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ABSTRACT 

 

The PLant ANImation (PLANI) framework allows a designer’s ideas and decisions about virtual plants  to 

be guided through a structured process that results in an animation of a plant. The process proceeds  by 

selecting relevant objects with properties from four logically grouped domains to simplify implementation. 

The resulting grouped objects are used as the baseline parameters for the coding  process to create the 

virtual plant. PLANI’s construction is based on more than a thousand years of biological research, fifty 

years of functional-structural plant modelling, and ten years of ontology development, instantiated into an 

animation environment. PLANI ensures that, when designing virtual plants, a selection of objects derived 

from an appropriate ontology are considered, and that this selection depends on the purpose of the 

animation, e.g., whether it is for gaming animation, biological simulation, or film animation. The use of 

PLANI provides the developer with a framework that is flexible, covers a wide variety of structural, 

functional, and animation objects for plants, and provides classification of current computer algorithms by 

their applications to designing virtual plants. 
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1. INTRODUCTION 
 

A plant is a complex object for animation due to the thousands of species and varieties of plants, 

the hundreds of parts on every plant, and the multitude of calculations required to generate an 

animation with appropriate motion and growth. This paper proposes an approach to creating 

virtual plants using a new conceptual framework, called the Plant Animation (PLANI) 

Framework, which provides a way to use plant ontologies to guide the design and coding of 

computer algorithms. The PLANI framework includes four domains: FORM (which represents 

the physiological structure of a plant), FUNCTION (which represents the physiological 

functioning of a plant), ENVIRONMENT (which represents all environmental influences on a 

plant), and VIRTUAL WORLD (which represents all relevant computer animation factors for the 

virtual plant). Where possible, the framework adopts ontologies to organize information about 

plants and in particular to describe the FORM, FUNCTION, and ENVIRONMENT domains. As 

a stylistic convention throughout this paper, we give domain names in all  uppercase letters (e.g., 

FORM), object names in mixed case with italics (e.g., Stem),  and property names in lower case 

with italics (e.g., stem length). Object or property names may consist of multiple words; no 

hyphens or underscores are added in these cases. 
 

An ontology provides semantic classification of entities within a given domain. For example, 

PLANI uses four plant ontologies [1]: the Plant Ontology (PO) classifies plant anatomy and plant 

development stages [2, 3, 4], the Gene Ontology (GO) classifies molecular functions, biological 

processes, and cellular components [5, 6], the Plant Trait Ontology (TO) classify plant traits and 

characteristics (phenotypes) [7, 8], and the Plant Environment Ontology (EO) classifies the 

environmental influences on plants [9].  
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By guiding the designer through a selection process using plant ontologies to design a virtual 

plant, PLANI ensures fidelity to biological constraints for simulations while allowing violations 

of biological constraints for creative plant animation at the discretion of the designer. The 

remainder of this paper is organized into four sections: Section 2 describes the FORM, 

FUNCTION, ENVIRONMENT, and VIRTUAL WORLD domains and the design-time and 

runtime processes; Section 3 describes the implementation and gives examples of how current 

animations fit into the framework, Section 4 discusses how the PLANI framework can assist in 

the creation of virtual plants, and Section 5 presents conclusions and suggestions for future work. 
 

2. THE PLANI FRAMEWORK 
 

As mentioned in the previous section, the PLANI framework is composed of four domains: 

FORM, FUNCTION, ENVIRONMENT, and VIRTUAL WORLD, as shown in  Figure 1. These 

four domains enable alignment with the current ontological classifications for plants, including 

the PO and TO ontologies for FORM, the GO ontology for FUNCTION, and the EO ontology for 

ENVIRONMENT. By appropriate selection of objects from the four domains, the designer can 

guide the coder to instantiate virtual plants by using existing algorithms or developing new 

algorithms. As shown in Figure 1(a), to design a virtual plant using the framework, one proceeds 

as follows. First, objects in the FORM domain are selected to match the desired structure of the 

plant. Then, objects in the FUNCTION domain that provide the desired behaviour for the plant 

are selected. Next, objects in the ENVIRONMENT domain that capture the desired 

environmental influences on the plant are selected. Lastly, objects in the VIRTUAL WORLD 

domain that will enable the appropriate animation of the virtual plant using all the selected objects 

are selected. As an example of the design-time process, suppose the selections in the FORM 

domain include the Stem object, the Leaf object, and the Leaf Colour object along with their 

properties. The selections in the FUNCTION domain include the Growth object, which contains 

the growth rate property, and the Response to Nutrient object, which contains the limiting  

nutrient  property. The selections in the ENVIRONMENT domain include the Seasonal object, 

which contains the Season property, and the Nutrient Regimen object, which contains the nutrient 

concentration property for each nutrient (e.g., boron). The selections in the VIRTUAL WORLD 

domain include the World Object object, which contains the position property to describe the 

placement of the virtual plant in the virtual world. 
 

