
International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

DOI : 10.5121/ijcga.2017.7201 1

ICVG: PRACTICAL CONSTRUCTIVE VOLUME

GEOMETRY FOR INDIRECT VISUALIZATION

Mark Laprairie, Howard J. Hamilton, and Andrew Geiger

Department of Computer Science, University of Regina, Regina, Canada

ABSTRACT

The task of creating detailed three dimensional virtual worlds for interactive entertainment software can be

simplified by using Constructive Solid Geometry (CSG) techniques. CSG allows artists to combine

primitive shapes, visualized through polygons, into complex and believable scenery. Constructive Volume

Geometry (CVG) is a super-set of CSG that operates on volumetric data, which consists of values recorded

at constant intervals in three dimensions of space. To allow volumetric data to be integrated into existing

frameworks, indirect visualization is performed by constructing and visualizing polygon meshes

corresponding to the implicit surfaces in the volumetric data. The Indirect CVG (ICVG) algebra, which

provides constructive volume geometry operators appropriate to volumetric data that will be indirectly

visualized is introduced. ICVG includes operations analogous to the union, difference, and intersection

operators in the standard CVG algebra, as well as new operations. Additionally, a series of volumetric

primitives well suited to indirect visualization is defined.

KEYWORDS

Constructive solid geometry, constructive volumetric geometry, surface construction, isosurface,

virtual volume sampling function

1. INTRODUCTION

Volumetric data consists of values recorded at constant intervals in three dimensions of space. In

mathematics, volumetric data can be treated as a 3D scalar field. In practise, these data sets are

stored in three dimensional array structures. Such data are utilized in a variety of tasks, including

scientific visualization, medical imaging, and interactive entertainment. A software system that

takes volumetric data, processes them, and produces visualization is called a voxel system. One

method for visualizing volumetric data is to first perform surface construction and then visualize

the resulting surface [1]. Surface construction, also called isosurface extraction or surface

reconstruction, extracts information about surfaces that are implicitly present in the volumetric

data [2] and uses this information to build geometric meshes corresponding to the surfaces.

Visualizing volumetric data through surface construction is referred to as indirect visualization.

In computer graphics, Constructive Solid Geometry (CSG) is a modeling technique that facilitates

the rapid construction of geometric data [3]. Complex scenes can be constructed by applying a

series of Boolean operations, such as union, intersection, and difference, to small sets of 3D

objects. Constructive Volume Geometry (CVG) is an extended version of the CSG technique that

operates on volumetric data instead of conceptually solid objects [4]. The naive approach to

implementing CVG leads to visual artifacts when indirect visualization is performed on the

resulting volumetric data.

This paper focuses on techniques for performing CVG that reduce the number of visual artifacts

when indirect visualization is performed. The discussion is restricted to volumetric data where all

values are non-negative integers. This restricted domain is appropriate for indirect visualization

techniques because they primarily work with density data. The Indirect CVG (ICVG) algebra,

which provides constructive volume geometry operators appropriate to volumetric data that will

be indirectly visualized, is introduced. ICVG includes operations analogous to the union,

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

2

intersection, and difference operators in the standard CVG algebra, as well as several new

operations. Additionally, a series of volumetric primitives well suited to indirect visualization is

defined.

The remainder of this paper is organized as follows. Section 2 describes background material on

CSG, volumetric visualization, CVG, and voxelization. Section 3 discusses practical issues

related to developing an indirect CVG system, as well as the changes made to the CVG algebra to

create the ICVG algebra. Section 4 presents experimental results. Section 5 concludes and

summarizes the findings. Possible future extensions to the approach are also described.

2. BACKGROUND

This section surveys relevant previous work. Section 2.1 presents the main concepts of CSG and

Section 2.2 describes Boolean operations for CSG. Section 2.3 discusses techniques for

visualizing volumetric data. Section 2.4 describes the CVG algebraic framework. Finally,

Section 2.5 describes methods of voxelization.

2.1. Constructive Solid Geometry

As mentioned previously, CSG is a modeling technique that allows for the rapid construction of

geometric data [3]. The technique's effectiveness depends on the idea of combining well-defined,

relatively simple 3D objects called primitives through the use of Boolean operators. Since well-

defined objects are used as the basis for construction of a 3D geometric object, here called

geometry, the resulting compound object retains the same well-defined nature as the primitives

from which it was made.

The conceptual simplicity of working with a few, relatively simple, primitives enable users to

create models quickly, as is required in the interactive entertainment industry. Having only a few

primitive objects, an artist can easily conceptualize the construction of a scene through its parts.

This conceptualization is similar to how a cartoon artist first defines the main geometric form of a

character and then fills in details.

CSG primitives are easily combined into more complex and interesting shapes called compound

objects. In Figure 1, three common primitives are shown: a sphere, a cube, and a cylinder. These

primitives are easily defined mathematically, and thus the mathematical properties of any

resulting compound object can be readily calculated.

Figure 1. Constructive Solid Geometry primitives

The well-defined nature of CSG is suited to engineering tasks [5]. Using this method of

construction allows artists and engineers to produce geometry that is guaranteed to be solid [3].

For example, if an engineer wishes to design an engine compartment that is water tight in a

Computer Aided Design (CAD) environment, CSG can help. The engineer can start with a solid

cube, and then use other primitives to carve cavities within it. If no action is performed that

pierces the surface of the cube, then the resulting cavity is guaranteed to be fully enclosed and

thus water tight.

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

3

In interactive entertainment, CSG has gained popularity as a method for modelling indoor

environments. Valve Software's Hammer editor implements CSG [6]. Hammer has been used

successfully in commercial computer games, including Half-Life 2, Portal, Team Fortress 2, and

Counter-Strike Source. The editor provides wedge, torus, spike, sphere, cylinder, block, and arch

primitives, which can be combined using CSG operations into more complex shapes.

2.2. Boolean Operators for CSG

The operators used in CSG have traditionally been called Boolean operators [3]. Boolean

operators allow CSG to describe novel shapes through a series of relations between two objects.

The most common operators are: union, intersection, and difference.

2.2.1. Union (∪)

The union of primitives A and B produces a new piece of geometry that encompasses the volume

of both A and B. Figure 2 shows A ∪ B, the union of a cube A and a sphere B, for a particular

combination of locations and sizes of these primitives. Union is symmetric, i.e., A ∪ B = B ∪ A.

Figure 2. Union

2.2.2. Intersection (∩)

The intersection of primitives A and B results in a new piece of geometry that contains only the

volume where A and B overlap. Figure 3 shows A ∩ B, the intersection of a cube A and a sphere B;

the removed parts of the cube and sphere are shown with transparent shapes. Intersection is also

symmetric, i.e., A ∩ B = B ∩ A.

