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ABSTRACT 
 

The task of creating detailed three dimensional virtual worlds for interactive entertainment software can be 

simplified by using Constructive Solid Geometry (CSG) techniques.  CSG allows artists to combine 

primitive shapes, visualized through polygons, into complex and believable scenery.  Constructive Volume 

Geometry (CVG) is a super-set of CSG that operates on volumetric data, which consists of values recorded 

at constant intervals in three dimensions of space.  To allow volumetric data to be integrated into existing 

frameworks, indirect visualization is performed by constructing and visualizing polygon meshes 

corresponding to the implicit surfaces in the volumetric data.  The Indirect CVG (ICVG) algebra, which 

provides constructive volume geometry operators appropriate to volumetric data that will be indirectly 

visualized is introduced.  ICVG includes operations analogous to the union, difference, and intersection 

operators in the standard CVG algebra, as well as new operations.  Additionally, a series of volumetric 

primitives well suited to indirect visualization is defined. 
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1. INTRODUCTION 
 

Volumetric data consists of values recorded at constant intervals in three dimensions of space.  In 

mathematics, volumetric data can be treated as a 3D scalar field.  In practise, these data sets are 

stored in three dimensional array structures.  Such data are utilized in a variety of tasks, including 

scientific visualization, medical imaging, and interactive entertainment.  A software system that 

takes volumetric data, processes them, and produces visualization is called a voxel system.  One 

method for visualizing volumetric data is to first perform surface construction and then visualize 

the resulting surface [1].  Surface construction, also called isosurface extraction or surface 

reconstruction, extracts information about surfaces that are implicitly present in the volumetric 

data [2] and uses this information to build geometric meshes corresponding to the surfaces.  

Visualizing volumetric data through surface construction is referred to as indirect visualization. 

 

In computer graphics, Constructive Solid Geometry (CSG) is a modeling technique that facilitates 

the rapid construction of geometric data [3]. Complex scenes can be constructed by applying a 

series of Boolean operations, such as union, intersection, and difference, to small sets of 3D 

objects.  Constructive Volume Geometry (CVG) is an extended version of the CSG technique that 

operates on volumetric data instead of conceptually solid objects [4].  The naive approach to 

implementing CVG leads to visual artifacts when indirect visualization is performed on the 

resulting volumetric data. 
 

This paper focuses on techniques for performing CVG that reduce the number of visual artifacts 

when indirect visualization is performed.  The discussion is restricted to volumetric data where all 

values are non-negative integers.  This restricted domain is appropriate for indirect visualization 

techniques because they primarily work with density data.  The Indirect CVG (ICVG) algebra, 

which provides constructive volume geometry operators appropriate to volumetric data that will 

be indirectly visualized, is introduced.  ICVG includes operations analogous to the union, 
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intersection, and difference operators in the standard CVG algebra, as well as several new 

operations.  Additionally, a series of volumetric primitives well suited to indirect visualization is 

defined. 
 

The remainder of this paper is organized as follows. Section 2 describes background material on 

CSG, volumetric visualization, CVG, and voxelization.  Section 3 discusses practical issues 

related to developing an indirect CVG system, as well as the changes made to the CVG algebra to 

create the ICVG algebra. Section 4 presents experimental results.  Section 5 concludes and 

summarizes the findings. Possible future extensions to the approach are also described. 
 

2. BACKGROUND 
 

This section surveys relevant previous work.  Section 2.1 presents the main concepts of CSG and 

Section 2.2 describes Boolean operations for CSG.  Section 2.3 discusses techniques for 

visualizing volumetric data.  Section 2.4 describes the CVG algebraic framework.  Finally, 

Section 2.5 describes methods of voxelization. 
 

2.1. Constructive Solid Geometry 
 

As mentioned previously, CSG is a modeling technique that allows for the rapid construction of 

geometric data [3].  The technique's effectiveness depends on the idea of combining well-defined, 

relatively simple 3D objects called primitives through the use of Boolean operators.  Since well-

defined objects are used as the basis for construction of a 3D geometric object, here called 

geometry, the resulting compound object retains the same well-defined nature as the primitives 

from which it was made. 
 

The conceptual simplicity of working with a few, relatively simple, primitives enable users to 

create models quickly, as is required in the interactive entertainment industry.  Having only a few 

primitive objects, an artist can easily conceptualize the construction of a scene through its parts.  

This conceptualization is similar to how a cartoon artist first defines the main geometric form of a 

character and then fills in details. 
 

CSG primitives are easily combined into more complex and interesting shapes called compound 

objects.  In Figure 1, three common primitives are shown: a sphere, a cube, and a cylinder.  These 

primitives are easily defined mathematically, and thus the mathematical properties of any 

resulting compound object can be readily calculated. 
 

 
Figure 1.  Constructive Solid Geometry primitives 

 

The well-defined nature of CSG is suited to engineering tasks [5].  Using this method of 

construction allows artists and engineers to produce geometry that is guaranteed to be solid [3].  

For example, if an engineer wishes to design an engine compartment that is water tight in a 

Computer Aided Design (CAD) environment, CSG can help.  The engineer can start with a solid 

cube, and then use other primitives to carve cavities within it.  If no action is performed that 

pierces the surface of the cube, then the resulting cavity is guaranteed to be fully enclosed and 

thus water tight. 
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In interactive entertainment, CSG has gained popularity as a method for modelling indoor 

environments.  Valve Software's Hammer editor implements CSG [6].  Hammer has been used 

successfully in commercial computer games, including Half-Life 2, Portal, Team Fortress 2, and 

Counter-Strike Source.  The editor provides wedge, torus, spike, sphere, cylinder, block, and arch 

primitives, which can be combined using CSG operations into more complex shapes. 
 

2.2. Boolean Operators for CSG 
 

The operators used in CSG have traditionally been called Boolean operators [3].  Boolean 

operators allow CSG to describe novel shapes through a series of relations between two objects.  

The most common operators are: union, intersection, and difference. 
 

2.2.1. Union (∪) 
 

The union of primitives A and B produces a new piece of geometry that encompasses the volume 

of both A and B.  Figure 2 shows A ∪ B, the union of a cube A and a sphere B, for a particular 

combination of locations and sizes of these primitives.  Union is symmetric, i.e., A ∪ B = B ∪ A. 
 

