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ABSTRACT 
 
When only a few lower modes data are available to evaluate a large number of unknown parameters, it is 

difficult to acquire information about all unknown parameters. The challenge in this kind of updation 

problem is first to get confidence about the parameters that are evaluated correctly using the available 

data and second to get information about the remaining parameters. In this work, the first issue is resolved 

employing the sensitivity of the modal data used for updation. Once it is fixed that which parameters are 

evaluated satisfactorily using the available modal data the remaining parameters are evaluated employing 

modal data of a virtual structure. This virtual structure is created by adding or removing some known 

stiffness to or from some of the stories of the original structure. A 12-story shear building is considered for 

the numerical illustration of the approach. Results of the study show that the present approach is an 

effective tool in system identification problem when only a few data is available for updation.  
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1. INTRODUCTION 

 
The non-uniqueness issue associated with the inverse problem‟s solution makes the probabilistic 

approach more reliable over the deterministic approach for system identification problems. In last 

few decades, Bayesian model updating has rapidly arisen as a reliable and effective approach for 

system identification problems probabilistically. The efficiency of Bayesian model updating 

depends on various issues like the efficiency of simulation algorithm, data used for updation, 

prior distributions, likelihood function etc. Many of these issues have been successfully resolved 

in recent years [1-13]. Bayesian probabilistic approach is applied to localize and quantified the 

amount of damage in [24] employing incomplete and noisy modal data. A novel approach for 

online health monitoring and damage assessment of structures using Bayesian probabilistic 

measures is presented in [25]. In this approach at first identification of the system is done in its 

undamaged state and then continuous monitoring cycles are run to detect the damage in the 

structure. Appropriate model class selection using response measurements of structural system by 

showing examples of some linear and non-linear structural systems is shown in [6]. Bayesian 

approach for updation and model class selection for Masing hysteretic structural models is 

employed in [26]. A damage localization technique in structures under Bayesian inference using 

vibration measurements (modal data) on a steel cantilever beam is presented [27]. Damage 

detection in plate type structures is studied in [28]. Damage assessment of a slice of 7-story RC 

building using Bayesian uncertainty quantification technique is studied in [29]. 
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Many times in Bayeisan updation problems the available data for updation falls short to give 

complete information about the all unknown parameters. The reason behind this is that the 

available data is not sensitive to all of the unknown structural parameters. Therefore, information 

about only those parameters can be acquired accurately for which the used data for updation is 

sensitive.  

 

When modal data is used as evidence to update the structural model many researches have 

suggested different ways to take variance for prediction error model of frequency and mode shape 

data types [14-18]. Most of these studies consider only two variances one for frequencies of all 

modes and other for mode shape components of all modes. Only a few studies consider separate 

variances for data of different modes. However, depending on various conditions all frequencies 

and mode shape components of all modes may require separate variances for their prediction error 

models for an efficient information extraction from these data points. This study employs a 

sensitivity based approach recently given by the authors [24] to derive the variances for prediction 

error models of different data points to efficiently extract the information from these data points. 

In this work, a novel Bayesian approach is presented to determine those parameters for which the 

available data for updation is not sensitive. The first thing in this kind of problem is to first get 

those parameters that can be successfully resolved using the available data. For this purpose a 

data sensitivity based term named as parameter impact is introduced in this work. It is shown that 

this newly introduced term successfully separate those parameters which can be resolved using 

available data from those which cannot be resolved. After this separation the resolved parameters 

are considered as known parameters. To resolve the remaining parameters a virtual structure is 

created by adding some high stiffness to those stories whose stiffness is successfully determined 

previously. It is observed that the modal data of this virtual structure is capable to give 

information about previously unresolved parameters. Ideally the approach is only effective when 

the modal data of this virtual structure can be determined using modal data of the original 

structure. A current research is in progress by the authors for this purpose, however, present study 

assumes that modal data of this virtual structure is known (using eigenvalue analysis). 

 

Since a shear building approximation represents most of the civil engineering structures 

appropriately, a 12-stoery numerical shear building model is used for the illustration of the 

approach. Only fundamental mode data is used for updating the stiffness parameters of the shear 

building model. Markov chain Monte Carlo simulation technique is employed using Metropolis-

Hasting algorithm to simulate the samples from the posterior distribution. The mean of the 

posterior distribution is taken as the parameter estimation of distribution to represent the unknown 

stiffness parameters. Results of this study show that the present approach is very efficient to 

resolve all unknown parameters even when the data available is not sensitive to the unknown 

parameters. 

