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ABSTRACT 

 

The advent of container orchestration and cloud computing, as well as associated security and compliance 

complexities, make it challenging for the enterprises to develop robust, secure, manageable and extendable 

architectures which would be applicable to the public and private cloud. The main challenges stem from 

the fact that on-premises, private cloud and third-party, public cloud services often have seemingly 

different and sometimes conflicting requirements to tenant provisioning, service deployment, security and 

compliance and that can lead to rather different architectures which still have a lot of commonalities but 

evolve independently. Understanding and bridging the functionality gaps between such architectures is 

highly desirable in terms of common approaches, API/SPI as well as maintainability and extendibility. The 

authors discuss and propose common architectural approaches to the dynamic tenant provisioning and 

service orchestration in public, private and hybrid clouds focusing on deployment, security, compliance, 

scalability and extendibility of stateful Kubernetes runtimes. 
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1. INTRODUCTION 
 

Cloud computing has become one of the key components of enterprise IT systems. The benefits 

of cloud computing include reduced IT costs, scalability, shorter time to market, improved 

business continuity and collaboration efficiency. In cloud computing, the Kubernetes platform has 

become de facto standard for automating deployment, scaling, and management of containerized 

applications. The Kubernetes Control and Data Planes provide sound architectural foundation for 

modern information systems. A number of cloud providers such as Amazon, Red Hat, Google, 

Microsoft and IBM offer Kubernetes-based solutions for public and private cloud. Despite the 

wide acceptance and aforementioned benefits there are still a few functionality, security and 

compliance gaps which should be carefully considered and addressed before any service offering 

utilizing the containerized frameworks will be ready for the prime time. This is especially true for 

so-called runtimes or stateful applications which require per-tenant persistent storage or non-

trivial life cycle management. The analytical frameworks and applications such as Jupyter 

Notebooks, RStudio/Shiny, OpenCPU and other allow the cloud users to deploy and run code of 

arbitrary complexity. Such applications should be sandboxed to reduce the risk of security 

breaches by restricting the running environment and allowing for the private view of the globally 

shared kernel resources, such as the network stack, process and mount tables. Strict adherence to 

the ISO27002 [1], GDPR [2], HIPAA [3] and other standards and legislations is often required or 

mandatory. In this paper the authors discuss and propose approaches to the consolidated 

Runtimes framework which extends the existing Kubernetes architecture and enables for secure 

and complaint stateful applications deployed and managed in public, private and hybrid cloud 

environments. 
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This paper is organized as follows. The section 2 provides an overview of the related works. The 

section 3 describes designs approaches, API, SPI and core components of the proposed 

architecture. The section 4 offers an overview of the persistent storage management for the cloud. 

The last section provides conclusions and describes our next steps. 

 

2. RELATED WORKS 
 

Dynamic tenant and service provisioning in the cloud require an integrated solution across the 

technology stack, including software, platform, and infrastructure, and combining functional, 

non-functional and resource allocation requirements [4]. It was shown [5], that much of the 

service development is still done in an ad hoc manner, without standardized API/SPI, thus 

resulting in poor reuse of software assets. The resource provisioning problem is considered in [6] 

as a Mixed Integer Linear Program (MILP). The authors assume that the underlying infrastructure 

is based on a set of end-to-end connections with guaranteed sustainable bandwidth such as 

Carrier-Grade Ethernet (CGE) circuits and investigate the impact of services on resource 

allocation carried out by a Cloud Service Provider (CSP).  

 

As discussed in [7], the service provisioning and deployment often refers to service selection and 

service composition to satisfy functional and QoS requirements. In contrast to this, [8] focuses on 

the pattern-based deployment, configuration and management of complex services including their 

supporting middleware. Work that addresses this depth of deployment and configuration often 

resorts to a simplified model such as common middleware already deployed [9] or knowledge of 

the specific target environment so that provisioning steps are known in advance [10]. In [11] 

paper the authors identified challenges in fulfilling the promise of simplification of distributed 

software service composition and deployment and proposed an approach and architecture for 

composition and deployment of virtual software services in cloud environments.  

 

A generic cloud computing stack that classifies technologies and services into different layers was 

proposed in [12]. The authors showed how the cloud computing stack facilitates communication 

between different technologies and services. As indicated by a number of surveys on cloud 

adoption, security, privacy and compliance remain the number one concerns for cloud providers. 

Also, compute isolation between tenants is important when multiple tenants are served by the 

same application instance. These concerns become even more stringent for GDPR and HIPAA 

complaint applications. Cloud applications increasingly rely on complex middleware solutions to 

support the above requirements [13, 14, 15]. These solutions can involve complex policy engines 

[14, 15]. 

