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ABSTRACT 
 
Software cost estimation is a process to calculate effort, time and cost of a project, and assist in better 

decision making about the feasibility or viability of project. Accurate cost prediction is required to 

effectively organize the project development tasks and to make economical and strategic planning, project 

management. There are several known and unknown factors affect this process, so cost estimation is a very 

difficult process. Software size is a very important factor that impacts the process of cost estimation. 

Accuracy of cost estimation is directly proportional to the accuracy of the size estimation. 

 

Failure of Software projects has always been an important area of focus for the Software Industry. 

Implementation phase is not the only phase for Software projects to fail, instead planning and estimation 

steps are the most crucial ones, which lead to their failure. More than 50% of the total projects fail which 

go beyond the estimated time and cost. The Standish group‘s CHAOS reports failure rate of 70% for the 

software projects. This paper presents the existing algorithms for software estimation and the relevant 

concepts of Fuzzy Theory and PSO. Also explains the proposed algorithm with experimental results. 
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1. INTRODUCTION 

 
Software cost prediction is a crucial, essential and an important issue for software engineering 

research communities.  As the software size varies from small to medium or large, the need for 

accuracy or correctness in software cost estimation with understanding has also grown. Software 

cost estimation is a method to determine effort, time and cost of a project, which in turn helps in 

better decision making about the feasibility and/or viability of the project. To effectively organize 

the project development tasks and make considerable economical and strategic planning, project 

management requires accurate software cost estimation. Cost estimation is a very difficult process 

because several known and unknown factors affect the estimation process. Software size is a very 

important (desirable) factor that impacts the process of cost estimation. Accuracy of cost 

estimation is directly proportional to the accuracy of the size estimation. 

 

Software estimators sometimes confuse size and effort. Size, in a software development context, 

is the complete set of business functionalities that the end user gets when the product is deployed 

and is in use, and the Person months required to produce the software application of a given size 

is the effort.  

 

Failure of Software projects has always been an important area of concern for the Software 

Industry. Implementation phase is not the only phase for Software projects to fail, instead 

planning and estimation steps are the most crucial ones, which leads to their failure. More than 

50% of the total projects which go beyond the estimated time and cost fail. 
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2. MOTIVATION 
 
Based on literature review and current trends in the software industry, some of the important 

motivators for this research work are discussed below: 

 

1.) Insignificant Contribution by the various Algorithmic Techniques 

 

There are multiple studies available which accounts for the incorrect and inaccurate 

contribution by the various algorithmic techniques for software cost estimation for 

various projects. The errors are far beyond the acceptable limits and hence impacting the 

overall project. Since these types of traditional techniques and modeling equations based 

on algorithmic approach has failed, it has become imperative for us to look out for better 

options either in terms of new methods or optimization of the existing ones. This is quite 

motivating for a researcher to explore new options. 

 

2.) Emergence of Soft Computing & Meta-heuristic Techniques 

 

Soft Computing techniques like Fuzzy systems and meta-heuristic algorithms like particle 

swarm optimization, firefly algorithm, harmony search, and the likes have enhanced their 

presence and utility in the software industry. With so many applications existing for such 

techniques, software cost estimation is an area which can be explored through their 

applications. Their advantageous characteristics can be imparted on the estimation 

techniques which can become more efficient. So it is also an important motivation to 

study the application of such techniques in the software cost estimation scenario. 

 

3.) Increasing criticality of Software Cost Estimation techniques & rising impact on 

Business Activities 

 

These days, the importance of Software Cost Estimation has gone beyond limits. The criticality of 

the software is increasing exponentially and thus cost is becoming a very important parameter. A 

small error in the process of cost estimation can destroy the organization‟s reputation and 

recognition in the market. With digital world becoming so powerful, this negative publicity can 

spread virally. Thus cut-throat competitions are making it very difficult for everyone to survive 

and better techniques must be researched for cost estimation. Once the estimation process is 

completed successfully, one can easily execute the project without much pressure from the 

costing point of view. 

 

3. INTRODUCTION TO SOFTWARE EFFORT ESTIMATION 

 
Estimation of effort and time involved in the development of the software product under 

consideration are the most critical activities of the software life cycle. This process may be 

performed at any stage during the software development and is termed as software cost 

estimation. It is necessary to perform the estimate during early phases of the Software 

Development Life Cycle (SDCL), which helps us in taking an early decision regarding feasibility 

of the software development project. The results of estimation are also used for early analysis of 

the project efforts [1]. 