 
2. BAYESIAN MODEL UPDATING WITH MODAL DATA 

 
The need to predict the response of a physical system due to a future excitation involves the 

requirement of a correct mathematical model for that system. This is done so that proper 

retrofitting measures can be taken if requires based on the response of the mathematical model. 

Bayesian modal updating involves parameter updation of an initially assumed crude mathematical 

model based on the response of the physical system. The process of updation is assumed to be 

satisfactory when the response of the mathematical model matches with the response of the 

physical system for a given input.  

 

This updation of model parameters is done using Bayes‟ theorem as given below: 
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where, nR   is the parameter vector which need to be updated and D  is the available evidence 

from the system. Expression ( )p   is known as the prior distribution of and ( | )p D   represents 

the probability of the evidence D  when a belief of   is taken as true and called as the likelihood 

of the evidence for that belief. The total probability of the evidence D  for the model is a constant 

and can be given by the sum of the likelihood of the evidence for each and every belief of   

which is represented as ( )p D . The expression ( | )p D is known as the posterior distribution of 

the parameter vector . When the evidence D consists of modal data of the system it can be 

shown that likelihood for frequency and mode shape components can be expressed as: 
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(3) 

Here, i  and iφ  represent the observed frequency and the mode shape vector of the thi  mode of 

the system 1...i m and ( )i θ  and ( )iφ θ  represent the frequency and mode shape of the model 

for the thi  mode respectively. In achieving (2) and (3) it is considered that the difference in model 

and system response is normally distributed with zero mean. Standard deviation of the deviation 

in frequency of the thi  mode is taken as 
i

  and 
iφ

V  represents the covariance matrix of the 

deviation in thi  mode shape vector components. Now, if it is assumed that the frequency and 

mode shape of an energy mode are statically independent informatively. Further, if each mode is 

independent to other mode then for m  modes the likelihood of the evidence D  can be given as: 
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Now, to evaluate the covariance matrix
iφ

V , mode shape components are taken as uncorrelated to 

each other, resulting 
iφ

V to a diagonal matrix. Therefore, if, d  is the length of the parameter 

vector  , then the total unknown parameters in updation problem are increased to  1d m n  , 

where, n is the number of observed degrees of freedom and can be expressed as: 
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Equation (4) now can be rewritten as:  
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In a recent study [24] by authors it is shown that modal data sensitivity towards structural 

parameters can be used to evaluate the ratio of variance of error models for frequency and mode 

shape components of different modes. In this way exhaustive information from the data used for 

the updation can be obtained without increasing the number of unknown parameters (unknown 
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variances for each data point) in the updation algorithm. The present study uses this approach to 

evaluate the unknown variances. 

 

3. PROBLEM STATEMENT 

 
Many times in a model updation problem the data used for updation falls short to acquire 

information about all unknown parameters of the problem. Bayesian model updation algorithm 

works on the error minimization concept to get information about unknown parameters. In most 

of the Bayesian updation algorithms it is assumed that the unknown parameters are statistically 

independent. This fact makes each and every individual unknown parameter solely responsible to 

get any informatio about that parameter. Now, if there are some unknown parameters that are 

incapable to produce a change in the modal data used for updation with a change in that 

parameter for the adopted updation scheme then information for these parameters cannot be 

achieved in updation process. This work presents a novel approach to get information about these 

relatively hard to achieve unknown parameters with limited available data for updation. In order 

to acquire information about these parameters it is required to make the data used for updation 

sensitive towards the change in these parameters. Therefore, in the first stage of updation process 

information about those unknown parameters can be achieved for which the used modal data is 

sensitive. Next step of updation process involves the separation of accurately acquired and not 

acquired unknown parameters in the first stage. In this work modal data sensitivity towards 

unknown parameters is first used for an efficient posterior resolution of the parameters. Then, a 

virtual structural modification based approach is used to make the available modal data sensitive 

for the parameters which are not acquired accurately in the first stage of updation. 

 

4. PROPOSED APPROACH 

 
If modal data is considered for updation of unknown parameters ik , 1...i t  here, t  is the total 

number of unknown parameters. Now, for square of frequency 2

I of thI mode, its derivative with 

respect to a parameter ik  is given by [19-23]. 
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and, if for mode shape 
I

φ of thI mode, its derivative can be found using below expression [19-

23]. 
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In Equations (7) and (9) K and M  are the stiffness and mass matrix of the structure respectively. 