 

Embracing Privacy by Design principles [17] will ensure that tenant data in-transit and at-rest is 

protected and at the same time provide appropriate access and integrity. Addressing the identified 

tenant provisioning, service orchestration, security and compliance challenges will ensure that the 

proposed API/SPI for the participating service components are sound and devise better 

architectural approaches that observe these design principles. Through this, the authors of this 

paper propose an efficient way of architecting the service components to support cloud 

requirements for stateful Kubernetes runtimes.   

 

In [18] authors indicate that there is a clear lack of documented best practices on how to 

orchestrate cloud environments, either public, private or hybrid. The paper targets DevOps 

practitioners and defines solutions for cloud orchestration, describing them as three core patterns 

of software containerization, local reverse proxy and orchestration by resource offering. The 

approach enables effective resource sharing with minimal virtualization overhead and allows 

clients to access any service in a cluster abstracting its placement. In [19] the authors present an 

orchestrator for the Software-Defined Data Center, and the strategies used to allocate and 
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provision resources, basing decisions on the current state of the system. The comprehensive 

survey of cloud resource orchestration techniques is provided in [20]. 

 

3. RUNTIMES ARCHITECTURE 
 

The proposed architecture defines two Kubernetes clusters depicted in Figure 1. The Runtimes UI 

microservice cluster incorporates stateless services to handle UI rendering and user interactions 

for the runtimes. The Runtimes cluster hosts instances of the stateful runtimes allocated for the 

given tenant.  

 

 
 

Figure 1.  Runtimes and UI microservices clusters  

 

The core services for the Runtimes cluster are defined in the runtimes-admin namespace as shown 

in Figure 2.  

 

 
 

Figure 2.  Runtimes admin namespace ecosystem 

 

The runtimes-admin namespace hosts the generic Proxy, Admin, Backup and Monitoring 

components as well as runtime specific plugins, modules and secrets. The following sections of 

this paper provide further architectural details for each component.  

 

The Figure 3 depicts the simplified network topology diagram for the Runtimes cluster. As shown 

below, the tenant namespaces are segregated to ensure compute isolation. In multizone clusters at 

least 2 instances of the Proxy and Admin components should be deployed per availability zone.  
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Figure 3.  Network topology diagram for Kubernetes Runtimes clusters 

 

3.1. RUNTIMES REVERSE PROXY 
 

As shown in Figure 2, the Proxy component expose a single HTTP endpoint to the Runtimes 

cluster. The Proxy handles requests to the Admin as well as to the tenant containers. To inject 

service specific behaviour to the request processing workflow the Proxy supports Service Module 

SPI shown in Table 1. 
Table 1.  Runtimes service module SPI 

 

Function Parameters Description 
init 1. Initialization 

parameters 

Initializes the service module. Called by the 

Proxy during startup and on service module 

secret changes. 

http 1. HTTP request 

2. HTTP response 

3. Proxy options 

Optional. Called by the Proxy to allow the 

service module to participate in the HTTP 

processing. 

wss 1. HTTP request 

2. Network socket 

between the server and 

client 

3. The first packet of the 

upgraded stream (may 

be empty) 

4. Proxy options 

Optional. Called by the Proxy to allow the 

service module to participate in the Web Socket 

processing. 

 

The service modules for the Proxy are optional and can be used for service-specific authorization 

and authentication as well as for handling web socket requests. The parts of the HTTP routes for 

the Proxy should be encrypted and obfuscated for security reasons.  

 

3.2. RUNTIMES ADMIN 
 

The Admin component handles the dynamic tenant provisioning and service lifecycle 

management. The Admin allocates a Kubernetes namespace for a tenant as needed and applies 

namespace isolation policies to allow intra-namespace and disable inter-namespace 

communication for the tenants.  
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Figure 4.  Multi-tenant namespace compute isolation 

 

The requirements for the tenant namespace isolation are mandatory for the public clouds but can 

be relaxed for the private clouds. In some cases, for the private cloud deployments the Admin and 

tenants can use the same namespace. If the tenant namespaces are segregated, the Kubernetes 

DNS records for the services will have the form of service-instance.tenant-

namespace.svc.cluster.local.  In the case of combined Runtime namespace for the private cloud 

the records will have the form of tenant-service-instance.runtimes-namespace.svc.cluster.local.  