 

The primary components [2] of project development costs are: Hardware costs, Operational costs 

and Effort costs (in terms of Man-hours deployed on a particular project with their salaries as per 

their time utilized on it). The most important (dominant) cost out of all the three is the effort cost. 

It has been found to be very difficult to estimate the effort cost and control it, which can have a 

significant effect on overall costs. Software cost estimation is an ongoing process which starts at 
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the beginning of the SDLC at the requirement gathering and proposal stage and continues 

throughout the conduction of a project. Projects are bound to have a specific monetary plan in 

terms of revenue and expenditure, and consistent cost estimation technique is necessary to ensure 

that spending is in line with the budget plan. Man-hours or man-months are the units used to 

measure the effort. An ill estimated project or poor feasibility study for a project hampers the 

image of the software development organization. If a project cannot be completed within the 

estimated time or efforts, the budget may get disturbed. This in turn can bring lots of losses for 

both the client and the organization. Thus we need to have a strong estimation model available 

with us, which can facilitate us in preparing a correct and feasible plan. 

 

Though there has been various models proposed in the past [1] [6], but still the accuracy levels 

are not that satisfactory and leaves a scope of improvement over the previous work. In this paper, 

a new algorithm which is combination of Particle swarm optimization and fuzzy theory has been 

proposed and discussed for the Software cost, effort and time estimation.  

 

4. BACKGROUND  
 
Software cost estimation methods can be majorly categorized into three types: Algorithmic 

method, Expert judgment and Analogy based method [7].Machine learning is also an estimation 

method but is not a prominently different one in regular practices and is more categorized under 

the Analogy based methodology only. Each technique has its own advantages, disadvantages and 

limitations. With projects of large cost magnitude, many cost estimation methods should be used 

in parallel. This way one can compare the results produced from these methods and reliability 

over one particular methodology gets reduced and hence risk is also minimized [8]. But for 

smaller or medium sized projects, applying all the cost models might become costly affair thus 

making it an expensive start of the project [8]. 

 

5. FUZZY LOGIC 
 
Fuzzy logic is a kind of multi-valued logic, which deals with approximate reasoning rather than 

exact and absolute reasoning. It is an approach for computing based on degree of truth rather than 

just true or false (1 or 0). There are few terms associated with fuzzy logic which are mentioned as 

below: 

 

5.1 Fuzzy Number 

 
A fuzzy number is a quantity whose value is uncertain rather than exact as in case of single 

valued numbers. Fuzzy number refers to a connected set of possible values with each value 

having its own weight in range 0 to 1. The weight assigned to each value is called the 

membership function. 

 

5.2. Membership Function 

 
As per the definition, for a fuzzy set A on the universe of discourse X, membership function is 

defined as  

                                  µA:X → [0,1]                                                                       (1) 

where, each element of X is mapped to a value between 0 and 1[3].It represents degree of truth as 

an extension of valuation. Membership functions are of different shapes [9] such as triangular, 

trapezoidal, piecewise linear, Gaussian, bell-shaped, etc. 
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Trapezoidal Function: It is defined by a - lower limit, d- an upper limit, b-  lower support limit, 

and an upper support limit c, where a < b < c < d. [3]. The Membership function depicting the 

Trapezoidal Function is shown below in equation 2. 

 (2) 

Let A be a fuzzy number, A = [a, b, c, d; w] , w is the weight, 0 < w ≤1 .The Trapezoidal 

membership of this Fuzzy number A should satisfy the following conditions: 

 

(a) A is a continuous mapping from R to the closed interval in [0, 1]. 

(b) A(x) = 0, where infinite ≤ x ≤ a and d ≤ x ≤ infinite. 

(c) A(x) is monotonically increasing in [a, b]. 

(d) A(x) = w where b≤ x≤ c. 

(e) A(x) is monotonically decreasing in [c, d]. 

 

 
 

Figure 1 Trapezoidal Membership Function within the range of 0 and 1 [4] 

 

In the Figure 1, the x axis represents the universe of discourse, whereas the degrees of 

membership in the [0, 1] interval is represented by y-axis [3]. 

 

6. PARTICLE SWARM OPTIMIZATION (PSO) 
 
Particle swarm optimization (PSO) is a stochastic optimization technique invented by Dr. 