 
Figure 2.  Union 

 

2.2.2. Intersection (∩) 
 

The intersection of primitives A and B results in a new piece of geometry that contains only the 

volume where A and B overlap. Figure 3 shows A ∩ B, the intersection of a cube A and a sphere B; 

the removed parts of the cube and sphere are shown with transparent shapes.  Intersection is also 

symmetric, i.e., A ∩ B = B ∩ A. 

 
Figure 3.  Intersection 

 

2.2.3. Difference (−) 
 
The difference of primitives A and B results in a new piece of geometry that encompasses the 

volume of A, less the shared volumes of A and B.  In practice, this operator is often referred to as 
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the carve operator, because it allows artists to carve into a piece of geometry [7].  Figure 4 shows A − B, the difference of a cube A and a sphere B; the location of the sphere is shown with a 

transparent shape.  Difference is asymmetric, i.e., in general	� − 	 ≠ 	− �. 

 
Figure 4.  Difference 

 

2.3. Volumetric Visualization 
 

Volumetric data is comprised of an array of values, each representing a voxel. A voxel is a 

volumetric primitive that occupies a single unit of three-dimensional space. A voxel can have 

various associated values, such as density or temperature.  Volumetric density data is comprised 

of an array of values, each of which stores a single value for density.  In this array representation 

for volumetric data, the position of a voxel in three-dimensional space is inferred from its location 

in the array. 
 

To visualize volumetric data, two broad approaches are used.  In the direct approach, each value 

is directly visualized using a process called volume rendering [8]. Volume rendering works 

directly with the data to produce visualization through a variety of techniques, including ray 

casting [9], splatting [10], and shear warp [8].  In the indirect approach (or polygon approach), a 

three-dimensional polygon mesh representing the surface is constructed and then visualized.  

Density values at or above an arbitrary surface threshold (or extraction threshold) value are said 

to describe parts of solid objects.  Similarly, values below this surface threshold are said to be 

outside the solid objects.  The polygon mesh typically consists of a list of vertices and edges, 

which can be displayed in a three-dimensional rasterization system such as OpenGL or DirectX.  

A polygon mesh built from triangles can be readily and efficiently visualized and manipulated 

with modern graphics processors.  This paper focuses on CVG techniques and primitives well-

suited to the indirect visualization of volumetric density data. 
 

The best-known method for surface construction from volumetric data is the marching cubes 

algorithm [11, 12].  The algorithm processes eight neighbouring locations in the voxel data to 

form an imaginary cube called a cell.  The algorithm then iterates through all possible cells in the 

voxel data.  For each cell, the algorithm decides whether or not it partitions the object from the 

outside world.  In other words, it detects cells that form the boundary of the object.  If a cell does 

so, then it is a part of the surface, and the algorithm constructs a small number of triangles that 

form the portion of the surface corresponding to the cell.  The collection of all such triangles 

forms the polygon mesh. 
 

To construct the triangles corresponding to a cell, the algorithm utilizes a look up table of polygon 

shapes corresponding to all possible partitions.  Each cell is examined to determine which of the 

eight sampling points are within the surface.  There are a total of 256 (2
8
) possible configurations 

for each cell.  The total number of configurations can be reduced by considering reflections and 

symmetrical rotations of each configuration. Figure 5 illustrates the fifteen unique cell 

configurations shown in the original marching cubes paper [11].  The cube configurations are 

designed in such a way that, when placed together, they produce a visibly solid surface. 
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Figure 5.  Unique cell configuration
 

To create more accurate surfaces, the vertices of the polygon mesh are manipulated.  Each vertex 

of the polygon mesh is positioned on its cell's edge such that it is linearly interpolated between the 

two voxel values connected to that edge.  The final position of the vertex on a cell's edge 

corresponds to the surface threshold position as determined by interpolation.  This step modifies 

the visibly solid surface, produced by converting the volume data into the correspondin

configurations, to better fit the surfa
 

Voxel systems for indirect visualization are able to use external colouring information through 

texture mapping.  Texture mapping applies surface detail supplied by an external 

onto the constructed surface.  This mapping can be done through a variety of methods, often using 

a method called triplaner mapping

material identifier parameter can be added 

performing the mapping.  Williams proposed the use of discrete material identifiers for the voxel 

values to allow for multiple such mappings ins

the identifier tells which material should be placed on a given portion of surface.  The use of a 

texture map makes the number of 

volumetric data.  This independence allows for high quality colouring 

volumetric data without the overhead of storing p
 

2.4. Constructive Volume Geometry
 

Chen and Tucker devised the Constructive Volume Geometry

algebraic operations on volumetric data

describe the interior of the objects it is defining.  CVG rectifies this deficiency by working with 

objects defined by mathematical scalar fields, which 

The CVG algebra provided by Chen and Tucker was intended to 

rather than serve as a final standard
 

In their algebra, Chen and Tucker considered voxels 

(here analogous to density) and three colour fields representing red

Chen and Tucker defined versions of these operators suited for 

each voxel is composed of four components, opacity, red, gree

information is assumed to be embedded in the volumetric data.
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Unique cell configurations for the marching cubes algorithm [11] 

To create more accurate surfaces, the vertices of the polygon mesh are manipulated.  Each vertex 

of the polygon mesh is positioned on its cell's edge such that it is linearly interpolated between the 

ected to that edge.  The final position of the vertex on a cell's edge 

corresponds to the surface threshold position as determined by interpolation.  This step modifies 

the visibly solid surface, produced by converting the volume data into the correspondin

configurations, to better fit the surface implicit in the volume data. 

Voxel systems for indirect visualization are able to use external colouring information through 

.  Texture mapping applies surface detail supplied by an external raster image file 

onto the constructed surface.  This mapping can be done through a variety of methods, often using 

triplaner mapping [11].  To allow for multiple mappings of different textures, a 

material identifier parameter can be added to each voxel to specify which raster file to use when 

Williams proposed the use of discrete material identifiers for the voxel 

values to allow for multiple such mappings instead of colouring information [13].  The value of 

ntifier tells which material should be placed on a given portion of surface.  The use of a 

texture map makes the number of texture elements (texels) independent of the resolution of the 

volumetric data.  This independence allows for high quality colouring of visualizations of 

volumetric data without the overhead of storing per-voxel colouring information. 

Constructive Volume Geometry 

Constructive Volume Geometry (CVG) framework for describing 

tric data [4, 14].  The primary deficiency of CSG is its inability to 

describe the interior of the objects it is defining.  CVG rectifies this deficiency by working with 

objects defined by mathematical scalar fields, which are treated as analogues to volumetric data.  