After getting the first stage value of unknown parameters these derivatives can be obtained for 

different unknown parameters. It is to be noted that to evaluate these derivatives the unknown 

stiffness matrix (assuming mass matrix is known) is constructed using first stage result of 

unknown parameters. In this approach a novel term is introduced for the posterior resolution of 

unknown parameters. Since Bayesian model updating algorithm is based on the error 

minimization between response of the system and the response of the mathematical model 

defined with some parameters. The uncertainty in the value of an unknown parameter can be 

assumed to be inversely proportional to the ability of that parameter to change the response of the 
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model with a change in the parameter itself for the adopted updation scheme. Now if a term 

„parameter impact‟ ( k ) is defined as the absolute sum of first order derivative of each and every 

modal data used for updation with respect to that parameter then it can be expressed as: 
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where, m is the number of considered modes, n  is the number of observed degrees of freedom 

and t  is the total number of unknown parameters. Therefore, if 
ik represents the uncertainty in 

parameter ik after first stage of updation it can be given as: 
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The above relation is used for the meaningful posterior resolution of the unknown parameters and 

to get most uncertain parameters after first stage in this approach. After knowing the most 

uncertain parameters after first stage a local damage based approach is utilized to improve the 

parameter impact k of these parameter so that uncertainty in the value of these parameters can 

be reduced in the second stage of updation. It is to be noted here that those parameters which has 

a relatively higher impact are already determined in the first stage and can be taken as known 

parameters. In the second stage a virtual structural modification is done by adding high stiffness 

to those stories of the structure for which the stiffness parameters are already determined in the 

first stage. It is seen that this virtual structure has a higher parameter impact than the original 

structure for those parameter which are determined as the most uncertain parameter in the first 

stage. Therefore, the modal data of the original structure along with the modal data of the virtual 

structure can be utilized to know the remaining unknown structural parameters. The approach can 

be repeated for more stages using different virtual structure till all the uncertain parameters are 

achieved.  

 

The most challenging task in this approach is to evaluate the modal data of the virtual structure 

employing the modal data of the original structure. Although some techniques are available in 

literature to evaluate the modal data of the virtual structure but accuracy of these techniques 

depend on the number of available modes of the original structure and also most of these 

techniques are applicable for small modifications only. In case when only a few lower modes data 

are available these techniques are hard to rely for large modifications. However, practically only a 

few lower mode data are available from the original structure and also in many cases a large 

modification is required to improve the parameter impact. Authors‟ are currently trying to get an 

effective approach to obtain the modal data of the virtual structure, however, in this work the 

modal data for the virtual structure is simply obtained by the eigenvalue analysis and not using 

modal data of original structure. Further work is needed for the practical implementation of this 

approach. 

 

5. ILLUSTRATIVE EXAMPLE 

 
A numerically simulated 12-storey shear building frame is adopted to illustrate the approach 

(Figure 1). Stiffness parameter for a story is defined as the multiplier of assumed nominal 

stiffness of that story (
84 10 N/mm for each story). Mass of each story is assumed to be known 

(
51 10 kg) whether all stiffness parameters are assumed to be unknown for updation algorithm. 

These unknown stiffness parameters are found out employing present approach by taking only 

first mode data (frequency and mode shape). This data is generated by taking a known value of all 
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unknown parameters , 1...12ik i  . Mode shape data are normalized with respect to the response of 

bottom story. To simulate the practical scenario this data is contaminated by a noise of coefficient 

of variation 5%. A total of 15 such contaminated data sets are then taken to find out the unknown 

stiffness parameters. To avoid any biasness in the algorithm exponential prior with mean value of 

2 is adopted for the choice of prior distribution of all unknown stiffness parameters. The total 

unknown parameters in the algorithm are the unknown stiffness parameters, multiplication factor 

of normalized variances and shape parameter of proposal distribution of this multiplication factor. 

Prior distribution of these additional two unknown parameters are taken as uniform in a range 

0.00001 to 10 for multiplication factor and 1 to 1000000 for shape parameter. For proposal 

distribution for all the unknown parameters Gamma distribution is adopted. Metropolis-Hasting 

Markov Chain Monte Carlo (MCMC) algorithm is employed to draw samples from the high 

dimensional posterior distribution.  

 

Figure 1: Schematic diagram of adopted shear building frame 

Table 1 shows the result of the first stage for all unknown parameters in terms of posterior mean 

and variance and percentage deviation from the actual value. First stage is defined as the updation 

using the modal data of original structure. The subsequent stages are updation using the modal 

data of original as well as the modified structure. The modified structure is the structure with 

stiffness modification of some of the stories where a known stiffness is added to those stories. 

Table 1 also shows the parameter impact ( k ) for different parameters normalized with respect 

to
1k . It can be observed from Table 1 that those parameters which have higher k are 

successfully determined in the first stage, however, parameters with lower k  cannot be resolved 

successfully in first stage. It can also be observed that the posterior variance is also a good 

measure of parameter certainty. However, in case of highly noisy data (not presented here) it is 

observed by the authors that posterior variance may give a false depiction of parameter accuracy. 