Figure 3. Intersection

2.2.3. Difference (−)

The difference of primitives A and B results in a new piece of geometry that encompasses the

volume of A, less the shared volumes of A and B. In practice, this operator is often referred to as

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

4

the carve operator, because it allows artists to carve into a piece of geometry [7]. Figure 4 shows A − B, the difference of a cube A and a sphere B; the location of the sphere is shown with a

transparent shape. Difference is asymmetric, i.e., in general	� − 	 ≠ 	− �.

Figure 4. Difference

2.3. Volumetric Visualization

Volumetric data is comprised of an array of values, each representing a voxel. A voxel is a

volumetric primitive that occupies a single unit of three-dimensional space. A voxel can have

various associated values, such as density or temperature. Volumetric density data is comprised

of an array of values, each of which stores a single value for density. In this array representation

for volumetric data, the position of a voxel in three-dimensional space is inferred from its location

in the array.

To visualize volumetric data, two broad approaches are used. In the direct approach, each value

is directly visualized using a process called volume rendering [8]. Volume rendering works

directly with the data to produce visualization through a variety of techniques, including ray

casting [9], splatting [10], and shear warp [8]. In the indirect approach (or polygon approach), a

three-dimensional polygon mesh representing the surface is constructed and then visualized.

Density values at or above an arbitrary surface threshold (or extraction threshold) value are said

to describe parts of solid objects. Similarly, values below this surface threshold are said to be

outside the solid objects. The polygon mesh typically consists of a list of vertices and edges,

which can be displayed in a three-dimensional rasterization system such as OpenGL or DirectX.

A polygon mesh built from triangles can be readily and efficiently visualized and manipulated

with modern graphics processors. This paper focuses on CVG techniques and primitives well-

suited to the indirect visualization of volumetric density data.

The best-known method for surface construction from volumetric data is the marching cubes

algorithm [11, 12]. The algorithm processes eight neighbouring locations in the voxel data to

form an imaginary cube called a cell. The algorithm then iterates through all possible cells in the

voxel data. For each cell, the algorithm decides whether or not it partitions the object from the

outside world. In other words, it detects cells that form the boundary of the object. If a cell does

so, then it is a part of the surface, and the algorithm constructs a small number of triangles that

form the portion of the surface corresponding to the cell. The collection of all such triangles

forms the polygon mesh.

To construct the triangles corresponding to a cell, the algorithm utilizes a look up table of polygon

shapes corresponding to all possible partitions. Each cell is examined to determine which of the

eight sampling points are within the surface. There are a total of 256 (2
8
) possible configurations

for each cell. The total number of configurations can be reduced by considering reflections and

symmetrical rotations of each configuration. Figure 5 illustrates the fifteen unique cell

configurations shown in the original marching cubes paper [11]. The cube configurations are

designed in such a way that, when placed together, they produce a visibly solid surface.

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

Figure 5. Unique cell configuration

To create more accurate surfaces, the vertices of the polygon mesh are manipulated. Each vertex

of the polygon mesh is positioned on its cell's edge such that it is linearly interpolated between the

two voxel values connected to that edge. The final position of the vertex on a cell's edge

corresponds to the surface threshold position as determined by interpolation. This step modifies

the visibly solid surface, produced by converting the volume data into the correspondin

configurations, to better fit the surfa

Voxel systems for indirect visualization are able to use external colouring information through

texture mapping. Texture mapping applies surface detail supplied by an external

onto the constructed surface. This mapping can be done through a variety of methods, often using

a method called triplaner mapping

material identifier parameter can be added

performing the mapping. Williams proposed the use of discrete material identifiers for the voxel

values to allow for multiple such mappings ins

the identifier tells which material should be placed on a given portion of surface. The use of a

texture map makes the number of

volumetric data. This independence allows for high quality colouring

volumetric data without the overhead of storing p

2.4. Constructive Volume Geometry

Chen and Tucker devised the Constructive Volume Geometry

algebraic operations on volumetric data

describe the interior of the objects it is defining. CVG rectifies this deficiency by working with

objects defined by mathematical scalar fields, which

The CVG algebra provided by Chen and Tucker was intended to

rather than serve as a final standard

In their algebra, Chen and Tucker considered voxels

(here analogous to density) and three colour fields representing red

Chen and Tucker defined versions of these operators suited for

each voxel is composed of four components, opacity, red, gree

information is assumed to be embedded in the volumetric data.

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

Unique cell configurations for the marching cubes algorithm [11]

To create more accurate surfaces, the vertices of the polygon mesh are manipulated. Each vertex

of the polygon mesh is positioned on its cell's edge such that it is linearly interpolated between the

ected to that edge. The final position of the vertex on a cell's edge

corresponds to the surface threshold position as determined by interpolation. This step modifies

the visibly solid surface, produced by converting the volume data into the correspondin

configurations, to better fit the surface implicit in the volume data.

Voxel systems for indirect visualization are able to use external colouring information through

. Texture mapping applies surface detail supplied by an external raster image file

onto the constructed surface. This mapping can be done through a variety of methods, often using

triplaner mapping [11]. To allow for multiple mappings of different textures, a

material identifier parameter can be added to each voxel to specify which raster file to use when

Williams proposed the use of discrete material identifiers for the voxel

values to allow for multiple such mappings instead of colouring information [13]. The value of

ntifier tells which material should be placed on a given portion of surface. The use of a

texture map makes the number of texture elements (texels) independent of the resolution of the

volumetric data. This independence allows for high quality colouring of visualizations of

volumetric data without the overhead of storing per-voxel colouring information.

Constructive Volume Geometry

Constructive Volume Geometry (CVG) framework for describing

tric data [4, 14]. The primary deficiency of CSG is its inability to

describe the interior of the objects it is defining. CVG rectifies this deficiency by working with

objects defined by mathematical scalar fields, which are treated as analogues to volumetric data.

CVG algebra provided by Chen and Tucker was intended to encourage further discussion

serve as a final standard [4].

In their algebra, Chen and Tucker considered voxels with four distinct parameters:

ere analogous to density) and three colour fields representing red (R), green (G)

Chen and Tucker defined versions of these operators suited for a voxel system where the value for

each voxel is composed of four components, opacity, red, green, and blue. Thus, colour

information is assumed to be embedded in the volumetric data.