As part of design, the runtime process should be considered at a high level to ensure  that the 

coding / algorithms will process the objects in the right sequence through the domains. Thus, we 

will explain the runtime process followed by a coding example. The framework also aids in 

conceptualizing the runtime process. The processing of the FORM, FUNCTION, and 

ENVIRONMENT domains proceeds in the opposite order from that used in design, as illustrated 

in Figure 1(b). The underlying assumption about runtime processing is that objects in the 

ENVIRONMENT domain influence objects in the FUNCTION domain, which then influence 

objects in the FORM domain. These influences are implemented through objects in the 

VIRTUAL WORLD domain, which does not fit neatly into a sequence of processing. At runtime, 

the objects in the VIRTUAL WORLD domain generate the virtual world, including the Light 

object, the Viewpoint object, and the Topography object, in which the virtual plant(s) is/are 

positioned. The runtime process next changes each virtual plant animation by passing property 

values amongst the corresponding domain objects. It starts by providing values to the 

ENVIRONMENT domain objects, resulting in setting environment properties, which are then 

sent to the linked FUNCTION domain objects. The FUNCTION domain objects receive the 

environment properties and set function properties, which are then sent to the linked FORM 

domain objects. The FORM domain objects receive function properties and set formproperties 

based on these function properties. After all properties have been determined, the runtime process 

displays the state of the virtual plant (one frame of the animation). Repeating the overall process 

over time gives the virtual plant animation. 
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Figure 1: Plant framework domains with process flows 
 

As an example of the runtime process, suppose the date property of the Time object of the 

VIRTUAL WORLD is set to August 1, 2014. The date property is sent to the Seasonal object in 

the ENVIRONMENT domain. Given this value for the date property, the summer season property 

of the Seasonal object is set to “Summer”. Since the Seasonal object in the ENVIRONMENT 

domain is linked to the Growth object in the FUNCTION domain by the summer season property, 

the value of this property is sent to the Growth object. The Growth object determines the growth 

rate to be 0.1, given the season value of “Summer”. Since the Growth object in the FUNCTION 

domain is linked to the Leaf object in the FORM domain via the growth rate property, the growth 

rate of 0.1 is sent to the Leaf object. Then the Leaf object makes any appropriate changes to its 

properties, such as leaf length, leaf width, leaf thickness, and leaf elongation rate. 
 

As another runtime example, suppose the concentration of boron was changed in the soil near the 

plant, i.e., the Micronutrient Regimen object in the ENVIRONMENT domain has the boron 

regimen property changed. The value of this property is sent to the Response to Nutrient object in 

the FUNCTION domain. Then this object sends the boron regimen value to the appropriate plant 

object (such as Leaf or Stem object) in the FORM domain. This object sets the colour property 

(such as the leaf colour or stem colour property), which changes the colour of the plant organ 

based on the boron regimen value. 

 

Let us consider the code required to generate the selections in the FORM and VIRTUAL 

WORLD domains for a simple plant containing one stem and one leaf in a simple virtual world 

with a designated position for the plant and one light. We assume the structure of the plant is 

specified by a nested L-system, where an L-system (also known as a Lindenmeyer system) is a 

method of specifying plant structure and function via grammar rules [10]. For simplicity, there is 

no motion of the plant from the FUNCTION domain and no influence of external factors from the 

ENVIRONMENT domain in this example. Although it should be understood that in practice 

existing code will be reused wherever possible, here, for simplicity, we will assume new code is 

being written. Code is required for: (a) the virtual world, (b) the L- System grammar function, (c) 

the stem shape, and (d) the leaf shape. 

 

When designing the code for the VIRTUAL WORLD domain, it is important to understand that 

the objects selected from each domain influence how the virtual plant    appears. 

 

The code could be written with a starting position for the world model, the plant at the starting 

position, a viewpoint, and a light aimed roughly at the starting position. For example, at design 

time, ensuring that the position property of the World Object object roughly coincides with the 
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look at property of the Viewpoint object is essential to viewing the virtual plant. If these two 

properties do not have similar values, the virtual plant may not be visible to the end-user. In 

addition, if the lighting aim direction property of the Light object is not nearly equal to the 

position property, then lighting may not be placed on the virtual plant, which may cause incorrect 

colouring. Next, code is required for the L-System grammar function. This function is intended to 

generate three FORM domain objects: Stem, Stem Angle, and Leaf. The code for these objects 

contains three properties: axiom, production rules, and iteration, which together represent the L- 

system grammar. The L-system string is generated from the axiom by substituting according to 

the corresponding production rules. Substitution is continued until the specified number of 

iterations is reached, resulting in an L-string. Each character in the string represents one of the 

three objects in the FORM domain, i.e., the Stem, Stem Angle, or Leaf. For example, if the “F” 

character occurs in the L-string, it represents the Stem object; likewise, the “A” character 

represents a Leaf object, and a “(+)” or a “(-)” represents a Stem Angle that is positive or negative. 

 

Thirdly, code is required to generate a polygon representing the shape of the stem. More 

precisely, it generates a Polygon object in the VIRTUAL WORLD domain to represent the Stem 

object from the FORM domain. This Polygon object has properties for length, width, and 

diameter, which correspond to the stem length, stem width, and stem diameter properties of the 

Stem object, respectively, of the FORM domain. The code uses these three properties and the 

appropriate mathematical formulas to generate a cylinder. For the “F” character example 

mentioned previously, the stem shape code generates a cylinder of a certain size, representing a 

Polygon object, at run time. 