Therefore, based on k  parameters , 6...12ik i   are determined as the most uncertain unknown 

parameters after first stage that cannot be resolved using modal data of original structure. Figure 2 

shows the Markov chain for different parameters and it can be observed form this figure that 

chain is not seen to be converged for parameters , 6...12ik i  . Therefore, to improve the 

parameter impact of these parameters the original structure is virtually modified by adding 

stiffness to those stories whose stiffness parameters are successfully found in the first stage. 
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These stories stiffness is increased to two times of its current stiffness. Now modal data of this 

modified structure along with the original structure is used to determine the remaining unknown 

parameters which are not resolved successfully from first stage. In this work the modal data of 

virtual structure is not obtained using the modal data of the original structure but is obtained 

directly from eigenvalue analysis and contaminated with noise. 

Table 1: Posterior statistics at first stage (original structure) 

 

Unknown 

parameters with 

actual value 

Mean Variance Deviation 

(%) 

Normalized parameter 

impact (
ik ) 

k1=1.0 0.9697 0.0006 3.03 1.0 

k2=1.0 1.0406 0.0011 4.06 0.45 

k3=1.0 0.8991 0.0024 10.09 0.44 

k4=1.0 1.0322 0.0084 3.22 0.35 

k5=1.0 0.8587 0.0094 14.13 0.37 

k6=1.0 1.2045 0.0758 20.45 0.22 

k7=1.0 0.839 0.0236 16.10 0.27 

k8=1.0 1.5538 0.3277 55.38 0.12 

k9=1.0 0.937 0.0573 6.30 0.15 

k10=1.0 1.3531 0.3951 35.31 0.08 

k11=1.0 1.1558 0.3537 15.58 0.06 

k12=1.0 2.4023 0.8146 140.23 0.01 

 

  
a. Well determined parameters b. Undetermined parameters 

Figure 2: Markov Chain for different parameters in first stage 

 

Results for stage 2 is shown in Table 2. It can be observed from this table that parameters 

, 6...9ik i  are successfully resolved in this stage which has higher k  in this stage than the 

previous stage. It is to be noted that in all stages k  is normalized with respect to 
1k only. 

Figure 3 shows the Morkov chain and posterior distribution of some of the parameters for stage 2.  

Results after two more modifications are shown in Table 3. Therefore, it can be concluded that 

the present approach is quite efficient to determine the unknown parameters using data of only 

first mode. 
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Table 2: Posterior statistics at second stage (modified structure) 

 

Unknown 

parameters with 

actual value 

Mean Variance Deviation 

(%) 

Normalized 

parameter 

impact k6=1.0 1.0126 0.0042 1.26 0.45 

k7=1.0 0.9810 0.0156 1.90 0.40 

k8=1.0 1.0469 0.0306 4.69 0.31 

k9=1.0 1.0691 0.0567 6.91 0.24 

k10=1.0 1.4114 0.4685 41.14 0.14 

k11=1.0 0.8308 0.1343 16.92 0.15 

k12=1.0 3.5123 14.2292 251.23 0.02 
 

   

a. Markov chain b. Well determined 

parameters 

c. Ill determined 

parameters 

 

Figure 3: Second stage statistics 

 

Table 3: Posterior statistics at final stage 

 

Unknown 

parameters with 

actual value 

Mean Deviation 

(%) 

k1=1.0 0.9697 3.03 

k2=1.0 1.0406 4.06 

k3=1.0 0.8991 10.09 

k4=1.0 1.0322 3.22 

k5=1.0 0.8587 14.13 

k6=1.0 1.0126 1.26 

k7=1.0 0.981 1.90 

k8=1.0 1.0469 4.69 

k9=1.0 1.0691 6.91 

k10=1.0 1.037 3.70 

k11=1.0 1.044 4.40 

k12=1.0 1.1912 19.12 
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6. CONCLUSIONS 

 
A sensitivity based novel term is introduced for the posterior resolution of unknown parameters. 

It is observed that the present approach is highly effective and efficient to resolve the unknown 

parameters under Bayesian inference. The result of the study shows that using the present 

approach those parameters of a system can also be found for which the data available for the 

updation is not very sensitive. However, the current approach is yet to be tested for the practical 

scenario. Future research is needed for the complete implementation of the present approach on 

real structures. In civil engineering structures the approach can be a useful tool for system 

identification or damage detection when not much data is available for updation. It is also 

observed that the posterior variance can also be used as a good measure of parameter accuracy. 

However, in case of highly noisy data the reliability of variance based accuracy suffers. 
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