for

multi-zone clusters become increasingly important. We showed that the proposed architecture

enforce security, compliance, usability, availability and the overall management of Kubernetes

runtimes for internal, hybrid or public clouds.

The authors plan to continue this research focusing on architecture of secure, distributed

persistent storage to support multi-region deployments in hybrid cloud.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 9, No.2/3, June 2019

9

ACKNOWLEDGEMENTS

The authors would like to thank Thanh Pham, Thuan D Ngo and Wei Huang from the IBM

Silicon Valley Lab (SVL) and Mehboob Alam from the IBM Rochester Lab for their support,

encouragement and invaluable insights.

REFERENCES

[1] ISO/IEC 27002:2013 Information technology. Security techniques. Code of practice for information

security controls. Retrieved May 17, 2019, from https://www.iso.org/standard/54533.html.

[2] The EU General Data Protection Regulation (GDPR). Retrieved May 17, 2019, from

https://eugdpr.org/.

[3] The Health Insurance Portability and Accountability Act of 1996. Pub. L. 104-191. Stat. 1936.

[4] Ramachandran, L., Narendra, N.C. & Ponnalagu, K., Dynamic provisioning in multi-tenant service

clouds, SOCA (2012) Vol. 6, pp 283–302.

[5] Agarwal V, Dasgupta K, Karnik NM, Kumar A, Kundu A, Mittal S, Srivastava B (2005) A service

creation environment based on end to end composition of web services. In: WWW, pp 128–137.

[6] Aoun R, Doumith EA, Gagnaire M (2010) Resource provisioning for enriched services in cloud

environment. In: CloudCom, pp 296–303.

[7] Su, X., Rao, J.: A survey of automated web service composition methods. In: SWSWPC (2004).

[8] Arnold W, Eilam T, Kalantar MH, Alexander V (2007) Konstantinou, and Alexander Totok. Pattern

based soa deployment. In: ICSOC, pp 1–12.

[9] Kichkaylo, T., Karamcheti, V.: Optimal resource-aware deployment planning for component-based

distributed applications. In: HPDC, Washington, DC, USA, pp. 150–159. IEEE Computer Society

Press, Los Alamitos (2004).

[10] Ludwig, H., Gimpel, H., Dan, A., Kearney, B.: Template based automated service provisioning

supporting the agreement driven service life-cycle. In: Benatallah, B., Casati, F., Traverso, P. (eds.)

ICSOC 2005. LNCS, vol. 3826, pp. 283–295. Springer, Heidelberg (2005).

[11] Konstantinou AV, Eilam T, Kalantar M, Totok AA, Arnold W, Snible E (2009) An architecture for

virtual solution composition and deployment in infrastructure clouds. In: VTDC ’09: Proceedings of

the 3rd international workshop on virtualization technologies in distributed computing. ACM, New

York, NY, USA, pp 9–18.

[12] Lenk A, Klems M, Jens N, Tai S, Sandholm T (2009) What’s inside the cloud? an architectural map

of the cloud landscape. In: ICSE cloud 09: First international workshop on software engineering

challenges for cloud computing, pp 23–31.

[13] Walraven S., Van Landuyt D., Rafique A., Lagaisse B., and Joosen W. Paashopper: Policy-driven

middleware for multi-paas environments. Journal of Internet Services and Applications, 6(1), January

2015.

[14] Walraven S, De Borger W., Vanbrabant B., et. al. Adaptive performance isolation middleware for

multi-tenant saas. In 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing

(UCC), pp 112–121, December 2015.

International Journal on Cloud Computing: Services and Architecture (IJCCSA) Vol. 9, No.2/3, June 2019

10

[15] Rafique A., Van Landuyt D., et. al. Policy-driven data management middleware for multi-cloud

storage in multi-tenant SaaS. In 2nd IEEE/ACM International Symposium on Big Data Computing,

pp 78–84. IEEE, December 2015.

[16] Kubernetes Flex Volume Driver. Retrieved May 3, 2019, from

https://github.com/kubernetes/community/blob/master/contributors/devel/sig-storage/flexvolume.md

[17] Cavoukian A., Privacy by Design, The 7 Foundational Principles, Information and Privacy

Commissioner, Ontario, Canada, 2009.

[18] Sousa, T.B., Correia, F.F. and Ferreira, H.S. 2015. DevOps Patterns for Software Orchestration on

Public and Private Clouds. HILLSIDE Proc. of Conf. on Pattern Lang. of Prog. 22, October 2015.

[19] D. Adami et al., "Cloud and Network Service Orchestration in Software Defined Data Centers",

SPECTS 2015.

[20] Weerasiri D, Barukh MC, Benatallah B, Sheng QZ, Ranjan R. A Taxonomy and Survey of Cloud

Resource Orchestration Techniques. ACM Computing Surveys 2017, 50(2), 26.

AUTHORS

Dmitry Vasilenko is an Architect and Senior Software Engineer working on

the IBM Watson and Cloud Platform. He received a M.S. degree in Electrical

Engineering from Novosibirsk State Technical University, Russian

Federation, in 1986. Before joining IBM SPSS in 1997 Mr. Vasilenko led

Computer Aided Design projects in the area of Electrical Engineering at the

Institute of Electric Power System and Electric Transmission Net works. His

current research interests include communication engineering, network security, computer

engineering and cloud computing.

Mahesh Kurapati is an Advisory Software Engineer in the Business Analytics

Department of the IBM Software Group. He received a B.E. degree in

Electronics Engineering from Bangalore University, India, in 1993 and

Specialization on P.C. Based Instrumentation from Indian Institute of

Sciences, Bangalore, India. Before joining IBM in 2006 Mr. Kurapati was

involved in various telecommunications and data mining projects. At IBM,

Mr. Kurapati’s primary focus is on the development and operations for the Watson Studio line of

products.