 

Finally, the leaf shape code generates a Polygon object in the VIRTUAL WORLD domain. The 

Polygon object contains properties for shape, length, width, and thickness, which here correspond 

to the leaf shape, leaf length, leaf width, and leaf thickness properties of the Leaf object of the 

FORM domain. At run time, if an “A” character is present in the L-string,  this code generates a 

polygon object representing a Leaf object. As shown by the examples just discussed, each object 

and property selected at design time influences the runtime creation and animation of the virtual 

plant. Since omission of any required object or property from any domain would prevent the 

construction of the simple  virtual plant at runtime, in practise, default values are used throughout 

to ensure that a complete specification of the virtual plant is produced. The appearance of the 

plant at runtime provides evidence of the designer’s proper selection of objects and the coder’s 

proper implementation. 

 

Clearly, there is a connection between the complexity (the number of objects selected in the 

various domains) and the amount of coding required for implementation.  For example, if  the 

complete Plant Ontology in the FORM domain is selected for a single virtual plant, with the 

objective of realism, more algorithms will be needed than if only a few objects are selected.   One 

can expect an increase in the number of selected objects to cause a corresponding increase in 

design time, coding complexity, and required computer resources. Overall, the available 

selections provide a range of possible levels of complexity for the virtual plant. As mentioned, the 

runtime process is started by the exchange of properties between the four domains, progressing in 

sequence from ENVIRONMENT to FUNCTION to FORM, all supported by the VIRTUAL 

WORLD. The specific instantiations of the properties are provided by plant biological 

observations, whereas the object and property lists are provided through the use of the ontologies. 

 

The designing and coding of plant objects in a virtual world using the PLANI  framework is 

described in the following subsections in detail. The first subsection gives an overview of the 

VIRTUAL WORLD. The next three subsections describe the selection process in the FORM, 

FUNCTION, and ENVIRONMENT domains. They also describe some considerations for each of 

these domains with respect to the VIRTUAL WORLD domain to ensure the virtual plant is 



International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.1/2, April 2017 

5 

properly visualized. The remaining subsections discuss the coding portion of the simulation and 

how the elements of the framework combine overall. 

 

VIRTUAL WORLD 

 
The VIRTUAL WORLD domain consists of the objects used to generate an animation, including 

Light, Viewpoint, and Topology. This domain enables a virtual plant to be generated for a variety 

of virtual worlds using the same information from the FORM and FUNCTION domains. Since no 

formal ontology is currently available for virtual world animation, we  adapted a structure from 

Chu and Li [11]. Their structure contains WorldObject, Transform, Translation, Rotation, Scale, 

Approximation2D, Polygon, Ground, GeometryInfo, HotPosition, IMWorld (root object), and 

WorldInf (world information) objects. The IMWorld object is at the root of their structure; we 

replaced this idea by creating the VIRTUAL WORLD domain in our ontology and placing the 

other objects from their structure in this domain. We renamed Ground to Topology because the 

latter term is more descriptive of the many possible topological environments that may be 

specified in a virtual world, e.g., lakes, hilly terrain, plains, or potted plants in building interiors. 

Besides the objects considered by Chu and Li, we added objects for Viewpoint, Light, Time, and 

Material because we regard them as relevant to producing animations in a virtual world. 

Viewpoint specifies the position from which the animation is viewed. Light specifies the position 

and direction of a light. Time specifies properties for frame rate and, in our case, conversion to 

real world time for proper virtual plant growth and development. Material specifies properties of 

the surface, including colours (e.g., ambient, diffuse, and specular) and normal vectors. The 

combination of the viewpoint and the position of the virtual plant in the topology determine the 

location of the virtual plant in the scene. Lastly, we added the background colour property in the 

WorldInf for the scene. 

 

As an example, suppose that at design time the World Object, Viewpoint, and Light objects in the 

VIRTUAL WORLD domain are selected. The coding assigns values to properties of the selected 

objects either directly or by passing values from other objects. Further, suppose the x, y, and z 

properties of the position property are assigned 0, 0, and 0, respectively. At runtime, these values 

are passed to the Stem object in the FORM domain to ensure proper positioning of the virtual 

plant in the virtual world. As well, these values are passed to the look at property of the Viewpoint 

object to ensure that the virtual plant is in focus. Lastly, these values are also passed to the 

lighting aim direction property in the Light object to provide the appropriate light on the virtual 

plant. 

 

 FORM 
 

The FORM domain contains information related to plant morphology, i.e., the shape, texture, and 

colour of the plant. The ontologies in the FORM domain include the PO and TO ontologies. The 

PO is the parent of the TO in the plant development class.  For example, the  leaf sheath 

(PO:0020104) class, which describes leaf sheathes, has a leaf sheath trait subclass TO:0000835, 

which adds traits to the leaf sheath, such as diameter (TO:0000642), length (TO:0002689), width 

(TO:0002721), and color (TO:0002724). So if PO:0020104 is selected there will be less detail 

than if both PO:0020104 and TO:0000754 are selected.  Therefore,  when selecting objects, the 

designer should consider both the PO and the TO objects, depending on the amount of detail 

required. 

 

Suppose the goal is to produce an animation of a plant with leaves. The designer consults the PO 

and the TO to select the relevant objects. Figure 2 represents the selection of  the Leaf object and 

the leaf elongation rate, leaf width, leaf length, leaf thickness, leaf colour, and leaf shape 

properties of the FORM domain, as represented by the PO and the TO. The next step is to choose 
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an implementation approach, either coding or using modelling software. In the first case, the 

virtual plant is generated procedurally [10; 12]. For example, the leaf shape can  be determined by 

a single formula in the code, given the properties of the leaf [13]. Otherwise,  if a modeling tool, 

such as Maya, is used to generate the form, then a base size is selected to construct the model. 