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

5

To create more accurate surfaces, the vertices of the polygon mesh are manipulated. Each vertex

of the polygon mesh is positioned on its cell's edge such that it is linearly interpolated between the

ected to that edge. The final position of the vertex on a cell's edge

corresponds to the surface threshold position as determined by interpolation. This step modifies

the visibly solid surface, produced by converting the volume data into the corresponding cube

Voxel systems for indirect visualization are able to use external colouring information through

raster image file

onto the constructed surface. This mapping can be done through a variety of methods, often using

o allow for multiple mappings of different textures, a

to each voxel to specify which raster file to use when

Williams proposed the use of discrete material identifiers for the voxel

. The value of

ntifier tells which material should be placed on a given portion of surface. The use of a

independent of the resolution of the

of visualizations of

) framework for describing

. The primary deficiency of CSG is its inability to

describe the interior of the objects it is defining. CVG rectifies this deficiency by working with

analogues to volumetric data.

further discussion

with four distinct parameters: opacity (O)

 and blue (B).

voxel system where the value for

n, and blue. Thus, colour

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

6

Chen and Tucker define a spatial object as a tuple � = �
, ��…	��� of scalar fields defined in ℝ�, including an opacity field
 ∶ ℝ�	 → �0, 1� specifying the “visibility” of every point p in ℝ�	and possibly other attribute fields ��…	�� ∶ ℝ�	 → ℝ, � > 0 [4]. They define the traditional

CSG operations of union, intersection, and difference for objects �� and �� as functions over their

component opacity fields
� and
� as follows:

 union: ∪ ���, ��� = � !�
�,
�� (1)

 intersection: ∩ ���, ��� = �"#�
�,
�� (2)

 difference: −���, ��� = �
� −
�� (3)

where MAX and MIN are as specified in the Appendix. Chen and Tucker showed that CVG is a

superset of CSG [14]. They defined additional operators for CVG other than those available in

CSG. These operators included cap and trim, which are as follows:

 cap: $%&	���, ��� = �' (�
� −
��, ' (�)� −)��, 																															' (�*� − *��, ' (�+� − +��� (4)

 trim: ,-./	���, ��� = �0)"��
� −
��, 0)"��)� −)��, 																																	0)"��*� − *��, 0)"��+� − +��� (5)

where CAP and TRIM are as specified in the Appendix.

The opacity class provided by Chen and Tucker was restricted to the range [0, 1]. Opacity values

from 0 to 1 are well-suited to visualization. Based on the work of Chen and Tucker, Johnson and

Tucker subsequently developed a formal approach to specifying a spatial object as a data type

[15, 16]. They gave a useful algebra of continuous functions that has operations derived from

operations on space and data, and is equipped with an appropriate topology. To the best of our

knowledge, no previous CVG framework optimized for indirect visualization or using material

identifiers has been described in the literature.

2.5. Voxelization

Other related research concerns voxelization (also known as 3D scan conversion), which is the

process of taking a geometric representation of a continuous 3D object and converting it to a

voxel representation that approximates the continuous object. A naive approach would either test

every voxel exhaustively for an intersection with the object or else perform recursive subdivision

of the object. Unfortunately, the voxelizations generated by this approach are often too course

and include more voxels than necessary [17]. A more refined approach was devised by Kaufman

et al. [17]. They define two voxels to be 6-adjacent if they share a face, 18-adjacent if they share

an edge or a face, and 26-adjacent if they share a vertex, an edge, or a face. Based on these

definitions, they define notions of N-separating and covering and then propose that an effective

voxelization should provide a minimal cover of the object. A more recent approach, called

topological voxelization, is based on the topological properties of the objects [18]. Every voxel is

given an associated geometric intersection target and the voxel is marked as solid if any input

primitive intersects this target. Laine proved that selecting appropriate intersection targets results

in voxelizations with desirable connectivity and separability properties. The various voxelization

approaches were compared by Nourian and Zlatanova [19].

Related research addressed the challenge of performing fast voxelization using a Graphics

Processing Unit (GPU). Schwarz and Seidel introduced a conservative surface voxelization

technique, which marks all voxels as solid if they are partially or fully overlapped by a mesh’s

triangles [20]. The technique uses a triangle/box overlap test that can be adapted to yield a 6-

separating surface voxelization with two important properties: it is thinner than the naive

voxelization and it is still connected and gap-free. Recently, Baert et al. have devised an

approach suited to objects represented as very large 3D meshes [21]. Their approach allows the

input triangle mesh, the intermediate 3D voxel grid, and the voxelized output to all be larger than

available memory.

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

7

Although the previous voxelization approaches are fast and effective, none of them address the

problem of creating visual artefacts that is overcome by the method proposed in this paper.

3. CONSTRUCTIVE VOLUME GEOMETRY FOR INDIRECT VISUALIZATION

This section discusses the ICVG approach to implementing a voxel system that performs CVG

for indirect visualization of volumetric density data. CVG was implemented for indirect

visualization in a voxel system named Isovox. Isovox manipulates volumetric data and produces

polygon meshes for visualization. Surface colours for the meshes are obtained by texture

mapping from a texture external to the volumetric data. Section 3.1 presents assumptions for this

work. Section 3.2 describes techniques for developing visually correct volumetric primitives for

indirect visualization. Section 3.3 defines the ICVG algebra designed for indirect volumetric

visualization.

3.1. Assumptions

All values in the volumetric data are assumed to be discrete and non-negative integers in the

range [L, H], where L is the lowest possible value and H is the highest possible value.

Throughout this paper, H, L, and S are used as values rather than variables. Such values are well-

suited for volumetric density data, which are always non-negative. Floating point data would

need to be converted to integers. For example, suppose a value is represented as a single byte of

data. The use of a byte data type, as opposed to an unsigned integer, reduces memory

requirements. For one byte voxels, the L is 0, and the H is 255. Following the 2011 release of the

commercial volume editing tool 3D-Coat [22], the surface threshold (S) is defined to be the

midpoint between L and H, as shown in Equation 6.

 S = 2345� 6 (6)

For example, S = 2�7748� 6 = 127.

Throughout this paper, a right-handed coordinate system is used with right, up, and out

corresponding to the positive X, Y, and Z axis. When performing indirect visualization, a voxel is

visualized if its associated value in the volumetric data is greater than or equal to S.

3.2. ICVG Primitives

When defining primitives for indirect visualization of volumetric data, several factors need to be

considered. The straightforward approach to specifying primitives may produce undesirable

artifacts when indirect visualization is performed. Figure 6 illustrates the desired appearance of

four common volumetric primitives, namely the cuboid, the ellipsoid, the cylinder and the cone.

Within this section, Section 3.2.1 defines virtual volume sampling functions; Section 3.2.2

introduces clipping and padding; and Sections 3.2.3 through 3.2.6 describe the cuboid, ellipsoid,

cylinder, and cone primitives, respectively.