CVG algebra provided by Chen and Tucker was intended to encourage further discussion 

serve as a final standard [4]. 

In their algebra, Chen and Tucker considered voxels with four distinct parameters:  

ere analogous to density) and three colour fields representing red (R), green (G) 

Chen and Tucker defined versions of these operators suited for a voxel system where the value for 

each voxel is composed of four components, opacity, red, green, and blue.  Thus, colour 

information is assumed to be embedded in the volumetric data. 
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To create more accurate surfaces, the vertices of the polygon mesh are manipulated.  Each vertex 

of the polygon mesh is positioned on its cell's edge such that it is linearly interpolated between the 

ected to that edge.  The final position of the vertex on a cell's edge 

corresponds to the surface threshold position as determined by interpolation.  This step modifies 

the visibly solid surface, produced by converting the volume data into the corresponding cube 

Voxel systems for indirect visualization are able to use external colouring information through 

raster image file 

onto the constructed surface.  This mapping can be done through a variety of methods, often using 

o allow for multiple mappings of different textures, a 

to each voxel to specify which raster file to use when 

Williams proposed the use of discrete material identifiers for the voxel 

.  The value of 

ntifier tells which material should be placed on a given portion of surface.  The use of a 

independent of the resolution of the 

of visualizations of 

) framework for describing 

.  The primary deficiency of CSG is its inability to 

describe the interior of the objects it is defining.  CVG rectifies this deficiency by working with 

analogues to volumetric data.  

further discussion 

with four distinct parameters:  opacity (O) 

 and blue (B).  

voxel system where the value for 

n, and blue.  Thus, colour 
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Chen and Tucker define a spatial object as a tuple � = �
, ��…	��� of scalar fields defined in ℝ�, including an opacity field 
 ∶ ℝ�	 → �0, 1� specifying the “visibility” of every point p in ℝ�	and possibly other attribute fields ��…	�� ∶ ℝ�	 → ℝ, � > 0 [4]. They define the traditional 

CSG operations of union, intersection, and difference for objects �� and �� as functions over their 

component opacity fields 
� and 
� as follows: 
 

 union: ∪ ���, ��� = � !�
�, 
��  (1)

 intersection: ∩ ���, ��� = �"#�
�, 
��  (2)

 difference: −���, ��� = �
� − 
��  (3)
 

where MAX and MIN are as specified in the Appendix.  Chen and Tucker showed that CVG is a 

superset of CSG [14].  They defined additional operators for CVG other than those available in 

CSG.  These operators included cap and trim, which are as follows: 
 

 cap: $%&	���, ��� = �' (�
� − 
��, ' (�)� − )��,  																															' (�*� − *��, ' (�+� − +���  (4)

 trim: ,-./	���, ��� = �0)"��
� − 
��, 0)"��)� − )��, 																																	0)"��*� − *��, 0)"��+� − +���  (5)

 

where CAP and TRIM are as specified in the Appendix. 
 

The opacity class provided by Chen and Tucker was restricted to the range [0, 1].  Opacity values 

from 0 to 1 are well-suited to visualization.  Based on the work of Chen and Tucker, Johnson and 

Tucker subsequently developed a formal approach to specifying a spatial object as a data type 

[15, 16].  They gave a useful algebra of continuous functions that has operations derived from 

operations on space and data, and is equipped with an appropriate topology.  To the best of our 

knowledge, no previous CVG framework optimized for indirect visualization or using material 

identifiers has been described in the literature. 
 

2.5. Voxelization 
 

Other related research concerns voxelization (also known as 3D scan conversion), which is the 

process of taking a geometric representation of a continuous 3D object and converting it to a 

voxel representation that approximates the continuous object.  A naive approach would either test 

every voxel exhaustively for an intersection with the object or else perform recursive subdivision 

of the object.  Unfortunately, the voxelizations generated by this approach are often too course 

and include more voxels than necessary [17].  A more refined approach was devised by Kaufman 

et al. [17]. They define two voxels to be 6-adjacent if they share a face, 18-adjacent if they share 

an edge or a face, and 26-adjacent if they share a vertex, an edge, or a face.  Based on these 

definitions, they define notions of N-separating and covering and then propose that an effective 

voxelization should provide a minimal cover of the object.  A more recent approach, called 

topological voxelization, is based on the topological properties of the objects [18].  Every voxel is 

given an associated geometric intersection target and the voxel is marked as solid if any input 

primitive intersects this target. Laine proved that selecting appropriate intersection targets results 

in voxelizations with desirable connectivity and separability properties.  The various voxelization 

approaches were compared by Nourian and Zlatanova [19]. 
 

Related research addressed the challenge of performing fast voxelization using a Graphics 

Processing Unit (GPU).  Schwarz and Seidel introduced a conservative surface voxelization 

technique, which marks all voxels as solid if they are partially or fully overlapped by a mesh’s 

triangles [20].  The technique uses a triangle/box overlap test that can be adapted to yield a 6-

separating surface voxelization with two important properties: it is thinner than the naive 

voxelization and it is still connected and gap-free.  Recently, Baert et al. have devised an 

approach suited to objects represented as very large 3D meshes [21].  Their approach allows the 

input triangle mesh, the intermediate 3D voxel grid, and the voxelized output to all be larger than 

available memory. 
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Although the previous voxelization approaches are fast and effective, none of them address the 

problem of creating visual artefacts that is overcome by the method proposed in this paper. 
 

3. CONSTRUCTIVE VOLUME GEOMETRY FOR INDIRECT VISUALIZATION 
 

This section discusses the ICVG approach to implementing a voxel system that performs CVG 

for indirect visualization of volumetric density data. CVG was implemented for indirect 

visualization in a voxel system named Isovox.  Isovox manipulates volumetric data and produces 

polygon meshes for visualization.  Surface colours for the meshes are obtained by texture 

mapping from a texture external to the volumetric data. Section 3.1 presents assumptions for this 

work. Section 3.2 describes techniques for developing visually correct volumetric primitives for 

indirect visualization.  Section 3.3 defines the ICVG algebra designed for indirect volumetric 

visualization. 
 

3.1. Assumptions 
 

All values in the volumetric data are assumed to be discrete and non-negative integers in the 

range [L, H], where L is the lowest possible value and H is the highest possible value.  