Eberhart and Dr. Kennedy in 1995[5], used the concept of population and social behaviour of bird 

flocking or schooling. PSO is an evolutionary computation technique such as Genetic algorithm. 

PSO optimizes problem by iteratively trying to improve a candidate (initial) solution with regard 

to a given measure of quality or fitness function. Initially PSO starts with candidate solutions, 

known as particles and move these particles around in the search-space according to the 

mathematical formulae describing the particle‟s position and velocity. Each particle‟s movement 

depends on its local best known position but, is also diverted toward the best known positions in 
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the search space [10], [11]. These local best positions are updated as better positions are found by 

other particles. 

 

6.1. PSO Algorithm 

 

The steps of PSO Algorithm [5] are summarized as follows 

 
1. For each particle i = 1, ..., S do: 

1.1 Initialize the particle's position with a uniformly distributed random 

vector: xi ~ U(blo, bup), where blo and bup are the lower and upper boundaries of the 

search-space. 

1.2 Initialize the particle's best known position to its initial position: pi ← xi 

1.3 If (f(pi) < f(g)) update the swarm's best known position: g ← pi 

1.4 Initialize the particle's velocity: vi ~ U(-|bup-blo|, |bup-blo|) 

2. Until a termination criterion is met (e.g. number of iterations performed, or a solution 

with adequate objective function value is found), repeat: 

2.1 For each particle i = 1, ..., S do: 

2.1.1 Pick random numbers: rp, rg ~ U(0,1) 

2.1.2 For each dimension d = 1, ..., n do: 

2.1.2.1 Update the particle's velocity: vi,d ← ω vi,d + φp rp (pi,d-xi,d) + 

φg rg (gd-xi,d) 

2.1.3 Update the particle's position: xi ← xi + vi 

2.1.4 If (f(xi) < f(pi)) do: 

2.1.4.1 Update the particle's best known position: pi ← xi 

2.1.4.2 If (f(pi) < f(g)) update the swarm's best known position: g ← pi 

3. Now g holds the best found solution. 

 

The parameters ω, φp, and φg are selected by the practitioner and control the behaviour 

and efficacy of the PSO method. 

 

7. COCOMO MODEL 
 
Developed by Barry Boehm in 1981 [12], Cost Constructive Model or COCOMO is a cost 

estimation model based on algorithmic properties. There were more than 60 projects which were 

tested and analyzed under this model before it was formally announced. Since the beginning, 

there were three levels of this model which were defined by Boehm. They were Basic, 

Intermediate and Detailed. For the purpose of this research, Intermediate COCOMO model has 

been used.  

 

7.1. Intermediate COCOMO 

 
The basic COCOMO model is based on the relationship:  

DE = a*(SIZE)b                                                   (3) 

where SIZE is measured in thousand delivered source instructions. The constants a, b are 

dependent upon the „mode‟ of development of projects, DE is Development Effort and is 

measured in man-months.  

There were three modes proposed by Boehm- Organic, Semi-detached and Embedded Mode. 

Organic was associated with small teams with known development environment, Semi-detached 

followed a mixture of experience and fresher with mode lying between organic and embedded 

and finally, Embedded was used for real time projects with strict guidelines and very tight 

schedule. The development efforts for various modes of software in Intermediate COCOMO are 

http://en.wikipedia.org/wiki/Uniform_distribution_(continuous)
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calculated by equations given in table 3.1. Since the basic COCOMO was not that much accurate, 

intermediate COCOMO was developed with introduction of Cost Drivers. 

 

The EAF term is the product of 15 Cost Drivers [12] that are presented below. The various 

multipliers of the cost drivers can be categorized from Very Low to Extra High as given. 