Figure 6. Primitives constructed from volumetric data sets

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

8

3.2.1. Virtual Volume Sampling Functions

A virtual volume sampling function is now defined. Let ℕ represent the non-negative integers.

Let +<= = �+>, +? , +@� ∈ ℕ� represent the upper bounds on a 3D space, called the extension space

(also known as the volume), with origin (0, 0, 0). Thus, the width, height, and depth of the

extension space correspond to Bx, By and Bz, respectively. Let B<= = �B> , B? , B@� ∈ ℕ�, such that B> < +> , B? < +?, B@ < +@, represent a position in the extension space. Thus, the positions in the

extension space range from (0, 0, 0) to �+> − 1, +? − 1, +@ − 1�. One voxel is located at each

position. A virtual volume sampling function, D: B<= ⟶ �L, H�, specifies the density value for any

position (i.e., voxel) in the extension space. The function D takes a position, called the sampling

position, in an arbitrarily large extension space as input and returns as output a value in the range

[L, H]. This output value represents a density.

Virtual volume sampling functions are resolution independent, meaning that a virtual volume can

be sampled at any level of granularity by changing the resolution of the extension space. To fully

reconstruct the virtual volume at a specified resolution, the virtual volume function is sampled at

every point in an extension space at that resolution.

3.2.2. Clipping and Padding

As previously mentioned, the marching cubes algorithm operates on eight data points at a time.

Thus, data points along the edge of the extension space cannot be processed in the same fashion

as the interior data points. Some implementations of the marching cubes algorithm handle this

difficulty by pretending the extension space is surrounded by voxels with L or H values. Suppose

H values are used. If the surface of the object extends to any edge of the extension space, then

holes will appear where the surface touches the edge. This artifact is referred to as clipping.

To address the clipping issue, it would seem sufficient to assign L values to voxels outside of the

extension space, but doing so may make CVG operations on some objects less efficient. The

constraints of an application may ensure that some portions of a constructed surface can never be

viewed. If there are constraints of this fashion, then time will be wasted performing surface

construction and visualization of these unseen boundaries. Suppose that mountainous terrain is

created for a first person shooter game but that the player can never see the mountains from below

the surface. Therefore any visualization of the bottom of these mountains is wasted.

(a) View from above

(b) View from below

Figure 7. Hollow island surface displayed by Isovox

A more flexible solution to this problem is to provide additional voxel values called padding

voxels surrounding the extension space of interest. In the case of the cuboid primitives, these

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

padding voxels are set to L, to ensure the creation of the expected surface mesh. In the

mountainous terrain example, no such padding voxels would be placed

extension space, resulting in a visually correct, hollow mesh. If

the mesh to be filled in with polygons, a set of padding L values could be added.

shows a visually correct unpadded terra

view of the same surface.

3.2.3. Cuboid

The cuboid volumetric primitive is used for representing rectangular solids. The construction of a

cuboid primitive for CVG may seem trivial, but two

designing such a primitive for indirect visualization:

The naive approach to defining a cuboid primitive is to simply fill a volume uniformly with H

values; this approach suffers from clipping. The clippin

outside of the volume, where needed, with L values, as described in Section 3.2.2.

The second problem is beveling. When a cuboid primitive is visualized, it should have sharp

corners. However, the naive definition of the cuboid primitive allows beveling artifacts to appear

on the edges of the visualized surface.

Figure 8 (a) shows how a beveling artifact can have an undesirable smoothing effect on the

cuboid primitive, shown here with a checkerboard texture to facilitate seeing the edges. Observe

how the edges of the cuboid have a smooth, rounded appearance.

 (a) With beveling artifact

Figure 8. Cuboid primitive with

This problem can be easily understood by considering the two

three-dimensional one. Figure 9
a dotted line, while the solid line shows how the actual

 (a) Corner with beveling artifact

Figure 9

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

voxels are set to L, to ensure the creation of the expected surface mesh. In the

mountainous terrain example, no such padding voxels would be placed at the bottom of the

extension space, resulting in a visually correct, hollow mesh. If one desired the bottom portion of

the mesh to be filled in with polygons, a set of padding L values could be added.

shows a visually correct unpadded terrain example and Figure 7 (b) shows the hollow underside

The cuboid volumetric primitive is used for representing rectangular solids. The construction of a

cuboid primitive for CVG may seem trivial, but two problems need to be addressed when

tive for indirect visualization: clipping and beveling.

The naive approach to defining a cuboid primitive is to simply fill a volume uniformly with H

pproach suffers from clipping. The clipping problem can be avoided by padding the

outside of the volume, where needed, with L values, as described in Section 3.2.2.

is beveling. When a cuboid primitive is visualized, it should have sharp

corners. However, the naive definition of the cuboid primitive allows beveling artifacts to appear

on the edges of the visualized surface.

shows how a beveling artifact can have an undesirable smoothing effect on the

cuboid primitive, shown here with a checkerboard texture to facilitate seeing the edges. Observe

how the edges of the cuboid have a smooth, rounded appearance.

(a) With beveling artifact (b) Without beveling artifact

Cuboid primitive with and without beveling artifact

can be easily understood by considering the two-dimensional case rather than the

Figure 9 (a) illustrates the desired appearance of a square primitive with

while the solid line shows how the actual beveled surface is constructed.

(a) Corner with beveling artifact (b) Corner with artifact removed

9. Two-dimensional view of beveling artifact

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

9

voxels are set to L, to ensure the creation of the expected surface mesh. In the

at the bottom of the

the bottom portion of

 Figure 7 (a)

(b) shows the hollow underside

The cuboid volumetric primitive is used for representing rectangular solids. The construction of a

need to be addressed when

The naive approach to defining a cuboid primitive is to simply fill a volume uniformly with H

can be avoided by padding the

is beveling. When a cuboid primitive is visualized, it should have sharp

corners. However, the naive definition of the cuboid primitive allows beveling artifacts to appear

shows how a beveling artifact can have an undesirable smoothing effect on the

cuboid primitive, shown here with a checkerboard texture to facilitate seeing the edges. Observe

dimensional case rather than the

illustrates the desired appearance of a square primitive with

constructed.

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

10

The beveling of the corner of the square primitive is an artifact of the marching cubes algorithm.

When the corner cell is sampled, two points out of eight are within the boundary of the volume,

corresponding to the third case in Figure 5. The look up table selects a diagonal corner piece to

be placed in the cell. The vertices are positioned on their related cell edges using linear

interpolation. With the naive cuboid definition, the interpolated surface needs to be between H

and L density, which forces the vertices of the constructed triangles to be placed on the midpoints

of the edges.