Throughout this paper, H, L, and S are used as values rather than variables. Such values are well-

suited for volumetric density data, which are always non-negative.  Floating point data would 

need to be converted to integers.  For example, suppose a value is represented as a single byte of 

data.  The use of a byte data type, as opposed to an unsigned integer, reduces memory 

requirements.  For one byte voxels, the L is 0, and the H is 255.  Following the 2011 release of the 

commercial volume editing tool 3D-Coat [22], the surface threshold (S) is defined to be the 

midpoint between L and H, as shown in Equation 6. 
 

 S = 2345� 6  (6)

 

For example, S = 2�7748� 6 = 127. 
 

Throughout this paper, a right-handed coordinate system is used with right, up, and out 

corresponding to the positive X, Y, and Z axis. When performing indirect visualization, a voxel is 

visualized if its associated value in the volumetric data is greater than or equal to S. 
 

3.2. ICVG Primitives 
 

When defining primitives for indirect visualization of volumetric data, several factors need to be 

considered.  The straightforward approach to specifying primitives may produce undesirable 

artifacts when indirect visualization is performed.  Figure 6 illustrates the desired appearance of 

four common volumetric primitives, namely the cuboid, the ellipsoid, the cylinder and the cone.  

Within this section, Section 3.2.1 defines virtual volume sampling functions; Section 3.2.2 

introduces clipping and padding; and Sections 3.2.3 through 3.2.6 describe the cuboid, ellipsoid, 

cylinder, and cone primitives, respectively. 
 

 
Figure 6.  Primitives constructed from volumetric data sets 
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3.2.1. Virtual Volume Sampling Functions 
 

A virtual volume sampling function is now defined.  Let ℕ represent the non-negative integers.  

Let +<= = �+>, +? , +@� ∈ ℕ� represent the upper bounds on a 3D space, called the extension space 

(also known as the volume), with origin (0, 0, 0).  Thus, the width, height, and depth of the 

extension space correspond to Bx, By and Bz, respectively.  Let B<= = �B> , B? , B@� ∈ ℕ�, such that B> < +> , B? < +?, B@ < +@, represent a position in the extension space.  Thus, the positions in the 

extension space range from (0, 0, 0) to �+> − 1, +? − 1, +@ − 1�. One voxel is located at each 

position.  A virtual volume sampling function, D: B<= ⟶ �L, H�, specifies the density value for any 

position (i.e., voxel) in the extension space.  The function D takes a position, called the sampling 

position, in an arbitrarily large extension space as input and returns as output a value in the range 

[L, H]. This output value represents a density. 
 

Virtual volume sampling functions are resolution independent, meaning that a virtual volume can 

be sampled at any level of granularity by changing the resolution of the extension space.  To fully 

reconstruct the virtual volume at a specified resolution, the virtual volume function is sampled at 

every point in an extension space at that resolution. 
 

3.2.2. Clipping and Padding 
 

As previously mentioned, the marching cubes algorithm operates on eight data points at a time.  

Thus, data points along the edge of the extension space cannot be processed in the same fashion 

as the interior data points.  Some implementations of the marching cubes algorithm handle this 

difficulty by pretending the extension space is surrounded by voxels with L or H values.  Suppose 

H values are used.  If the surface of the object extends to any edge of the extension space, then 

holes will appear where the surface touches the edge.  This artifact is referred to as clipping. 

 

To address the clipping issue, it would seem sufficient to assign L values to voxels outside of the 

extension space, but doing so may make CVG operations on some objects less efficient.  The 

constraints of an application may ensure that some portions of a constructed surface can never be 

viewed.  If there are constraints of this fashion, then time will be wasted performing surface 

construction and visualization of these unseen boundaries.  Suppose that mountainous terrain is 

created for a first person shooter game but that the player can never see the mountains from below 

the surface.  Therefore any visualization of the bottom of these mountains is wasted. 
 

 
(a)  View from above 

 
(b)  View from below 

 
Figure 7.  Hollow island surface displayed by Isovox 

 

A more flexible solution to this problem is to provide additional voxel values called padding 

voxels surrounding the extension space of interest.  In the case of the cuboid primitives, these 
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padding voxels are set to L, to ensure the creation of the expected surface mesh.  In the 

mountainous terrain example, no such padding voxels would be placed 

extension space, resulting in a visually correct, hollow mesh.  If 

the mesh to be filled in with polygons, a set of padding L values could be added.

shows a visually correct unpadded terra

view of the same surface. 
 

3.2.3. Cuboid 
 

The cuboid volumetric primitive is used for representing rectangular solids.  The construction of a 

cuboid primitive for CVG may seem trivial, but two 

designing such a primitive for indirect visualization:
 

The naive approach to defining a cuboid primitive is to simply fill a volume uniformly with H 

values; this approach suffers from clipping. The clippin

outside of the volume, where needed, with L values, as described in Section 3.2.2.
 

The second problem is beveling.  When a cuboid primitive is visualized, it should have sharp 

corners.  However, the naive definition of the cuboid primitive allows beveling artifacts to appear 

on the edges of the visualized surface.  

Figure 8 (a) shows how a beveling artifact can have an undesirable smoothing effect on the 

cuboid primitive, shown here with a checkerboard texture to facilitate seeing the edges.  Observe

how the edges of the cuboid have a smooth, rounded appearance.
 

 

 (a)  With beveling artifact

Figure 8.  Cuboid primitive with 
 

This problem can be easily understood by considering the two

three-dimensional one.  Figure 9 
a dotted line, while the solid line shows how the actual 

 

 (a)  Corner with beveling artifact

Figure 9

International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

voxels are set to L, to ensure the creation of the expected surface mesh.  In the 

mountainous terrain example, no such padding voxels would be placed at the bottom of the 

extension space, resulting in a visually correct, hollow mesh.  If one desired the bottom portion of 

the mesh to be filled in with polygons, a set of padding L values could be added. 

shows a visually correct unpadded terrain example and Figure 7 (b) shows the hollow underside 

The cuboid volumetric primitive is used for representing rectangular solids.  The construction of a 

cuboid primitive for CVG may seem trivial, but two problems need to be addressed when 

tive for indirect visualization: clipping and beveling. 