The Admin provides container lifecycle management REST API summarized in Table 2. The 

endpoints are only accessible to the Proxy and Agents running in the tenant pods. While the 

Proxy can invoke any REST API methods the Agent calls are limited to the session invalidation 

and service removal for the same tenant. The Proxy can also support authority delegation when 

the particular REST API call is performed on behalf of another user, typically an administrator. 

The common use cases include stopping a runtime for the user by the administrator from the web 

interface.   
Table 2.  Runtimes container lifecycle management REST API 

 

Method Endpoint Description 

POST /services/<user>/<service>/<instance> Starts the runtime pod for the given 

user, service and specified service 

instance. The JSON payload of the 

POST request should include 

parameters used to generate all-in-one 

deployment YAML for the service. 

DELETE /services/<user>/<service>/<instance>/stop Invalidates the runtime session and 

removes Kubernetes pod deployment 

and service. This REST API call is 

typically performed by the agent 

running in the runtime pod. 

DELETE /services/<user>/<service>/<instance> Deletes the service instance. This 

includes the Kubernetes pod 

deployment, service, persistent volume 

claims and secrets.   

GET /services/<user>/<service>/<instance> Returns the status of the runtime: 

HTTP 200 if the service is up and 

running and HTTP 503 otherwise. 

 

The Admin component works in concert with the service plugins. The service plugin design for 

the Runtimes was inspired by the Kubernetes flex volume drivers [16] and defines a set of 
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callouts to be implemented by the plugins. The plugins are implemented and deployed as 

Kubernetes daemon sets. The summary of the plugin callout SPI is shown in Table 3. 

 
Table 3.  Runtimes plugin callout SPI 

 

Callout Parameters Description 

init None Initializes the service plugin. Called by the 

Admin during plugin registration and 

initialization. On success, the function returns a 

capabilities map showing capabilities supported 

by the plugin. 

deploy-service 1. User identifier 

2. Service name 

3. Service instance 

4. Runtime registration 

information 

5. Runtime configuration 

information 

Called by the Admin during the service startup 

sequence. The function returns all-in-one 

deployment YAML for the service including 

deployment, service, persistent volume claims 

and secrets.  

check-service 1. User identifier 

2. Service name 

3. Service instance 

4. Runtime configuration 

information 

Optional. Called by the Admin during the 

service startup sequence to identify 

discrepancies between existing and proposed 

configuration. The function returns failure status 

if the configurations are incompatible.  

deregister-

service 

1. Runtime registration 

information 

 

Optional. Called by the Admin during session 

invalidation or service deletion to allow for 

service specific deregistration actions.  

image-pull 1. Image pull 

specification  

Optional. Called from the service plugin daemon 

set init containers during deployment to prepull 

container images to the worker nodes.  

image-cleanup 1. Image pull 

specification 

Optional. Called from the service plugin daemon 

set process to check and remove unused images 

from the worker node image cache. It is 

important to note that the Kubernetes manages 

lifecycle of all images through imageManager, 

with the cooperation of cadvisor which should 

be sufficient for most applications. Authors 

found, however, that proactive image cleanup 

can improve overall stability of the cluster.  

 

3.3. RUNTIMES BACKUP SERVER 
 

The Backup Server component handles regular user metadata backups as well as backups of the 

persistent volumes allocated for tenants. The frequency of the backups and other characteristics 

are defined by the service level agreement. As the Kubernetes persistent volumes claims are 

namespace-bound the Backup Server spawns an Agent in the tenant namespace to perform the 

data backup. The backups can be stored in the cloud object storage such as Amazon S3. The 

Backup Server also performs tenant namespace backups if the services deployed into the 

namespaces were not accessed during defined period of time. The tenant namespace as well as 

associated services and persistent volumes can be recreated when the user logs back in again.  

 

3.4. RUNTIMES MONITOR SERVER 
 

The Monitor Service handles alerts, notifications and remediation actions for the Runtimes 

cluster. While existing application performance management (APM) frameworks such as 

Prometheus and New Relic can be used to handle variety of alert conditions authors found that in 
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some cases the custom, dedicated monitoring service is still beneficial. The Runtimes Monitor 

Service works in concert with the existing APM frameworks and handles pod, persistent volume 

claim (PVC) and node conditions listed in Table 4.  