Code is used to vary this size at runtime. 

 

For a second example, Figure 3 represents the selection of the Stem object and the properties of 

the object, stem elongation rate, stem length, stem width, stem colour, stem diameter, stem 

strength, and stem angle, represented by the PO and the TO. This selection then needs to be 

represented by coding to generate the stem, namely the stem function code, which would accept 

the properties and generate the desired stem structure. The stem function code would generate the 

stem shape property, for example, as a cylinder, and the dimensions of the cylinder would be 

provided by parameters of the function representing the stem length, stem width, and stem 

diameter properties. 

 

 

 

Figure 2: Form selection for the leaf example
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Figure 3: Form selection for the stem example 
 

FUNCTION 
 

The FUNCTION domain consists of plant motion and plant biological processes such as plant 

development (e.g., growth, seasonal organ appearance), metabolic processes, and nutrient 

transport. The ontologies relevant to the FUNCTION domain are the Gene Ontology (GO),  plant 

Trait Ontology (TO) and Plant Ontology (PO). As with the FORM domain, the PO is the parent 

of the TO, and also is the parent of the GO, with respect to growth and development. For 

example, the seed development stage (PO:0001170) in the PO is inherited by the TO, where 

specification with respect to the seed development trait (TO:0000653) provides seed maturation, 

days to maturity, and germination trait properties that influence seed germination. In addition, the 

seed development stage is linked to the GO (GO:0048316) through TO inheritance, where the 

ontology represents the process as the outcome of the seed changes over time through the Growth 

object. 
 

Figure 4 represents the selection of the Growth object from the GO. One property  within the 

Growth object is the growth rate for a particular plant species. This property is sent  to the Stem 

object in the FORM domain, where the property of stem elongation rate receives the new growth 

rate and changes the other stem properties accordingly. The selected Stem and Growth objects 

would then require coding, where the code parameters represent the properties for each object. 
 

                                
Figure 4: FUNCTION domain selection example 
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ENVIRONMENT 
 

The ENVIRONMENT domain consists of the Plant Environment Ontology (EO) [9], as 

illustrated in Figure 5. The EO includes seasonal changes, radiation regimen (sunlight), 

temperature, water, gaseous regimen, physical environment (wind, gravity), and chemical 

regimen (soil nutrients). An environment property, season, for example, affects  the  FUNCTION 

domain by activating or deactivating the Growth object, which in turn affects the appearance, 

size, or nonappearance of the objects in the FORM domain. Another environmental object, 

Radiation Regimen, is related to the Light object in the VIRTUAL WORLD domain through a 

brightness property such that a light source has increased/decreased illumination. In addition, the 

Radiation Regimen object affects the FUNCTION domain’s Growth object by increasing or 

decreasing the growth rate property. 

 
 

Figure 5: ENVIRONMENT domain selection example 
 

CODING 
 

It is at the coding step that several considerations need to be incorporated, such as levels of detail 

and linkage to the other domains. It is recommended that one  make  the complete object selection 

across all domains prior to coding any of these objects. This approach allows  the opportunity to 

consider any cross-domain aspects with respect to the properties required to complete the model. 

For instance, connections between the domains will occur through the coding parameters that 

represent the object properties. For example, the Leaf and Stem objects  in the FORM domain 

require the properties of length, width, elongation rate, and colour. These objects are represented 

in the code as the parameters: length, width, elongation rate, and colour. By performing selection 

from all domains before coding, one ensures that the connection from these objects in the FORM 

domain to the Growth and Response to Nutrient objects in the FUNCTION domain is noticed 

before coding. Advance notice of this relationship ensures that proper coding is performed to 

smoothly send properties from the FUNCTION domain to the FORM domain at runtime. A 

detailed example is provided in the Implementation of PLANI section below. 
 

OVERALL 
 

As mentioned above, the generation of a virtual plant starts with the selection of objects in the 

FORM, FUNCTION, ENVIRONMENT, and VIRTUAL WORLD domains that provide the most 

suitable features for the desired purpose. This selection is made according to the ontology for 

each domain, and is the base activity applied to all domains for design flexibility to enable 
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gaming animations, biological simulations, or film objects. The framework  also  provides a way 

of generating a virtual plant composed of objects to result in a model (FORM domain) and to 

provide changes to that model through internal (FUNCTION domain) or external 

(ENVIRONMENT domain) parameters in a VIRTUAL WORLD domain. In addition, the 

framework also gives the overall pattern for runtime; the domains to include, the subsequent 

properties to include, and the computer algorithm criteria required to fulfill the selections. The 

extent of design-time selection along with the choice of computer implementation provides the 

differentiation observed by the viewer. 

 

Let us consider an expanded example that uses the framework for an animation.   Figure6 shows 

the selected domain objects with ontology numbering derived from the current ontological 

hierarchy [1; 14]. The FORM domain objects include: Branch (PO:0025073), Stem 

(PO:0009047), Petiole (PO:0020038), and more. There exists an inheritance between the PO and 

the TO objects, where the TO is more detailed than the PO. The FUNCTION domain  objects 

include: Growth (GO:0040007), Locomotion (GO:0040011), Response to Stimulus 

(GO:0050896), Shoot System Development (GO:0048367), Shoot System Development Stage 

(PO:0025527), Leaf Development (GO:0048366), Leaf Development Stage (PO:0001050), Bud 

Development Stage (PO:0025528), Fruit Development (GO:0010154), Fruit Development Stage 

(PO:0001002), Fruit Ripening (GO:0009835), Seed Development Stage (PO:0001170), Root 

Development Stage (PO:0007520), and Flower Development Stage (PO:0007615). Similar to  the 

FORM domain, there is inheritance between the GO and the PO objects in the FUNCTION 

domain where the GO is the more detailed ontology than the PO. The GO considers changes  that 

occur within the plant, Topography, World Object (the virtual plant’s position in the world), 

Time, and any transformations required for the motion of the plant. Finally, the domain objects 

can be organized as illustrated in Figure 7. 