The naive approach to defining a cuboid primitive is to simply fill a volume uniformly with H 

pproach suffers from clipping. The clipping problem can be avoided by padding the 

outside of the volume, where needed, with L values, as described in Section 3.2.2. 

is beveling.  When a cuboid primitive is visualized, it should have sharp 

corners.  However, the naive definition of the cuboid primitive allows beveling artifacts to appear 

on the edges of the visualized surface.   

shows how a beveling artifact can have an undesirable smoothing effect on the 

cuboid primitive, shown here with a checkerboard texture to facilitate seeing the edges.  Observe

how the edges of the cuboid have a smooth, rounded appearance. 

  
(a)  With beveling artifact (b)  Without beveling artifact 

 

Cuboid primitive with and without beveling artifact 

can be easily understood by considering the two-dimensional case rather than the 

Figure 9 (a) illustrates the desired appearance of a square primitive with 

while the solid line shows how the actual beveled surface is constructed.

  
(a)  Corner with beveling artifact (b)  Corner with artifact removed 

 

9.  Two-dimensional view of beveling artifact 
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voxels are set to L, to ensure the creation of the expected surface mesh.  In the 

at the bottom of the 

the bottom portion of 

 Figure 7 (a) 

(b) shows the hollow underside 

The cuboid volumetric primitive is used for representing rectangular solids.  The construction of a 

need to be addressed when 

The naive approach to defining a cuboid primitive is to simply fill a volume uniformly with H 

can be avoided by padding the 

is beveling.  When a cuboid primitive is visualized, it should have sharp 

corners.  However, the naive definition of the cuboid primitive allows beveling artifacts to appear 

shows how a beveling artifact can have an undesirable smoothing effect on the 

cuboid primitive, shown here with a checkerboard texture to facilitate seeing the edges.  Observe 

 

 

dimensional case rather than the 

illustrates the desired appearance of a square primitive with 

constructed. 
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The beveling of the corner of the square primitive is an artifact of the marching cubes algorithm.  

When the corner cell is sampled, two points out of eight are within the boundary of the volume, 

corresponding to the third case in Figure 5. The look up table selects a diagonal corner piece to 

be placed in the cell.  The vertices are positioned on their related cell edges using linear 

interpolation.  With the naive cuboid definition, the interpolated surface needs to be between H 

and L density, which forces the vertices of the constructed triangles to be placed on the midpoints 

of the edges. 
 

In ICVG, beveling is addressed by adding a thin layer (one voxel wide) of surface S value voxels 

surrounding the interior H values of the cuboid. Figure 9 (b) shows how adding these surface 

value voxels around a square can remove the beveling artifact.  Although the look up function 

chooses a diagonal corner piece to be placed in the cell, as before, when the location of the 

vertices are interpolated between L and S, they are placed touching the S side. Figure 8(b) shows 

a cuboid primitive with the beveling artifact removed, resulting in sharp corners, as desired. 

The ICVG cuboid sampling function DIJ is defined as follows: 
 

 

DIJKB<=L =
MN
O
NP
L		if		�B> = 0� ∨ �B> = +> − 1� ∨ KB? = 0L ∨ KB? = +? − 1L													∨ �B@ = 0� ∨ �B@ = +@ − 1�,																																																			S	otherwise		if	�B> = 1� ∨ �B> = +> − 2� ∨ KB? = 1L																									
																														∨ KB? = +? − 2L ∨ �B@ = 1� ∨ �B@ = +@ − 2�,										H	otherwise																																																																																																		

[ (7)

 

zyx BBB ,,  are restricted to values greater than 2.  Given a position V
r

bounded within the volume 

dimensions B
r

, the cuboid sampling function DIJ returns the voxel value at that position, which is 

L, S, or H.  If the position is touching the bounding volume, then it is assigned L.  Positions that 

are one voxel away from the edges of the bounding volume are assigned S.  All other positions 

are assigned H.  This method of defining the cuboid sampling function overcomes the clipping 

and beveling problems described above. 
 

An undesirable side effect of having the cuboid primitive contain three possible values instead of 

two (i.e., it contains L, H, and S values instead of only H and L values) is that the potential for 

compression is reduced.  Generally, having less homogenous volumetric data reduces the 

expected compression ratio. 
 

3.2.4. Ellipsoid 
 

The ellipsoid volumetric primitive is used for representing spherical and other rounded shapes.  

The naive approach to the ellipsoid primitive would be to linearly interpolate values from H to L 

radically from the midpoint of the volume. Figure 10 (a) shows the density function along some 

axis where the ellipsoid has radius R that results from this approach. This approach produces a 

visually correct surface mesh, but it suffers from three flaws.  First, much of the volume will be 

filled with wasted space, i.e., values outside of the surface mesh that do not affect construction.  

This wasted space means that the ellipsoid surface is relatively small compared to the size of the 

volume.  Secondly, these invisible values may have undesired effects on CVG operations.  

Finally, the volumetric data resulting from this approach will be inefficient to compress because 

the values inside the surface and outside the surface, which do not affect surface construction, 

vary widely.  Figure 10 (b) shows the density function corresponding to the ICVG virtual volume 

sampling function, which addresses the problems with the naive approach.  Only a small amount 

of extension space is allocated past the radius R, and values well below this threshold are assigned 

values of H. 



International Journal of Computer Graphics & Animation (IJCGA) Vol.7, No.3/4, October 2017

 

 

 (a)  Naive density function

Figure 10
 

Let )<= = �)>, )?, )@� ∈ ℕ�, where

the desired radius in the X, Y, and Z axes.  Let,

represent the position in the volume translate

to the center of the ellipsoid.  Additionally

\]].&^_.`+_`aK(<bL = cdefgef h difgif h
The ellipsoid sampling function D
 

 

DjkKB<=L =
MNO
NPH																				L																				
l mnkkopqrostrs?

 

where 0u = 0<b/w0<bw represents the unit vector in the same direction as

volumetric data that can be visualized as an ellipsoid.  This function reduces the number of 

unique values in the volumetric data by 

construction because they are definitely inside or definitely outside the ellipsoi

assigned H values if they are inside the ellipsoid and L values if they are outside.  Voxels near the 

surface of the ellipsoid are assigned the value of one divided by the ellipsoid body function, 

scaled by S.  By calculating the near s

from the data will appear to have a

will be highly compressible due to the reduced number of unique values.
 

An ellipsoid primitive constructed with the 

center point )<b of the extension space

altering the separate components

that )> = )? = )@, the resulting primitive is a sphere.
 