In ICVG, beveling is addressed by adding a thin layer (one voxel wide) of surface S value voxels

surrounding the interior H values of the cuboid. Figure 9 (b) shows how adding these surface

value voxels around a square can remove the beveling artifact. Although the look up function

chooses a diagonal corner piece to be placed in the cell, as before, when the location of the

vertices are interpolated between L and S, they are placed touching the S side. Figure 8(b) shows

a cuboid primitive with the beveling artifact removed, resulting in sharp corners, as desired.

The ICVG cuboid sampling function DIJ is defined as follows:

DIJKB<=L =
MN
O
NP
L		if		�B> = 0� ∨ �B> = +> − 1� ∨ KB? = 0L ∨ KB? = +? − 1L													∨ �B@ = 0� ∨ �B@ = +@ − 1�,																																																			S	otherwise		if	�B> = 1� ∨ �B> = +> − 2� ∨ KB? = 1L																									
																														∨ KB? = +? − 2L ∨ �B@ = 1� ∨ �B@ = +@ − 2�,										H	otherwise																																																																																																		

[(7)

zyx BBB ,, are restricted to values greater than 2. Given a position V
r

bounded within the volume

dimensions B
r

, the cuboid sampling function DIJ returns the voxel value at that position, which is

L, S, or H. If the position is touching the bounding volume, then it is assigned L. Positions that

are one voxel away from the edges of the bounding volume are assigned S. All other positions

are assigned H. This method of defining the cuboid sampling function overcomes the clipping

and beveling problems described above.

An undesirable side effect of having the cuboid primitive contain three possible values instead of

two (i.e., it contains L, H, and S values instead of only H and L values) is that the potential for

compression is reduced. Generally, having less homogenous volumetric data reduces the

expected compression ratio.

3.2.4. Ellipsoid

The ellipsoid volumetric primitive is used for representing spherical and other rounded shapes.

The naive approach to the ellipsoid primitive would be to linearly interpolate values from H to L

radically from the midpoint of the volume. Figure 10 (a) shows the density function along some

axis where the ellipsoid has radius R that results from this approach. This approach produces a

visually correct surface mesh, but it suffers from three flaws. First, much of the volume will be

filled with wasted space, i.e., values outside of the surface mesh that do not affect construction.

This wasted space means that the ellipsoid surface is relatively small compared to the size of the

volume. Secondly, these invisible values may have undesired effects on CVG operations.

Finally, the volumetric data resulting from this approach will be inefficient to compress because

the values inside the surface and outside the surface, which do not affect surface construction,

vary widely. Figure 10 (b) shows the density function corresponding to the ICVG virtual volume

sampling function, which addresses the problems with the naive approach. Only a small amount

of extension space is allocated past the radius R, and values well below this threshold are assigned

values of H.

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

 (a) Naive density function

Figure 10

Let)<= = �)>,)?,)@� ∈ ℕ�, where

the desired radius in the X, Y, and Z axes. Let,

represent the position in the volume translate

to the center of the ellipsoid. Additionally

\]].&^_.`+_`aK(<bL = cdefgef h difgif h
The ellipsoid sampling function D

DjkKB<=L =
MNO
NPH																				L																				
l mnkkopqrostrs?

where 0u = 0<b/w0<bw represents the unit vector in the same direction as

volumetric data that can be visualized as an ellipsoid. This function reduces the number of

unique values in the volumetric data by

construction because they are definitely inside or definitely outside the ellipsoi

assigned H values if they are inside the ellipsoid and L values if they are outside. Voxels near the

surface of the ellipsoid are assigned the value of one divided by the ellipsoid body function,

scaled by S. By calculating the near s

from the data will appear to have a

will be highly compressible due to the reduced number of unique values.

An ellipsoid primitive constructed with the

center point)<b of the extension space

altering the separate components

that)> =)? =)@, the resulting primitive is a sphere.

The visual quality of an ellipsoid primitive is limited by the dimensions of the volume

which it is defined, as well as the range of possible B<b, the primitive is less smooth in appearance. When the range of values for the voxel is

insufficient, a distinctive banding

(a) shows the banding artifact on an ellipsoid visualized using a volumetric ellipsoid primitive

with B<b = �32,32,32� and a voxel range of 256. This artifact can be reduced in severity by

increasing the number of possible va

artifact on an ellipsoid with B<b =

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

(a) Naive density function (b) ICVG density function

10. Density functions for ellipsoid primitives

where 1 y)> y 2te� 6, 1 y)? y 2ti� 6, and 1 y)@ y 2
the desired radius in the X, Y, and Z axes. Let, 0<b = �0> , 0? , 0@� ∈ ℕ� , such that 0
represent the position in the volume translated so that (0, 0, 0) corresponds as nearly as possible

Additionally the \]].&^_.`+_`a: (<b → �0,∞� function

c h dzfgzf{, which corresponds to the well-known ellipsoid function.

Djk is defined as follows:

										if	\]].&^_.`+_`aK0<= h 0uL < 1,
										if	\]].&^_.`+_`aK0<= − 0uL > 1,

nkkopqrostrs?K|<=L} 	otherwise																																						
[

represents the unit vector in the same direction as 0<b. Function

data that can be visualized as an ellipsoid. This function reduces the number of

unique values in the volumetric data by identifying voxels that will not influence surface

construction because they are definitely inside or definitely outside the ellipsoid. These voxels are

assigned H values if they are inside the ellipsoid and L values if they are outside. Voxels near the

surface of the ellipsoid are assigned the value of one divided by the ellipsoid body function,

scaled by S. By calculating the near surface values in this fashion, the polygon mesh produced

from the data will appear to have a relatively smooth surface. Nonetheless the volumetric data

will be highly compressible due to the reduced number of unique values.

An ellipsoid primitive constructed with the ellipsoid sampling function Djk is centered around the

extension space. Function Djk can be used to create a variety of ellipsoid

altering the separate components of R. In cases where an ellipsoid is defined in a volume such

, the resulting primitive is a sphere.

The visual quality of an ellipsoid primitive is limited by the dimensions of the volume

which it is defined, as well as the range of possible values for each voxel. For smaller values of

, the primitive is less smooth in appearance. When the range of values for the voxel is

banding artifact appears on the constructed polygon mesh.

rtifact on an ellipsoid visualized using a volumetric ellipsoid primitive

and a voxel range of 256. This artifact can be reduced in severity by

of possible values for each voxel. Figure 11 (c) shows the roughness b = �8,8,8� and the same voxel range. Figure 11 (b) shows no

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

11

2tz� 6 represent

0<b = �B<b −)<b�,
0) corresponds as nearly as possible

function is defined as

known ellipsoid function.