 

while the PO considers the external changes that occur to the plant. The ENVIRONMENT 

domain objects include: Seasonal (EO:0007027), Radiation Regimen (sun) (EO:0007151), 

Temperature (EO:0007175), Available Water (EO:0007198), Gaseous Regimen (available 

gaseous oxygen and carbon dioxide (EO:0007023), Nutrient Regimen (available nutrients) 

(EO:0007241), Wind (EO:0007382), Gravity (EO:0007146) and Pathogens (EO:0007124). 

Lastly, the objects in the VIRTUAL WORLD domain include:  Light,  Viewpoint, 2D Conversion 

of Polygons, This additional example was selected to provide illustration of the flexibility of the 

framework including the additional objects. By dividing the animation of a virtual plant into  four 

domains, the framework enables the designer to plan and select any combination of objects from 

the online ontologies available. The ontologies provide the base properties that must be coded to 

simulate a virtual plant. The design time is reduced to a process of searching and selecting rather 

than starting from scratch. In addition, the designer may gain an understanding of the linkages 

between the domain objects. Suppose the designer wants to have the leaf move. After the 

selection of a leaf object in the FORM domain, the notion of movement should cause the designer 

to notice that the locomotion object for a leaf is required in the FUNCTION domain. Overall, the 

framework provides implementation flexibility, through the selection of objects and algorithms, 

and consistency, through the use of four domains that have been formally specified by ontologies. 

The next section provides an example for how the PLANI framework was utilized in a software 

implementation. 
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Figure 6: Plant Animation Framework (PLANI) Ontology 

 

 

 

 

 

Figure 7: Plant Animation Framework (PLANI) Composition 

 

 

3. IMPLEMENTATION OF PLANI 
 

We implemented a general-purpose software system for creating virtual plants. It supports users 

who are working in the PLANI framework. As it runs, the system enables the  user to select 

objects from the four domains of the PLANI framework, then generates and displays one plant 

animation. It provides flexibility by allowing the user to change FUNCTION or 

ENVIRONMENT objects through data entry or button clicking. The system can generate a wide 

variety of plant animations, some of which are illustrated in Figure 8. 

 

Of the objects shown in Figure 6, our implementation specifically includes a subset of objects 

from each domain: the Stem, Leaf, Petiole, Vein, and Fruit FORM objects, the Growth, Response 

to Nutrient, Locomotion, Leaf Development, Fruit Development, and Shoot Development 

FUNCTION objects, the Seasonal, Wind and Nutrient Regimen ENVIRONMENT objects, and 
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the Light, World Object, and Viewpoint VIRTUAL WORLD objects. These objects were selected 

because they are arguably the ones most commonly needed when creating virtual plants for real-

time animation, film animation, and biological simulation. 

 

Once the selection of the objects is complete, the implementation approach for the technical 

instantiation of the virtual plant is considered. We examined three current implementation 

approaches: procedural generation [15; 16; 17; 18; 19; 20; 21], image capture [22], and 

modelling. We selected the procedural approach because it provides the greatest flexibility for 

virtual plant variety with simple coding. In particular, objects in the FORM domain are generated 

using a nested L-System for each stem, petiole, and vein [23], the Leaf object is based on the 

radius variation formula [24], and the Fruit object is generated through  the use of an ellipsoid 

formula. Examples of plants produced by the procedural approach are provided in Figure 8.    

 
Figure 8: Various plant forms utilizing the framework with formulae (original in colour). 

The FUNCTION domain algorithms for motion considered the currently available methods for 

producing the Locomotion object. For example, there existed several plant animations for wind 

that included branches [25; 26; 27; 28], and leaves [22; 27]. In our implementation for the Stem 

object we used a current branch motion algorithm from Sakaguchi and Ohya and added to the 

algorithm to produce motion in the Petiole object [23], and Leaf object [24]. In addition to the 

Locomotion object, our implementation required the Growth object. Our growth algorithm 

generated a linear growth with the objective of considering a real- time animation rather than a 

frame-by-frame animation [23] which was generally based on the growth algorithm created by 

the Rodkaew et al. paper [30]. 

 

Next, consideration of algorithms for the environment; Wind, Seasonal and Nutrient Regimen 

objects from the ENVIRONMENT domain are needed. Our implementation uses a simplified 

wind algorithm to enable real-time animation without demand on the computer resources. The 

algorithm for the  Seasonal object uses the passage of daily time where the  season is changed 

when a certain time range is reached; our implementation is based on a  simple seasonal 

assumption of ¼ of a 365.25 day year represents the spring, summer, fall, and winter season 

properties. In addition, an algorithm is required for the Nutrient Regimen object along with values 

for the nutrient ranges, which were collected using various biology research papers. The 

algorithm implementation determines the Nutrient Regime object’s  specific  limiting nutrient, 

and the limiting nutrient’s effect on the subsequent Growth objects effects on the size, length, 

width, diameter, and color properties of the Stem, Leaf, Petiole  and  Fruit objects [31]. 