The 15 cost drivers are broadly classified into 4 categories of product, platform, personnel and 

project. The meaning and classification of the cost drivers are as follows: 

 
Table 1 Development Efforts for various modes in Intermediate COCOMO 

 

Development Mode Intermediate Effort Equation 

Organic DE=EAF*3.2*(SIZE)
1.05

 

Semi-detached DE=EAF*3.0*(SIZE)
1.12

 

Embedded DE=EAF*2.8*(SIZE)
1.2

 

 

a) Product:     RELY - Required software reliability 

                       DATA - Data base size 

                       CPLX - Product complexity 

b) Platform:   TIME - Execution time 

                       STOR- Main storage constraint 

                       VIRT - Virtual machine volatility 

                       TURN - Computer turnaround time 

c) Personnel:  ACAP - Analyst capability 

                       AEXP - Applications experience 

                       PCAP - Programmer capability 

                       VEXP - Virtual machine experience 

                       LEXP - Language experience 

d) Project:      MODP - Modern programming 

                       TOOL - Use of software tools 

                       SCED - Required development schedule 

 

With a dependency on the projects, various multipliers of the cost drivers will differ and thereby 

the EAF may be greater than or less than 1, thus affecting the Effort. 

 

8. PROPOSED EFFORT ESTIMATION APPROACH 
 
Analogy based approach [13] operates with one or two past projects selected on the basis of their 

similarity to the target project. Based on this approach following algorithm has been developed to 

estimate the effort. 

 

ALGORITHM 1: 

 

1. Establish attributes of planned project i.e. select all the attributes that are required for the 

estimation. 

2. Estimate the values of attributes established in step 1.Since estimates are uncertain so 

fuzzy numbers are used to depict the generated values for attributes. 

3. Now from the repository of historical projects find the project that closely matches the 

attributes of planned project.  

4. Similarity distance is calculated by comparing attribute values of planned project to that 

of historical project. The most similar project, though closest, is still not „identical‟ to the 

considered project. Hence, its „weight‟ (as described in step 6) will be 1. 
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5. At this step, the values of linear coefficients may be computed using the inputs of 

„similarity distances‟ from the existing project using PSO algorithm. 

6.  

The equation will be similar to linear equation, except that the weights will be adjusted in powers 

of distance ratios (powered to s/si, where s is the minimum distance for the best project and si for 

the target project). 

 

 
Figure 2 Generalized framework for estimation using Fuzzy numbers and PSO 

 

The proposed model as shown in Figure 2 is considered as a form of EA (Estimation by Analogy) 

and comprises of following main stages: 

 

i. Construction of fuzzy number of attributes. 

ii. Finding Similarity distance between planed project and historical project. 

iii. Deriving project weights according to the distance. 

iv.  Applying PSO algorithm to find B, as per the equation Y = B*X, where B is the coefficient 

vector, Y is the matrix for current project and X is the matrix for historic projects. 

 

Construction of fuzzy number of attributes 

 

The proposed method chooses COCOMO81 Dataset that describes the project using 15 attributes. 

Firstly, value of each attribute is replaced by its corresponding Fuzzy number in order to depict 

uncertainty. Fuzzy numbers can be constructed by any of the following two methods: [15]. 
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a. Expert opinion  

b. From data 

 

Expert opinion is a totally subjective technique. It depends on identifying pessimistic, optimistic 

and most likely values for each Fuzzy number [16], whereas construction using data is based on 

the structure of data only. Therefore based on DATA, and using Fuzzy modelling [14], the 

approach develops the membership functions for each attributes. Let the numeric value of 

attributes in Fuzzy Number is represented in the following sequence, where trapezoidal 

membership has been considered as given in the section 4. 

 

 Planned Project (P): [a1, a2, a3, a4; wa]  

and [a1, a2, a3, a4; wa] represents a fuzzy number for one attribute,  where 0 ≤ a1 ≤ a2 ≤ 

a3 ≤ a4 ≤ 1 and all are real numbers. Therefore, planned project will also have 15 sets of 

this type representing 15 attributes.  

 

 Historical Project (H): [b1, b2, b3, b4; wb] 

and [b1, b2, b3, b4; wb] represents a fuzzy number for one attribute , where 

0≤b1≤b2≤b3≤b4≤1 and all are real numbers. Therefore, historical project will have 15 

sets of this type representing 15 attributes.  

 

Finding Similarity between planned project and historical project 

 

To calculate the similarity distance between two fuzzy numbers, the method proposed by 

Azzehet. Al     has been used [14] which combines the concept of geometric distance, Center of 

Gravity (COG) and height of generalized fuzzy numbers. The degree of similarity S(P,H) 

between two generalized Fuzzy numbers  comprises of three elements: 

 

a) Height of Adjustment Ratio (HAR) 

b) Geometric Distance (GD)  

c) Shape of Adjustment Ratio (SAF) 

 

Equation for S(P,H) is given by the following equation[14]: 

 

 HAR is used to assess the degree of difference in height between two generalized Fuzzy 

numbers. Equation for HAR is given by[4]: 

HAR = √ (min (wa/wb ,wb/wa))                                                  (4) 

                  where, wa is weight for attribute of P and wb is weight for attribute of H. 