(8)

. Function Djk produces

data that can be visualized as an ellipsoid. This function reduces the number of

oxels that will not influence surface

d. These voxels are

assigned H values if they are inside the ellipsoid and L values if they are outside. Voxels near the

surface of the ellipsoid are assigned the value of one divided by the ellipsoid body function,

the polygon mesh produced

smooth surface. Nonetheless the volumetric data

is centered around the

can be used to create a variety of ellipsoids by

where an ellipsoid is defined in a volume such

The visual quality of an ellipsoid primitive is limited by the dimensions of the volume B<b for

values for each voxel. For smaller values of

, the primitive is less smooth in appearance. When the range of values for the voxel is

tructed polygon mesh. Figure 11
rtifact on an ellipsoid visualized using a volumetric ellipsoid primitive

and a voxel range of 256. This artifact can be reduced in severity by

(c) shows the roughness

(b) shows no

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

distinctive artifacts on an ellipsoid with

roughness artifact, but small enough to not r

(a) B<b = �32,32,32�

Figure

3.2.5. Cylinder

The cylinder sampling function D

DI?KB<=L =

MN
NN
O
NNN
P L																			
S																					

						
[H																		l mnkkopqjtrs?

where \]].&^�+_`a: (<b → �0,∞�
represents the well-known two-

definition, the cylinder primitive is related to the ellipsoid primitive. The ba

two-dimensional ellipse, defined on the X/Z plane. Surface detail is calculated in the same

fashion as for the ellipsoid primitive, with the ellipsoid body function replaced by a two

dimensional ellipse body function. The ellipse

for the ends, which must be treated differently in order to cap the primitive.

position height B? is used as a parameter to determine if the position is vertically within the

cylinder, i.e., between 0 and +?
form the surface, followed by L values for padding.

3.2.6. Cone

The cone volumetric primitive is used for representing

shape is defined in terms of its height and the radiuses

h is defined as c1 − �iti{, which linearly interpolates fro

extension space, relative to the height of the

linearly interpolates from 1 to 0 as the position height value

of the extension space. Let '_��+_`a

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

distinctive artifacts on an ellipsoid with B<b = �16,16,16�, which is large enough to minimize the

roughness artifact, but small enough to not require additional voxel range.

(b) B<b = �16,16,16� (c) B<b = �8,8

Figure 11. Ellipsoid primitives with varying V
r

DI? for a volume B<b is defined as follows :

												if	K\]].&^�+_`aK0<= h 0uL > 1L ∨ KB? = 0L
∨ KB? = +? − 1L,							

										if	KB? = 1 ∨ B? = +? − 2L																																		
																		∧ K\]].&^�+_`aK0<= h 0uL < 1L,

[if	\]].&^�+_`aK0<= h 0uL < 1,																									
nkkopqjtrs?K|<=L} otherwise																																																														

[
[

� is a function such that \]].&^�+_`aK(<bL = �defgef h
-dimensional ellipse function. As can be seen from the above

definition, the cylinder primitive is related to the ellipsoid primitive. The base of the cylinder is a

dimensional ellipse, defined on the X/Z plane. Surface detail is calculated in the same

fashion as for the ellipsoid primitive, with the ellipsoid body function replaced by a two

dimensional ellipse body function. The ellipse base is used at each level of the cylinder, except

for the ends, which must be treated differently in order to cap the primitive. T

as a parameter to determine if the position is vertically within the − 1. At the vertical ends of the cylinder, S values are placed to

llowed by L values for padding.

volumetric primitive is used for representing cones and other conical shapes

erms of its height and the radiuses of its elliptical base. The sampling height

, which linearly interpolates from 0 to 1 based on the position in the

, relative to the height of the extension space. More precisely, the

linearly interpolates from 1 to 0 as the position height value B? varies from the bottom to the top

'_��+_`a: (<b → �0,∞�, where '_��+_`aK(<bL = � d�ge

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

12

, which is large enough to minimize the

 8,8�

L

[
[(9)

� h dzfgzf�, which

dimensional ellipse function. As can be seen from the above

se of the cylinder is a

dimensional ellipse, defined on the X/Z plane. Surface detail is calculated in the same

fashion as for the ellipsoid primitive, with the ellipsoid body function replaced by a two-

base is used at each level of the cylinder, except

The sampling

as a parameter to determine if the position is vertically within the

. At the vertical ends of the cylinder, S values are placed to

cones and other conical shapes. A conical

The sampling height

position in the

More precisely, the value of h

bottom to the top

L � def� e��f h dzf�gz��f�,

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

13

represent the ellipse function, modified by the height-dependent h variable. The cone sampling

function DIr for a volume B<b is defined as follows:

DIrKB<=L =
MN
O
NP
L																									if	�B? = 0� ∨ �'_��+_`aK0<= − 0uL > 1,																								
S																									otherwise	if	KB? = 1L ∧ K'_��+_`aK0<= h 0uL < 1L,
[H																									otherwise	if	'_��+_`aK0<= h 0uL < 1,																									
l m�r�jtrs?K|<=L} 		otherwise																																																																											

[
[(10)

As with the cylinder, the sampling height h is used to determine if a position is vertically outside

of the primitive, but it is also used as a parameter for altering the desired radiuses of the cone.

Specifically, h reduces the ellipse radiuses as the positions progress up the cone. L and S padding

are applied at the bottom of the cone.

With the above cone sampling function, it is important to consider where in the volume the

primitive's center point on the X/Z plane is to be located. If this center point is located in the true

middle of volume, the tip of the resulting cone shape may contain artifacts. Error! Reference

source not found. shows the broken tip artifact, where the topmost portion of the primitive

contains undesirable surface deformation. This artifact is a result of the logical center being

defined between voxels in the extension space. If the center of the cone is forced to be on a

voxel, this artifact will not occur.