 

The VIRTUAL WORLD in which the virtual plant(s) reside(s) requires the Light, Viewpoint, 

Material, Polygon, Transformation, World Object, WorldInf and Topography objects to generate 

the world. Our implementation uses a consistent light without variation over the entire animation 

for the implementation of the Light object. The Viewpoint object’s properties enable the viewer to 

move within and around the VIRTUAL WORLD as is implemented through the x, y, and z 

position coordinates. The Polygon objects used are dependent upon the form algorithms described 

earlier and each form is located within the virtual world through the position property. In Figure 

8, the three virtual plants all have a default viewpoint, a default  light source, a default position, a 

default material, and white background from the VIRTUAL WORLD domain. 
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Lastly, consideration for the interaction between the algorithms is required. This is accomplished 

through the use of instantiated object properties. For example, in the ENVIRONMENT domain, 

the Nutrient Regimen object contains several nutrient properties, one of which is the nitrogen 

concentration property that is part of the Primary Macronutrient Regimen object. These 

properties are passed to the nutrient property in the Response to Nutrient object of the 

FUNCTION domain where a process determines the limiting nutrient property. This limiting 

nutrient property is passed to the growth rate property in the Growth object, where it may lead to 

slower growth. In turn, the Leaf object contains the leaf elongation rate property, which is 

changed by the growth rate property of the Growth object in the FUNCTION domain. Finally, 

the Leaf width, Leaf length, and Leaf thickness properties are changed by the leaf elongation rate 

property in the FORM domain. For an overview, the FORM, FUNCTION and ENVIRONMENT 

relationships are shown in Table 1 based on the PLANI sample concepts. 

 
Table 1: Effect of ENVIRONMENT on FUNCTION and FORM 

FORM Object or property FUNCTION Object ENVIRONMENT Object 

Stem Motion Wind 

stem elongation rate Growth Nutrient Regimen and Seasonal 

stem colour Response to nutrient Nutrient Regimen and Seasonal 

Leaf Motion Wind 

leaf elongation rate Growth Nutrient Regimen and Seasonal 

leaf colour Response to nutrient Nutrient Regimen and Seasonal 

Fruit Motion Wind 

fruit size Growth Nutrient Regimen and Seasonal 

 

The coding described in this section was dependent upon the selection of the objects from each of 

the domains, consideration of the approach for coding (using a modeling software, image capture, 

or procedural techniques), understanding the relationships between the domain objects, and the 

selection of the animation type of either gaming, biological simulation, or film. In our PLANI 

implementation, the general algorithm used to produce the virtual plant is illustrated in Figure 9. 

 
Figure 9: General Algorithm for Sample PLANI implementation 
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Once the coding is complete, the system software is run to provide the user with a way to work in 

PLANI. The user is presented with a window that has a variety of selection options, as is 

illustrated in Figure 10. The Graphical User Interface (GUI) is divided into five sections: Pick a 

Plant, Make a Plant, Environment of the Plant, Animate Plant, and the resulting virtual plant (at 

the bottom right of the screen).  The Pick a Plant and Make a Plant sections relate to  the FORM 

domain. The Animate Plant section relates to three domains: FUNCTION, ENVIRONMENT, and 

VIRTUAL WORLD. The Environment of the Plant section relates the ENVIRONMENT domain, 

and the virtual plant section implements the VIRTUAL WORLD domain. The Make a Plant 

section provides data entry fields to determine the characteristics of the default virtual plant 

shown in the bottom right of Figure 10. For example, the Stem object properties are the stem 

length, 1.0, the stem radius is 0.05, and the stem L-String production 

FBB[+/RFBP][+/RFBP]\\RFBP. The Petiole and Vein objects are specified similarly. The Leaf 

object contains a drop-down field, with a default of chordate, for the leaf shape property. If the 

user interacts with the software and changes any of the fields in the Make a Plant section, the 

virtual plant is only altered once the user presses the “Render Make a Plant” button. 

 

As stated earlier, the FUNCTION, ENVIRONMENT, and VIRTUAL WORLD domain objects 

are represented in the Animate Plant section’s buttons and fields. For example, the Growth object 

of the FUNCTION domain is implemented through the “Make it Grow” button, while the 

Seasonal object of the ENVIRONMENT domain is implemented through the “Season On/Off 

button.” In addition, another Seasonal object is implemented through the “Add Year” button; 

each click on this button ages the virtual plant by one year. In contrast, each click on the “Minus 

Year” button reduces the age by one year. The implementation of the Viewpoint object of the 

VIRTUAL WORLD domain is through the Rotate Left, Rotate Right, Move Back, Move 

Forward, Rotate Up and Rotate Down buttons. Each button will alter the position of the virtual 

plan at the bottom right. 

 

Lastly, the ENVIRONMENT domain objects are represented in the Environment of Plant section. 

The Plant Creator software system provides for entry of the concentrations for each of the 

nutrients for the plant. The virtual plant at the bottom right of Figure 10 is only influenced if the 

“Make it Grow” button is pushed in the Animate Plant section after the values are entered. 