 

 GD is used to measure the geometric distance between two generalized Fuzzy numbers 

including the distance between their x-axis centroid. Equation for GD is given by: 

GD = 1 *((a1-b1) + (a2-b2) + (a3-b3) + (a4-b4) + (xa- xb) )/5   (5) 

 SAF is used to adjust the geometric distance, like, when the 2 Fuzzy numbers are having 

different shapes. Equation for SAF is given by: 

  

SAF = 1 + abs (ya-yb)                                                                         (6) 

 

Equation for S(P,H) is given by the following equation 

S(P,H) = HAR*(1-GD)/SAF                                                   (7) 

 

(xa, ya) and (xb, yb) presents the centre of gravity of generalized fuzzy numbers P and H 

respectively and calculated using equations 8 and 9: 
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                                     (8) 

                                              (9) 

Substituting the values of HAR, GD, SAF from equations 4, 5 and 6 respectively in equation 7, 

will give the similarity distance between one pair of attribute. Similarly, similarity distances for 

rest of the 14 attributes are calculated. 

 

Now, Let Si where i varies from 1 to 15, denote similarity distance between ith attribute of the 

two projects we are comparing, then collectively it will give the similarity distance between two 

projects denoted by S, given by equation 10: 

 

                                                                                      (10) 

 

In a similar way, similarity distance between planned project and each of historical projects are 

calculated to get the most similar project. 

 

Ranking the Closest Project 

 

After calculating the aggregated similarity measure S between the planned project and each 

individual analogue project, we will sort the similarity results according to their value. The 

project with highest similarity to target project is chosen. We choose project with least similarity 

distance because it has highest potential to contribute to the final estimate. We assume that the 

effort of the closest project is E which will be utilized for Effort adjustment. 

 

Application of PSO algorithm for determination of Coefficients 

 

For deriving the new estimate only using the closest project is not sufficient in many cases as [6] 

it may lead to bad estimation accuracy. Therefore Particle Swarm Algorithm is used to ensure that 

all projects are considered according to the extent to which they are similar to the test project. The 

framework of implementation of PSO model is shown in Figure 3. Here, the potential benefits of 

applying PSO to analogy-based software effort estimation models based on Fuzzy Numbers are 

evaluated. A suitable linear model is derived from the similarity distances between pairs of 

projects for obtaining the weights to be used for PSO. PSO may be considered as a process of 

random allocation of coefficient values, and then randomly changing them till they are closest in 

linking the projects (minimum error). 

 

Figure 3, presents the iterative process to optimize the coefficients of linear equation and software 

cost estimation process that combines the best linear equation with estimation by analogy using 

Fuzzy number [15]. 
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Figure 3 Framework of Adjusted Fuzzy Analogy based Estimation 

 

The algorithm for PSO implementation goes as follows: 

 
1. Pick 100 swarms corresponding to the coordinates of 15 attributes for the equation e = 

Sum (abs((A(i,j)*B(j)) – E(i))^(s/si))/(no. of past projects), where A represents the values 

corresponding to the original scaled ratings (1-6), B is the quantity to be measured, and s 

is similarity ratings. Thus, dissimilar projects get lower share of contribution. 

2. Pick random positions and velocities for 15 attributes for each of the swarms. Random 

velocity would be in the range (-x,+x), where x could take a value like 1, and position can 

be taken in range (0,y). Later, when equation was modified as e = Sum (abs((B(j)/A(i,j)) 

– E(i))^(s/si))/(no. of past projects), most of the coefficients were found in the range 

(0,10). The first attempt would take y = 10. 

3. Compute total Error = Sum (| Estimated – Actual effort|/(Actual effort + Estimated 

effort)), for each project. 

4. New velocity = unit random velocity * error for the swarm 

5. No. of iterations may be varied as per the accuracy requirements. 

6. The „particle best‟ and „global best‟ coordinates may be computed as per the standard 

PSO method. 
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A representation of the PSO algorithm for the project is shown in Fig. 4. 