Figure 12. Cone primitive with the broken tip artifact

3.3. The ICVG Algebra

Chen and Tucker's definition of CVG operators was purposely general, and allowed for real and

negative values. The modified algebra, called ICVG, concentrates on the use of primitives and

operations optimized for indirect visualization. Consequently, the algebra is limited to a restricted

range non-negative integer values. The ICVG union, intersection, trim, and cap operations are the

same as those of CVG for opacity, except that the input and output values are restricted to discrete

positive volumes:

 union: ∪ ���, ��� = � !���, ��� (11)

 intersection: ∩ ���, ��� = �"#���, ��� (12)

 trim: ,-./���, ��� = 0)"����, ��� (13)

 cap: $%&���, ��� = ' (���, ��� (14)

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

14

The difference operator is defined differently in ICVG than in CVG to ensure that the values in

the resulting volume are always non-negative. The following three possible operators were

considered:

 differenceA: −���, ��� = � !��� − ��, L� (15)

differenceB: −���, ��� = �� !��� −��, L�			if		�� ≥ S,																													��																														otherwise																												 [(16)

difference: −���, ��� = �� !��� −��, S�			if		��� ≥ S� ∧ ��� ≥ S�,� !��� − ��, L�			otherwise																								 [(17)

The differenceA operator represents the range-restricted version of the difference operator

described by Chen and Tucker [4]. Figure 13 (a) shows that the differenceA operator produces

undesirable artifacts on the surface of the resulting object when applied with a cuboid for �� and

an ellipsoid for ��. Observe that the cavity created in �� is smooth, but every edge of this cavity

has an apparent beveling artifact. Values in the ellipsoid primitive that are below S are not

visualized, but they affect the cuboid primitive when the differenceA operator is applied. These

problems are typical of those encountered when combining any two primitives with differenceA.

The differenceB operator is defined similarly to differenceA but ignores the values that are below

S, i.e., values corresponding to parts of the ellipsoid primitive that are outside the surface of the

ellipsoid. Figure 13 (b) shows how ignoring these invisible values in the ellipsoid primitive

results in a jagged surface on the carved areas of the cuboid. This artifact appears because the

ellipsoid primitive owes part of its smoothness to these invisible values. As shown in Figure 13

(c), the difference operator combines the desirable features of the differenceA and the differenceB

operators. In cases where the surface of the source object is visible and the surface of the operand

object is not, this operator performs a subtraction operation that is bounded between S and H.

Otherwise, it acts in the same manner as differenceA. The difference operator does not suffer

from the beveling artifact that occurs with differenceA, and it does not produce the jagged interior

surface that occurs with difference B.

(a) differenceA (b) differenceB (c) difference

Figure 13. Three possible difference operators

Additionally, ICVG defines the add and modulate operators as follows:

 add: h���, ��� = �"#��� h ��, H� (18)

 module: ∗ ���, ��� = �"#��� ∗ ��, H� (19)

These two operators may produce compound objects with surfaces not found in the source

primitives because when two densities that are lower than the surface threshold are combined the

result may be a density that is higher than the surface threshold. Thus these two operations have

less predictable behavior than the previously defined operations.

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

15

Two possible divide operators, called divideA and divide, were also considered. The naive

divideA operator is defined as follows:

divideA: ÷ ���, ��� = ��� ÷ ��		if		�� ≥ 0,																	H														otherwise																 [(20)

and the more useful divide operator is defined as follows:

divide: ÷ ���, ��, ��� = ��� ÷ ��� ∗ ���		if		�� ≥ 0,																						H																											otherwise																					[(21)

where SL is a real number in the range 0 to 1.

Since an object's surface is the middle of the valid range of possible voxel values, the divideA

operator produces a compound object with no visible surface wherever	�� ≥ 2. The divide

operator is similar to divideA, but it multiplies the divisor by a real-valued scalar during each

operation, providing additional control. The divide operator does not require �� to be specified as

a value in the real domain in order to provide small adjustments. The divide operator can be

implemented using floating point operations during calculations, allowing for a greater range of

results, but only integers are used as input and output. Thus, only integers need to be stored.

In addition to the binary operators just discussed, ICVG also includes scalar and unary operations.

A scalar operation is performed by applying the same arithmetic operation to every voxel in

volumetric data. An example of a scalar operation is addScalar, which adds a single number to a

data set in order to uniformly increase, or decrease, the densities. A unary operator, such as

inverse, requires a single operand. The inverse operation creates an extension space where

solidness and emptiness are reversed. Taking the inverse of an object �� is equivalent to applying

the difference operator to a completely solid extension space and ��. The inverse operator can be

implemented by computing the difference between H and each voxel. The inverse operator is

defined as follows:

inverse: "���� = �H − ��� (22)

4. EXPERIMENTAL RESULTS

All sampling functions described in Section 3.2 were implemented in both CPU and GPU

versions in a common test bed, with the only differences being those that are essential to invoke

CPU versus GPU operations. Experiments were run on a Dell Alienware Aurora computer with an

Intel Core i7-3820 CPU and an NVIDIA GeForce GTX 560 GPU. Every result reported is the

average (mean) of the results for 100 separate runs, each of which involved generating 100

identical volumetric solids.

The four graphs shown in Figure 14 and Figure 15 depict the performance of volume generation

for four primitives (cuboid, ellipsoid, cylinder, and cone) using the sampling functions defined in

ICVG. Figure 14 (a) and Figure 15 (a) show the execution times in milliseconds on the CPU

and GPU, respectively. For example, the first set of eight lines in Figure 14 (a) shows the

execution time on the CPU while generating cuboids in various sizes of extension spaces. The

"EllipsoidB" and "CylinderB" results are for alternative implementations that are not restricted to

aligning precisely with the grid. Figure 14 (b) and Figure 15 (b) represent the same timing data,

but with the time (in nanoseconds) per voxel in the extension space. For example, for generating a

cuboid on the CPU in an 8 x 8 x 8 extension space, the time of 0.005 milliseconds is divided by

512 (83) voxels, giving 9.7 nanoseconds per voxel.

The results in Figure 14 (a) show that, for each primitive, the execution time on the CPU

increases as the primitive is generated in larger extension spaces. Figure 14 (b) shows that the

execution time per voxel was roughly constant, except for the cone. When generating a cone, a

fixed overhead occurred, which increased the cost per voxel for small sizes of extension spaces.

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

16

(a) Time per primitive

(b) Time per voxel

Figure 14. CPU execution times for generating primitives with varying sizes of extension spaces

Timing results for generating the primitives on the GPU were also obtained. The version of

DirectX that was used for our implementation did not provide the ability to query the time that it

took for a dispatch call (which in this case causes a single primitive to be generated on the GPU).

To counter this absence, the results of the dispatch calls were immediately pulled back into CPU

memory after the dispatch call was made and the timer was stopped when the transfer completed.

If a request is made to bring GPU data back into CPU memory, then all queued operations (such

as the dispatched generation procedures) on that data are performed as soon as possible and the

data afterwards is transferred back to the CPU. To obtain timing information for only the GPU

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

17

calculations, the fixed time cost of transferring the data from the GPU was subtracted, which

otherwise would have distorted the results for small extension spaces. However, this introduced

some inaccuracy for these small extension spaces. Thus, overall the timing mechanism for our

experiments on the GPU was less accurate than the one for those on the CPU.