To find a particular species, use the Plant Instance drop down in the Pick a Plant section on the 

left hand side of the GUI. If the species does not exist, a biologist can use the Plant Creator 

software to create it, visualize it, and add it to the database with the chosen taxonomic 

information. Generating a new species of virtual plant is performed by entering values into 

various fields in the Make a Plant section and visualization is performed by clicking the Render 

Make a Plant button. This process can be repeated as required until the species is represented 

properly. Once the biologist is satisfied, the Save New Plant button (middle of the GUI) in the 

Make a Plant section can be clicked to save the current values into the software’s database as 

shown in Figure 11. 

 

Figure 12 through 14 illustrate several plant forms that can be created and visualized with the 

Plant Creator software system. Figure 12 shows a tree at year 2 with an  oval leaf  shape, while 

Figure 13 shows a tree with a compound palmate leaf.  Figure 14 shows a vine  with twisting 

growth. These examples demonstrate the potential of the Plant Creator system software to 

generate and display a great diversity of plants. 
 

4. DISCUSSION 
 

The PLANI framework provides four domains, which enable the designer to link the 

characteristics of virtual plants to current ontological classifications. The  underlying  assumption 

is that objects in the ENVIRONMENT domain influence objects in the FUNCTION domain, 

which subsequently influence objects in the FORM domain, all of which are supported by the 
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VIRTUAL WORLD. In this section, we discuss four implementation factors,  their relation to the 

selection of objects in domains, and the overall linkage to plant ontologies. Throughout the 

discussion, we use three scenarios to provide illustrations. 

 

The three scenarios are shown in Table 2. This table shows selected objects for the sequence of 

domains from ENVIRONMENT to FORM. For each of the scenarios, PLANI has been or could 

be used to design a virtual plant. The table provides evidence that PLANI is well suited to a wide 

variety of applications, regardless of animation type (gaming, biological simulation, or film). The 

scenarios will be discussed in more detail later in this section. 

 
Table 2: Sample Objects Selected or Three Scenarios 

 
 

The PLANI framework provides flexibility in implementation because a variety of existing 

algorithms can be chosen for objects in each domain or new algorithms can be added through 

coding. The design process is four-fold: select one or more domains, one or more objects in the 

selected domain, one or more properties of the selected objects, and one or more algorithms for 

the objects in the domains. Once a property has been selected, it is also given a specific value, as 

needed. The determining factors for guiding or restricting these selections are the implementation 

style (coding or modelling), the type of animation (gaming, biological simulation, or film), the 

processing requirements (real-time or batch), and the computer resource capacity (CPU, GPU, 

and storage). 

 

The first factor, implementation style, can be chosen as one of two types of coding, either L-

systems [10] or image capture [22]. These algorithms are directly linked to objects,  such as Stem 

and Petiole, in the FORM domain. Alternatively, the implementation style could be chosen as 3D 

modelling, with software such as Maya [32]. All three alternatives represent valid methods to 

implement plant objects in the FORM domain. Likewise, the FUNCTION domain has 

implementation style choices either through the use of algorithm coding that moves stems and 

leaves [28] or through a series of images. Similarly, the ENVIRONMENT domain  has 

implementation style choices between coding and a series of background images. Thus, the 

choice of implementation style guides the selection of objects for the domains. 

 

The second and third factors are best considered together. Selecting the type of animation will 

influence the processing requirements and therefore the object selections. Typically, a game 

requires real-time processing. As a result, the designer should select  relatively few objects in the 
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FORM domain and very few objects from the FUNCTION and ENVIRONMENT domains. In 

contrast, a film requires batch processing to ensure sufficient processing resources to create a 

high level of detail. Thus, more objects can be selected from  the FORM and FUNCTION 

domains. However, relatively few objects should be selected in the ENVIRONMENT domain due 

to the restricted timeframe of the film. A biological simulation can be implemented with either 

batch or real-time processing, depending on the desired demonstration.  The selection of objects 

from each domain is limited accordingly. 

 

Lastly, the fourth factor, available computing capacity, needs to be considered during 

design.For  instance,  many gaming animations  use techniques for  reduced  GPU   and CPU 

usage. One technique is to restrict the representation of the Leaf and Branch objects in the 

FORM domain to 2.5D images. A 2.5 image is a collection of planes with textures that are 

placed on polygons, such as cubes or prisms. The 2.5D images require fewer polygons to be 

generated than 3D models, but they provide the illusion of 3D plants, as observed in games such 

as World of Warcraft, Rift, and Skyrim. This technique is appropriate  for these games because of 

the unknown computing capacity and network limitations of the user’s machine. In contrast, film 

requires implementation of complex movements and considerable detail. Generally, the 

technique employed to increase capacity is to generate detailed objects in the FORM and 

FUNCTION domains in a frame by frame fashion, which may require using a data center, such 

as was done for Avatar in 2009 [33]. Moreover, a biological simulation typically requires a more 

detailed animation than a game and a less detailed one than a film. Thus, limitations 

available capacity may result in restricting the selection of objects in one or two of the domains. 

 

Let us consider the scenarios listed in Table 2 in more detail to illustrate the impact of the four 

factors on design. For the first scenario, suppose virtual plants are required as background 

elements in a 3D action-adventure game. Since gaming is the selected animation type, the 

developer is constrained with respect to CPU and GPU usage and must use real-time processing. 