The visual quality of an ellipsoid primitive is limited by the dimensions of the volume 

which it is defined, as well as the range of possible B<b, the primitive is less smooth in appearance.  When the range of values for the voxel is 

insufficient, a distinctive banding

(a) shows the banding artifact on an ellipsoid visualized using a volumetric ellipsoid primitive 

with B<b = �32,32,32� and a voxel range of 256.  This artifact can be reduced in severity by 

increasing the number of possible va

artifact on an ellipsoid with B<b =
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(a)  Naive density function (b)  ICVG density function 

 

10.  Density functions for ellipsoid primitives 

where 1 y )> y 2te� 6, 1 y )? y 2ti� 6, and 1 y )@ y 2
the desired radius in the X, Y, and Z axes.  Let, 0<b = �0> , 0? , 0@� ∈ ℕ� , such that 0
represent the position in the volume translated so that (0, 0, 0) corresponds as nearly as possible 

Additionally the \]].&^_.`+_`a: (<b → �0,∞� function 

c h dzfgzf{, which corresponds to the well-known ellipsoid function.  

Djk is defined as follows: 

										if	\]].&^_.`+_`aK0<= h 0uL < 1,
										if	\]].&^_.`+_`aK0<= − 0uL > 1,

nkkopqrostrs?K|<=L} 	otherwise																																						
[  

represents the unit vector in the same direction as 0<b.  Function 

data that can be visualized as an ellipsoid.  This function reduces the number of 

unique values in the volumetric data by identifying voxels that will not influence surface 

construction because they are definitely inside or definitely outside the ellipsoid. These voxels are 

assigned H values if they are inside the ellipsoid and L values if they are outside.  Voxels near the 

surface of the ellipsoid are assigned the value of one divided by the ellipsoid body function, 

scaled by S.  By calculating the near surface values in this fashion, the polygon mesh produced 

from the data will appear to have a relatively smooth surface.  Nonetheless the volumetric data 

will be highly compressible due to the reduced number of unique values. 

An ellipsoid primitive constructed with the ellipsoid sampling function Djk is centered around the 

extension space.  Function Djk  can be used to create a variety of ellipsoid

altering the separate components of R.  In cases where an ellipsoid is defined in a volume such 

, the resulting primitive is a sphere. 

The visual quality of an ellipsoid primitive is limited by the dimensions of the volume 

which it is defined, as well as the range of possible values for each voxel.  For smaller values of 

, the primitive is less smooth in appearance.  When the range of values for the voxel is 

banding artifact appears on the constructed polygon mesh.

rtifact on an ellipsoid visualized using a volumetric ellipsoid primitive 

and a voxel range of 256.  This artifact can be reduced in severity by 

of possible values for each voxel. Figure 11 (c) shows the roughness b = �8,8,8� and the same voxel range.  Figure 11 (b) shows no 
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2tz� 6 represent 

0<b = �B<b − )<b�, 
0) corresponds as nearly as possible 

function is defined as 

known ellipsoid function.  

(8)

.  Function Djk produces 

data that can be visualized as an ellipsoid.  This function reduces the number of 

oxels that will not influence surface 

d. These voxels are 

assigned H values if they are inside the ellipsoid and L values if they are outside.  Voxels near the 

surface of the ellipsoid are assigned the value of one divided by the ellipsoid body function, 

the polygon mesh produced 

smooth surface.  Nonetheless the volumetric data 

is centered around the 

can be used to create a variety of ellipsoids by 

where an ellipsoid is defined in a volume such 

The visual quality of an ellipsoid primitive is limited by the dimensions of the volume B<b for 

values for each voxel.  For smaller values of 

, the primitive is less smooth in appearance.  When the range of values for the voxel is 

tructed polygon mesh. Figure 11 
rtifact on an ellipsoid visualized using a volumetric ellipsoid primitive 

and a voxel range of 256.  This artifact can be reduced in severity by 

(c) shows the roughness 

(b) shows no 
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distinctive artifacts on an ellipsoid with

roughness artifact, but small enough to not r
 

 
(a)  B<b = �32,32,32� 

Figure 
 

3.2.5. Cylinder 
 

The cylinder sampling function D
 

 

DI?KB<=L =

MN
NN
O
NNN
P L																			
S																					

						
[H																		l mnkkopqjtrs?

 

where \]].&^�+_`a: (<b → �0,∞�
represents the well-known two-

definition, the cylinder primitive is related to the ellipsoid primitive.  The ba

two-dimensional ellipse, defined on the X/Z plane.  Surface detail is calculated in the same 

fashion as for the ellipsoid primitive, with the ellipsoid body function replaced by a two

dimensional ellipse body function.  The ellipse 

for the ends, which must be treated differently in order to cap the primitive.  

position height B? is used as a parameter to determine if the position is vertically within the 

cylinder, i.e., between 0 and +?
form the surface, followed by L values for padding.
 

3.2.6. Cone 
 

The cone volumetric primitive is used for representing 

shape is defined in terms of its height and the radiuses

h is defined as c1 − �iti{, which linearly interpolates fro

extension space, relative to the height of the 

linearly interpolates from 1 to 0 as the position height value 

of the extension space.  Let '_��+_`a
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distinctive artifacts on an ellipsoid with B<b = �16,16,16�, which is large enough to minimize the 

roughness artifact, but small enough to not require additional voxel range. 

 
(b)  B<b = �16,16,16� (c)  B<b = �8,8

 

Figure 11.  Ellipsoid primitives with varying V
r

 

DI? for a volume B<b is defined as follows : 

												if	K\]].&^�+_`aK0<= h 0uL > 1L ∨ KB? = 0L
∨ KB? = +? − 1L,							

										if	KB? = 1 ∨ B? = +? − 2L																																		
																		∧ K\]].&^�+_`aK0<= h 0uL < 1L,

[ 												if	\]].&^�+_`aK0<= h 0uL < 1,																									
nkkopqjtrs?K|<=L} otherwise																																																														

[
[  

� is a function such that \]].&^�+_`aK(<bL = �defgef h
-dimensional ellipse function.  As can be seen from the above 

definition, the cylinder primitive is related to the ellipsoid primitive.  The base of the cylinder is a 

dimensional ellipse, defined on the X/Z plane.  Surface detail is calculated in the same 

fashion as for the ellipsoid primitive, with the ellipsoid body function replaced by a two

dimensional ellipse body function.  The ellipse base is used at each level of the cylinder, except 

for the ends, which must be treated differently in order to cap the primitive.  T

as a parameter to determine if the position is vertically within the − 1.  At the vertical ends of the cylinder, S values are placed to 

llowed by L values for padding. 