 
Table 4.  Runtimes container lifecycle management REST API 

 

Object Condition Parameters Description 

Pod long-running cut-off-minutes The alert is triggered if the pod was running 

longer than the cut-off-minutes. 

long-pending cut-off-minutes The alert is triggered if the pod was in the pending 

state longer than the cut-off-minutes. 

long-terminating cut-off-minutes The alert is triggered if the pod was in the 

termination state longer than the cut-off-minutes. 

last-restart cut-off-minutes The pod has been restarted within the last the cut-

off-minutes. 

endpoint-probe endpoint-url 

timeout-seconds 

retries 

status-code 

The alert is triggered when the HTTP endpoint 

fails to respond to the GET request. The value for 

the endpoint-url can be a template using the pod 

specific parameters in run-time. 

PVC long-pending cut-off-minutes The alert is triggered if the persistent volume 

claim was in the pending state longer than the cut-

off-minutes.   

Node not-ready cut-off-minutes The alert is triggered if the node did not become 

ready within cut-off-minutes.   

 

4. PERSISTENT STORAGE MANAGEMENT 
 

Kubernetes offers a wide breadth of persistent volume options for storage integration. One of the 

important requirements for the public clouds is to have transparent, reliable and high performant 

storage support across availability zones in the multizone cluster. Kubernetes virtualization 

infrastructure also lends itself particularly well to bare metal server deployments when setting up 

persistent storage. A number of software defined storage solutions such as Amazon Elastic File 

System, Google Regional Persistent Discs, Portworx and other are readily available. For the 

private and hybrid clouds, however, there are still situations when the persistent storage, such as 

NFS, for the given service should be allocated in the particular availability zone due to the 

volume affinity. As a result, the services pods will have node affinity to that particular availability 

zone even if deployed into the multizone cluster.  Another important aspect is the observed 

latency of the persistent volume provisioning for the given tenant. While the storage provisioning 

process is typically automated, the dynamic tenant provisioning can still be visibly delayed if the 

volumes are not pre-allocated based on anticipated demand. To achieve low-latency for the NFS 

persistent volume provisioning the authors designed and implemented Kubernetes flex volume 

provisioner and driver for sparse files. The sparse files approach allows for per-tenant encryption 

at rest using Linux Unified Key Setup (LUKS). The simplified diagram for dynamic storage 

provisioning is shown in Figure 4.  
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Figure 4.  Dynamic persistent storage provisioning 

 
There are four main actors that support NFS flex volume sparse file functionality: Advisor, 

Supplier, Provisioner and Driver. The Advisor forecasts the sparse file demand using 

exponentially weighted moving average (EWMA) technique and provides the estimation for the 

Supplier. The Supplier uses the estimation for the anticipated sparse file demand from the 

Advisor and allocates and encrypts sparse files using large provisioned NFS mount. If the current 

mount is exhausted the Supplier will pre-allocate new NFS mounts as needed to meet demand. 

The Provisioner implements the Kubernetes Provisioner interface and is responsible for creating 

persistent volumes (PV) for the given claim. The Provisioner looks up the available, pre-allocated 

and encrypted sparse file and creates PV accordingly. The PV also includes the flex volume 

specification used by the Driver. The Driver implements Kubernetes flex volume mount/unmount 

call-outs for the encrypted sparse files. Additionally, the Driver mounts the NFS mount point if it 

was not yet mounted on the worker node. The sparse mount and file metadata are stored in 

Kubernetes Third Party Resource tables. The described technique was tested internally and can be 

beneficial for private as well as for public clouds. For the public cloud scenarios, the approach 

can be used to support large number of trial, free or limited plan users with relatively small 

persistent volumes. There could be hundreds of thousands of accounts for such users in public 

clouds and direct NFS storage provisioning for these accounts can be rather time consuming and 

inefficient.  

 

5. CONCLUSIONS 
 

In this paper the authors discussed architectural approaches to the dynamic tenant provisioning 

and service orchestration in public and private clouds with the focus on bridging the gaps related 

to the deployment, security, compliance, scalability and extendibility of stateful Kubernetes 

runtimes applications. We introduce a notion of clear separation between stateless UI 

microservices and stateful Runtimes clusters as well as defined REST API for the generic Proxy 

and Admin services.  We also discussed the SPI for the Runtimes service modules and plugins to 

enable efficient collaboration between core and application-specific services. As the stateful 

runtimes require high-performant, reliable and secure persistent storage, just-in-time provisioning 

and per-tenant encryption at rest as well as transparent support for cross-AZ deployments for 

multi-zone clusters become increasingly important. We showed that the proposed architecture 

enforce security, compliance, usability, availability and the overall management of Kubernetes 

runtimes for internal, hybrid or public clouds.   

 

The authors plan to continue this research focusing on architecture of secure, distributed 

persistent storage to support multi-region deployments in hybrid cloud. 
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