Since the plants are being treated as elements in the background that enhance the gaming 

experience, available processor power is limited. To obtain suitable virtual plants for  the game, 

the developer can restrict the FORM, FUNCTION, and ENVIRONMENT domains in a variety of 

ways. On example of FORM restriction is to use 2.5D images, as previously discussed. An 

example of FUNCTION domain restriction is where a constant swaying is included in the 

animation to simulate wind with little regard to the environment, as has been implemented in 

several current games, such as World of Warcraft or RIFT. Moreover, the ENVIRONMENT 

domain is also often restricted in gaming. A subset of games, including Skyrim and World of 

Warcraft, have implemented day/night, cloud, and precipitation variation  to enhance the gaming 

experience, although with little consideration to the effects of these variations on plants. Skyrim 

also provides seasonal plant changes; for example, flowers are present on trees in spring, but not 

in other seasons. Lastly, since the available  computer  capacity is unknown, the number of 

objects selected in the FORM, FUNCTION, and ENVRIONMENT domains need to be further 

limited. 

 

For the second scenario, suppose we want to animate the process of growth in a detailed 

biological simulation. To do so, the ENVIRONMENT, FUNCTION, and FORM domains can be 

implemented in greater detail than in gaming. However, biological simulations often restrict the 

number of FORM and FUNCTION objects to enable study of a particular effect. For example, to 

create an animation showing the effect of nutrients on plant growth, one could restrict the 

FUNCTION domain objects to Growth and Response to Stimulus [31]. Similarly, to create an 

animation showing the effect of wind on plant growth, one could restrict the FUNCTION domain 

objects to Growth and Locomotion [23]. If sufficient computer capacity to run all three objects of 

the FUNCTION domain (Growth, Locomotion, and Response to Stimulus), using real-time 

processing, then restrictions need not occur. As a last example, to study apical meristem growth, 

Prusinkiewicz et al. restrict each of the FORM and FUNCTION domains to a few objects [34]. 
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They consider the growth object in the FUNCTION domain and its influence on the apical 

meristem object in the FORM domain. 

 

Finally, for the third scenario, to perform animation for a film, a large number of objects may be 

selected in the FORM and FUNCTION domain to ensure sufficient detail. As well, the objects 

selected in the ENVIRONMENT domain can be restricted to the time period of the film. For 

example, Leaf Sheaths may be selected in addition to Leaf objects and properties. These sheaths 

can be shown in a close-up as the film changes focus from the plant to the main characters.   In 

the Avatar film, let us consider the scene where the main character touches    one plant and all 

plants rapidly close. To design this scene with PLANI, the objects could be restricted to Leaf in 

the FORM domain and Locomotion in the FUNCTION domain. As film is the selected 

implementation style, the processing could be limited to batch to enable the frame by frame 

design and creation of the detail required. The GPU and CPU requirements may be high if the 

images of plants are required to be realistic and aesthetically pleasing. The above three scenarios 

illustrate how PLANI can be applied to a wide variety of virtual plant requirements. In addition, 

PLANI aids in organizing and validating the link  between the design of a virtual plant and any 

available plant ontologies regardless of implementation style. 
 

5. CONCLUSION 
 

The PLant ANImation (PLANI) framework provides a way to use plant ontologies to guide the 

design, coding, simulation, and animation of virtual plants. The use of the ontologies when 

selecting relevant objects allows the design to proceed in a well organized manner while 

considering biological factors. The key to the approach is the combination of the four interrelated 

domains (FORM, FUNCTION, ENVIRONMENT and VIRTUAL WORLD) with current plant 

ontologies. The framework enables a virtual plant designer to consider all aspects of animating a 

virtual plant by providing all relevant objects in a hierarchical format. It  provides a structure for 

considering inclusion or exclusion based on four stages: (1) selection of required domains, (2) 

selection of the objects and properties in the chosen domains, (3) selection or design of 

algorithms for the chosen objects and properties, and (4) coding of the algorithms, as necessary, 

to produce a virtual plant based on appropriate resource constraints for the application (gaming, 

biological simulation, or film). In addition, the framework provides a way to directly link each 

animation object to the corresponding biological object; this linkage promotes consistency 

between the objects. Regardless of the animation approach  (mathematical, image-capture, or 

modelling tool usage), the designer is guided by the PLANI framework to produce a plant 

animation in the context of the stated design and implementation considerations. 
 

The framework was implemented in the Plant Creator software system and applied to create a 

variety of virtual plants. With this system, the designer can select properties of objects in the 

FORM domain (Stem, Petiole, Leaf, and Vein), FUNCTION domain (Growth and  Motion) and 

ENVIRONMENT domain (Wind and Season) via the interface. As the designer changes the 

values of the properties they directly produce animations of the corresponding virtual plants in the 

VIRTUAL WORLD domain. Examples showed virtual plant  default, species specific example 

Gingko biloba, a tree with oval leaves, a tree with compound leaves, and a vine. This software 

system could be easily expanded by including more objects in its four domains. For example, 

Flower and Seed objects could be added to the FORM domain, Response to Temperature and 

Response to Disease objects could be added to the FUNCTION domain, Temperature and 

Disease could be added to the ENVIRONMENT domain, and more complex lighting and 

topology objects could be used in the VIRTUAL WORLD domain. 
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Figure 10: Software system implementation of PLANI 
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Figure 11: Species selection in Pick a Plant 

Figure 12: Tree with Oval leaves 
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Figure 13: Tree with Compound Leaf 

Figure 14: Vine example 