 

 
 

Figure 4 Adjusting Reused Effort process diagram 

 

The failure of implementation of an iterator may come in several forms, such as  

 

(i) Poor/Slow convergence, or slowdown before convergence near the required point, 

(ii) Divergence 

(iii) Undesirable oscillations 

These problems may be prevented if the iteration function is mathematically consistent. This may 

be ensured as follows: 

 

 The swarm movement starts slowing down when the error value start decreases, leading 

to a tendency to converge around the best value, as the number of iterations are increased. 

 To ensure that the 15 coefficients do not go too high, the normalized data is inverted to 

form the equation E = Sum (B/S) + e implies e = E – sum (B/S); 

e (total) = sum [ abs({ E – sum(B/S) }) ^ s/si] 

If the absolute value of S increases, the error grows to bring it down again. This keep the 

values of coefficients represented by „S‟ in a narrow range. 

 An important mathematical step in the algorithm was that of „initialization‟. If initial 

coefficients are taken in the range (0, 10), then there are good chances that the errors 

would be in the range (0, 1). If velocities are allocated in (0, 1) range, a fast convergence 

may be expected.  
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9. EXPERIMENTAL RESULTS 
 
Using the effort of most similar project and calculated similarity distances between each attribute, 

the coefficients of all effort drivers in OPTIMTOOL (MATLAB (R2011a)) [104] are found that 

results in significantly lesser errors. There is no proof on software cost estimation models to 

perform consistently accurate within PRED 25% (number of observation for which MRE is less 

than 0.25). Applying PSO algorithm, the value of coefficients of effort drivers (shown in Table 3) 

is obtained that aim to minimize the MRE [204] of projects. For some of the effort drivers the 

coefficient value is very very less. So we can deduce that these drivers does not play important 

role in the adjustment of effort. For the proposed PSO algorithm, Figure 5 shows how algorithm 

converges with the number of iterations. Two sets of iterations per simulation set were performed 

in order to note the variation of precision as well. It was found that the precision also improves 

with the number of iterations, since the absolute difference of error of each pair of simulation 

decreases with the number of runs. 

 

 
 

Figure 5 PSO algorithm stabilizes as the number of iterations is increased 

Table 2 Corresponding to Figure 3.6 

 

 

A B Avg 

10 94.514 12.909 100.968 

20 83.157 28.896 97.605 

 30 73.032 5.996 76.030 

40 64.894 9.600 69.694 

50 57.730 4.567 60.014 

60 50.379 4.414 52.586 

70 51.989 3.388 53.683 

80 47.565 13.645 54.387 

90 48.159 2.691 49.505 

100 47.819 6.980 51.309 
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Table 3 Best Coefficient Values Obtained through PSO 

 

Cost 

Driver 

Coefficents of drivers 

(Bi)  

ACAP -1.74 

AEXP 4.51 

CPLX 8.84 

DATA 0.39 

LEXP 5.43 

MODP 6.33 

PCAP 3.89 

RELY 9.60 

SCEP 1.86 

STOR 0.97 

TIME -2.37 

TOOL -1.78 

TURN 7.75 

VEXP 0.51 

VIRT 5.87 

 

10. CONCLUSION AND FUTURE WORK 
 
To solve the problem of uncertain, lost values and ambiguous and vague values of attributes 

related to project, the concept of fuzzy numbers is used in the present proposed approach. The 

fuzzy model is employed in Estimation by Analogy to reduce uncertainty and improving the way 

to handle both numerical and categorical data in similarity measurement. Converting each 

attribute (real number) in to fuzzy number solve the problem of ambiguous data. Once it gets 

over, calculating the similarity distance of the target project with all historical projects results the 

most similar project. But the most similar project still has similarity distance with the project 

being estimated. Hence, all projects were considered in varying weights, as per their similarity 

distance with the proposed project – the lower the distance, the higher the weight. 

 

Combining the concept of Fuzzy logic and PSO algorithm in a model to estimate the software 

effort improves the accuracy of estimation techniques. The experiments, which were conducted 

applying this model to NASA63 dataset, establish significant improvement under various 

accuracy measures. Case Based Reasoning (CBR), traditional COCOMO and estimation analogy 

based Fuzzy Model (EA) have been used for the comparison purpose with the proposed 

technique. The evaluation parameter used for the comparison is Mean Magnitude of Relative 

Error (MMRE). 
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