volumetric primitive is used for representing cones and other conical shapes

erms of its height and the radiuses of its elliptical base.  The sampling height 

, which linearly interpolates from 0 to 1 based on the position in the 

, relative to the height of the extension space. More precisely, the

linearly interpolates from 1 to 0 as the position height value B? varies from the bottom to the top 

'_��+_`a: (<b → �0,∞�, where '_��+_`aK(<bL = � d�ge
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, which is large enough to minimize the 

 8,8� 

L

[
[  (9)

� h dzfgzf�, which 

dimensional ellipse function.  As can be seen from the above 

se of the cylinder is a 

dimensional ellipse, defined on the X/Z plane.  Surface detail is calculated in the same 

fashion as for the ellipsoid primitive, with the ellipsoid body function replaced by a two-

base is used at each level of the cylinder, except 

The sampling 

as a parameter to determine if the position is vertically within the 

.  At the vertical ends of the cylinder, S values are placed to 

cones and other conical shapes.  A conical 

The sampling height 

position in the 

More precisely, the value of h 

bottom to the top 

L � def� e��f h dzf�gz��f�, 
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represent the ellipse function, modified by the height-dependent h variable.  The cone sampling 

function DIr for a volume B<b is defined as follows: 
 

 

DIrKB<=L =
MN
O
NP
L																									if	�B? = 0� ∨ �'_��+_`aK0<= − 0uL > 1,																								
S																									otherwise	if	KB? = 1L ∧ K'_��+_`aK0<= h 0uL < 1L,
[H																									otherwise	if	'_��+_`aK0<= h 0uL < 1,																									
l m�r�jtrs?K|<=L} 		otherwise																																																																											

[	
[ (10)

 

As with the cylinder, the sampling height h is used to determine if a position is vertically outside 

of the primitive, but it is also used as a parameter for altering the desired radiuses of the cone. 

Specifically, h reduces the ellipse radiuses as the positions progress up the cone.  L and S padding 

are applied at the bottom of the cone. 
 

With the above cone sampling function, it is important to consider where in the volume the 

primitive's center point on the X/Z plane is to be located.  If this center point is located in the true 

middle of volume, the tip of the resulting cone shape may contain artifacts.  Error! Reference 

source not found. shows the broken tip artifact, where the topmost portion of the primitive 

contains undesirable surface deformation.  This artifact is a result of the logical center being 

defined between voxels in the extension space.  If the center of the cone is forced to be on a 

voxel, this artifact will not occur. 

 
 

Figure 12.  Cone primitive with the broken tip artifact 
 

3.3. The ICVG Algebra 
 

Chen and Tucker's definition of CVG operators was purposely general, and allowed for real and 

negative values.  The modified algebra, called ICVG, concentrates on the use of primitives and 

operations optimized for indirect visualization. Consequently, the algebra is limited to a restricted 

range non-negative integer values.  The ICVG union, intersection, trim, and cap operations are the 

same as those of CVG for opacity, except that the input and output values are restricted to discrete 

positive volumes: 
 

 union: ∪ ���, ��� = � !���, ���  (11)

 intersection: ∩ ���, ��� = �"#���, ���  (12)

 trim: ,-./���, ��� = 0)"����, ���  (13)

 cap: $%&���, ��� = ' (���, ���  (14)
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The difference operator is defined differently in ICVG than in CVG to ensure that the values in 

the resulting volume are always non-negative.  The following three possible operators were 

considered: 
 

 differenceA: −���, ��� = � !��� − ��, L�  (15)

 
differenceB: −���, ��� = �� !��� −��, L�			if		�� ≥ S,																													��																														otherwise																												 [  (16)

 
difference: −���, ��� = �� !��� −��, S�			if		��� ≥ S� ∧ ��� ≥ S�,� !��� − ��, L�			otherwise																								 [  (17)

 

The differenceA operator represents the range-restricted version of the difference operator 

described by Chen and Tucker [4].  Figure 13 (a) shows that the differenceA operator produces 

undesirable artifacts on the surface of the resulting object when applied with a cuboid for �� and 

an ellipsoid for ��.  Observe that the cavity created in �� is smooth, but every edge of this cavity 

has an apparent beveling artifact.  Values in the ellipsoid primitive that are below S are not 

visualized, but they affect the cuboid primitive when the differenceA operator is applied.  These 

problems are typical of those encountered when combining any two primitives with differenceA. 

The differenceB operator is defined similarly to differenceA but ignores the values that are below 

S, i.e., values corresponding to parts of the ellipsoid primitive that are outside the surface of the 

ellipsoid. Figure 13 (b) shows how ignoring these invisible values in the ellipsoid primitive 

results in a jagged surface on the carved areas of the cuboid.  This artifact appears because the 

ellipsoid primitive owes part of its smoothness to these invisible values.  As shown in Figure 13 

(c), the difference operator combines the desirable features of the differenceA and the differenceB 

operators. In cases where the surface of the source object is visible and the surface of the operand 

object is not, this operator performs a subtraction operation that is bounded between S and H.  

Otherwise, it acts in the same manner as differenceA.  The difference operator does not suffer 

from the beveling artifact that occurs with differenceA, and it does not produce the jagged interior 

surface that occurs with difference B. 
 

   
(a)  differenceA (b)  differenceB (c)  difference 

 

Figure 13.  Three possible difference operators 
 

Additionally, ICVG defines the add and modulate operators as follows: 
 

 add: h���, ��� = �"#��� h ��, H�  (18)

 module: ∗ ���, ��� = �"#��� ∗ ��, H�  (19)
 

These two operators may produce compound objects with surfaces not found in the source 

primitives because when two densities that are lower than the surface threshold are combined the 

result may be a density that is higher than the surface threshold.  Thus these two operations have 

less predictable behavior than the previously defined operations. 
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Two possible divide operators, called divideA and divide, were also considered.  The naive 

divideA operator is defined as follows: 

 
divideA: ÷ ���, ��� = ��� ÷ ��		if		�� ≥ 0,																	H														otherwise																 [  (20)

 

and the more useful divide operator is defined as follows: 
 

 
divide: ÷ ���, ��, ��� = ��� ÷ ��� ∗ ���		if		�� ≥ 0,																						H																											otherwise																					[  (21)

 

where SL is a real number in the range 0 to 1. 
 