(a) Time per primitive

(b) Time per voxel

Figure 15. GPU execution times for generating primitives with varying sizes of extension spaces

The results in Figure 15 (a) show that execution was much faster on the GPU than the CPU, e.g.,

0.43 ms instead of 36 ms for the largest cone. For the cuboid, the execution time on the GPU was

roughly constant as the cuboid is generated in larger extension spaces. For the other primitives,

small linear increases in total execution time on the GPU were observed as the size of the

extension space increased, possibly because of timing inaccuracies, as described above. Given

the timing inaccuracies, the execution time per voxel was roughly constant for all primitives (see

Figure 15(b)).

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

18

Overall, acceptable performance was obtained with our implementations of ICVG on both the

CPU and GPU. The time required to generate any 72 x 72 x 72 shape was less than 40 ms on the

CPU and less than 0.45 ms on the GPU.

5. CONCLUSIONS AND FUTURE WORK

The ICVG algebra was described and descriptions of primitives for volumetric data presented

through indirect visualization were provided. The concept of a volume sampling function was

introduced, and examples were provided for cuboids, ellipsoids, cylinders, and cones. Potential

banding, beveling, and clipping artifacts were identified and methods for avoiding them were

provided. Three alternative definitions for the difference operator were described, and the visual

results for indirect visualization were compared. As well, the divideA, divide, modulate and add

CVG operations were defined. The inverse unary operation was also specified.

In future work, experiments could be conducted on alternative methods for reducing the

remaining artifacts due to the difference operation. Alternative values of S should be investigated

to determine whether the visual impact of the artifact can be reduced. Modified versions of the

marching cubes algorithms could be investigated to see if their changes to the resulting meshes

affect the presence of the identified artifacts. Additional primitive objects could be defined,

including torus, pyramid, capsule, and prism objects [23].

REFERENCES

[1] L. Kobbelt, M. Botsch, U. Schwanecke, and H. Seidel, "Feature Sensitive Surface Extraction from

Volume Data," in 28th Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH'01), Los Angeles, 2001.

[2] R. Geiss, "Generating Complex Procedural Terrains Using the GPU," in GPU Gems, Boston,

Pearson Education, 2008, pp. 5-37.

[3] A. Requicha and H. Voelcker, "Constructive Solid Geometry," Production Automation Project,

University of Rochester, Rochester, 1977.

[4] M. Chen and J. Tucker, "Constructive Volume Geometry," Computer Graphics Forum, vol. 19, no. 4,

pp. 281-293, 2000.

[5] M. Schifko, B. Jüttler, and B. Kornberger, "Industrial Application of Exact Boolean Operations for

Meshes," in 26th Spring Conference on Computer Graphics (SCCG'10), Budmerice, Slovakia, 2010.

[6] Hammer Editor, Valve [computer software], 2017.

[7] N. Zhang, H. Qu, and A. Kaufman, "CSG Operations on Point Models with Implicit Connectivity,"

in Computer Graphics International Conference (CGI'05), Stony Brook, NY, 2005.

[8] P. Lacroute and M. Levoy, "Fast Volume Rendering Using a Shear-warp Factorization of the Viewing

Transformation," in 21st Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH'94), Orlando, 1994.

[9] B. Kainz, M. Grabner, A. Bornik, S. Hauswiesner, J. Muehl, and D. Schmalstieg, "Ray Casting of

Multiple Volumetric Datasets with Polyhedral Boundaries on Manycore GPUs," ACM Transactions

on Graphics, vol. 28, no. 5, pp. 1-9, 2009.

[10] D. Laur and P. Hanrahan, "Hierarchical Splatting: A Progressive Refinement Algorithm for Volume

Rendering," in 18th Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH'91), Las Vegas, 1991.

[11] W. Lorensen and H. Cline, "Marching Cubes: A High Resolution 3D Surface Construction

Algorithm," in 14th Annual Conference on Computer Graphics and Interactive Techniques

(SIGGRAPH'87), Anaheim, 1987.

[12] T. Newman and H. Yi, "A Survey of the Marching Cubes Algorithm," Computer & Graphics, vol.

30, no. 5, pp. 854-879, 2006.

[13] D. Williams, "Volumetric Representation of Virtual Environments," in Game Engine Gems, Sudbury,

Jones and Bartlett, 2010, pp. 39-60.

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

19

[14] M. Chen and J. Tucker, "Constructive Volume Geometry," Department of Computer Science,

University of Wales, Swansea, 1998.

[15] K. Johnson and J. V. Tucker, "The Data Type of Spatial Objects," Formal Aspects of Computing, vol.

25, no. 2, pp. 189-218, 2013.

[16] K. H. A. Johnson, The Data Type of Spatial Objects with Applications to Constructive Volume

Geometry, Doctoral thesis, University of York, UK, 2007.

[17] A. Kaufman, D. Cohen, and R. Yagel, "Volume Graphics," IEEE Computer, vol. 26, no. 7, pp. 51-64,

1993.

[18] S. Laine, "A Topological Approach to Voxelization," Computer Graphics Forum, vol. 32, no. 4, pp.

77-86, 2013.

[19] P. Nourian Ghadi Kolaee and S. Zlatanova, "Voxels and Voxel Algorithms; Two Methods of

Rasterization, Raster Specific Operations," 31 12 2015. [Online]. Available:

https://repository.tudelft.nl/islandora/object/uuid:7954d601-5e37-47bc-b73e-

1df435efea6d?collection=research. [Accessed 2 10 2017].

[20] M. Schwarz and H.-P. Seidel, "Fast Parallel Surface and Solid Voxelization on GPUs," in 3rd ACM

SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia

(SIGGRAPH Asia 2010), Seoul, South Korea, 2010.

[21] J. Baert, A. Lagae, and P. Dutré, "Out-of-Core Construction of Sparse Voxel Octrees," Computer

Graphics Forum, vol. 33, no. 6, pp. 220-227, 2014.

[22] 3D Coat, Pilgway [computer software], 2011.

[23] 3D Studio Max, Autodesk / Discreet [computer software], 2017.

APPENDIX

The following functions are defined on scalars in the range of [L, H]:

 � !�!�, !�� = �!�	if	!� > !�,!�	otherwise[(A1)

 �"#�!�, !�� = �!�	if	!� < !�,!�	otherwise[(A2)

 0)"��!�, !�� = �!�	if	!� ≥ !�,!�	otherwise[(A3)

 ' (�!�, !�� = �!�	if	!� y !�,!�	otherwise[(A4)