Since an object's surface is the middle of the valid range of possible voxel values, the divideA 

operator produces a compound object with no visible surface wherever	�� ≥ 2.  The divide 

operator is similar to divideA, but it multiplies the divisor by a real-valued scalar during each 

operation, providing additional control.  The divide operator does not require �� to be specified as 

a value in the real domain in order to provide small adjustments.  The divide operator can be 

implemented using floating point operations during calculations, allowing for a greater range of 

results, but only integers are used as input and output. Thus, only integers need to be stored. 
 

In addition to the binary operators just discussed, ICVG also includes scalar and unary operations.  

A scalar operation is performed by applying the same arithmetic operation to every voxel in 

volumetric data.  An example of a scalar operation is addScalar, which adds a single number to a 

data set in order to uniformly increase, or decrease, the densities.  A unary operator, such as 

inverse, requires a single operand.  The inverse operation creates an extension space where 

solidness and emptiness are reversed.  Taking the inverse of an object �� is equivalent to applying 

the difference operator to a completely solid extension space and ��.  The inverse operator can be 

implemented by computing the difference between H and each voxel. The inverse operator is 

defined as follows: 
 

 
 

inverse: "���� = �H − ���  (22)

4. EXPERIMENTAL RESULTS 
 

All sampling functions described in Section 3.2 were implemented in both CPU and GPU 

versions in a common test bed, with the only differences being those that are essential to invoke 

CPU versus GPU operations. Experiments were run on a Dell Alienware Aurora computer with an 

Intel Core i7-3820 CPU and an NVIDIA GeForce GTX 560 GPU. Every result reported is the 

average (mean) of the results for 100 separate runs, each of which involved generating 100 

identical volumetric solids. 
 

The four graphs shown in Figure 14 and Figure 15 depict the performance of volume generation 

for four primitives (cuboid, ellipsoid, cylinder, and cone) using the sampling functions defined in 

ICVG. Figure 14 (a) and Figure 15 (a) show the execution times in milliseconds on the CPU 

and GPU, respectively. For example, the first set of eight lines in Figure 14 (a) shows the 

execution time on the CPU while generating cuboids in various sizes of extension spaces. The 

"EllipsoidB" and "CylinderB" results are for alternative implementations that are not restricted to 

aligning precisely with the grid. Figure 14 (b) and Figure 15 (b) represent the same timing data, 

but with the time (in nanoseconds) per voxel in the extension space. For example, for generating a 

cuboid on the CPU in an 8 x 8 x 8 extension space, the time of 0.005 milliseconds is divided by 

512 (83) voxels, giving 9.7 nanoseconds per voxel. 
 

The results in Figure 14 (a) show that, for each primitive, the execution time on the CPU 

increases as the primitive is generated in larger extension spaces. Figure 14 (b) shows that the 

execution time per voxel was roughly constant, except for the cone. When generating a cone, a 

fixed overhead occurred, which increased the cost per voxel for small sizes of extension spaces. 
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(a)  Time per primitive 

 

 

 
 

(b)  Time per voxel 
 

Figure 14. CPU execution times for generating primitives with varying sizes of extension spaces 

 

Timing results for generating the primitives on the GPU were also obtained. The version of 

DirectX that was used for our implementation did not provide the ability to query the time that it 

took for a dispatch call (which in this case causes a single primitive to be generated on the GPU). 

To counter this absence, the results of the dispatch calls were immediately pulled back into CPU 

memory after the dispatch call was made and the timer was stopped when the transfer completed. 

If a request is made to bring GPU data back into CPU memory, then all queued operations (such 

as the dispatched generation procedures) on that data are performed as soon as possible and the 

data afterwards is transferred back to the CPU. To obtain timing information for only the GPU 
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calculations, the fixed time cost of transferring the data from the GPU was subtracted, which 

otherwise would have distorted the results for small extension spaces. However, this introduced 

some inaccuracy for these small extension spaces. Thus, overall the timing mechanism for our 

experiments on the GPU was less accurate than the one for those on the CPU. 
 

 
 

(a)  Time per primitive 
 

 
(b)  Time per voxel 

 

Figure 15. GPU execution times for generating primitives with varying sizes of extension spaces 
 

The results in Figure 15 (a) show that execution was much faster on the GPU than the CPU, e.g., 

0.43 ms instead of 36 ms for the largest cone. For the cuboid, the execution time on the GPU was 

roughly constant as the cuboid is generated in larger extension spaces. For the other primitives, 

small linear increases in total execution time on the GPU were observed as the size of the 

extension space increased, possibly because of timing inaccuracies, as described above.  Given 

the timing inaccuracies, the execution time per voxel was roughly constant for all primitives (see 

Figure 15(b)). 
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Overall, acceptable performance was obtained with our implementations of ICVG on both the 

CPU and GPU.  The time required to generate any 72 x 72 x 72 shape was less than 40 ms on the 

CPU and less than 0.45 ms on the GPU. 
 

5. CONCLUSIONS AND FUTURE WORK 
 

The ICVG algebra was described and descriptions of primitives for volumetric data presented 

through indirect visualization were provided.  The concept of a volume sampling function was 

introduced, and examples were provided for cuboids, ellipsoids, cylinders, and cones.  Potential 

banding, beveling, and clipping artifacts were identified and methods for avoiding them were 

provided.  Three alternative definitions for the difference operator were described, and the visual 

results for indirect visualization were compared.  As well, the divideA, divide, modulate and add 

CVG operations were defined.  The inverse unary operation was also specified. 
 

In future work, experiments could be conducted on alternative methods for reducing the 

remaining artifacts due to the difference operation.  Alternative values of S should be investigated 

to determine whether the visual impact of the artifact can be reduced.  Modified versions of the 

marching cubes algorithms could be investigated to see if their changes to the resulting meshes 

affect the presence of the identified artifacts.  Additional primitive objects could be defined, 

including torus, pyramid, capsule, and prism objects [23]. 
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APPENDIX 
 
The following functions are defined on scalars in the range of [L, H]: 

 � !�!�, !�� = �!�	if	!� > !�,!�	otherwise[		  (A1)

 �"#�!�, !�� = �!�	if	!� < !�,!�	otherwise[  (A2)

 0)"��!�, !�� = �!�	if	!� ≥ !�,!�	otherwise[  (A3)

 ' (�!�, !�� = �!�	if	!� y !�,!�	otherwise[  (A4)

 


