
International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016

DOI: 10.5121/ijci.2016.5209 79

SOFTWARE TOOL FOR TRANSLATING PSEUDOCODE

TO A PROGRAMMING LANGUAGE

Amal M R , Jamsheedh C V

and Linda Sara Mathew

Department of Computer Science and Engineering, M.A College of Engineering,

Kothamangalam, Kerala, India

ABSTRACT

Pseudocode is an artificial and informal language that helps programmers to develop algorithms. In this

paper a software tool is described, for translating the pseudocode into a particular programming

language. This tool takes the pseudocode as input, compiles it and translates it to a concrete programming

language. The scope of the tool is very much wide as we can extend it to a universal programming tool

which produces any of the specified programming language from a given pseudocode. Here we present the

solution for translating the pseudocode to a programming language by implementing the stages of a

compiler.

KEYWORDS

Compiler, Pseudocode to Source code, Pseudocode Compiler, c, c++

1. INTRODUCTION

Generally a compiler is treated as a single unit that maps a source code into a semantically

equivalent target program [1]. If we are analysing a little, we see that there are mainly two phases

in this mapping: analysis and synthesis. The analysis phase breaks up the source code into

constituent parts and imposes a grammatical structure on them. It then uses this structure to create

an intermediate representation of the source code. If the analysis phase detects that the source

code is either syntactically weak or semantically unsound, then it must provide informative

messages. The analysis phase also collects information about the source code and stores it in a

data structure called a symbol table, which is passed along with the intermediate representation to

the synthesis phase. The synthesis phase constructs the target program from the intermediate

representation and the information in the symbol table [2], [3]. The analysis phase is often called

the front end of the compiler; the synthesis phase is the back end.

Compilation process operates as a sequence of phases, each of which transforms one

representation of the source program to another. Compilers have a machine-independent

optimization phase between the front end and the back end. The purpose of this optimization

phase is to perform transformations on the intermediate representation; so that the backend can

produce a better target program than it would have otherwise produced from an un-optimized

intermediate representation.

In this paper, it is intended to produce a user specified programming language from pseudocode.

This tool requires a single pseudocode and it can produce the programming language that is

specified by the user. Its significance is that it can be extended to a universal programming tool

that can produce any specified programming language from pseudocode.

International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016

80

2. COMPILING PSEUDOCODE

The process of compiling the pseudocode consists of certain analysis and operations that has to be

performed on it.

2.1. LEXICAL ANALYSER

The Lexical Analyser module analyses the pseudocode submitted by the user by using the

transition analysis. The keywords, Identifiers and tokens are identified from the given input.

2.2. SYNTAX ANALYSER

The Syntax Analyser module creates the Context Free Grammar from the pseudocode submitted

.The resultant grammar is then used for creation of the parse tree. Then pre order traversal is done

to obtain the meaning of the syntax.

2.3. SEMANTIC ANALYSER

The semantic Analyser uses the syntax tree and the information in the symbol table to check the

source program for semantic consistency with the language definition. It also gathers type

information.

2.4. INTERMEDIATE CODE GENERATOR

In this module, an intermediate code is generated from the input pseudocode. The generated

intermediate code is that code which is used for the conversion to any other languages.

2.5. INTERMEDIATE CODE OPTIMIZER

In this module, code optimization is applied on the intermediate code generated. The generated

optimized intermediate code is that code which is used for mapping to the concrete languages.

2.6. CODE GENERATOR

The optimized intermediate code is converted into the required programming language in this

module. The result might be obtained in the language selected by the user.

2.7. LIBRARY FILE MANAGER

In this module the administrator manages the library files of the target language and also

manipulates files in the library package.

3. PROBLEM STATEMENT

3.1. INTERPRET THE PSEUDOCODE

The main task is to identify and interpret the pseudocode given by the user. Each user has his own

style of presentation, variation in using keywords or terms (E.g.: - Sum, Add, etc. to find sum of

International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016

81

two numbers), structure of sentence, etc. So initial task is make the tool capable of develop the

tool is to interpret and identify the right meaning of each line of the pseudocode.

3.2. TRANSLATE THE PSEUDOCODE INTO PROGRAMMING LANGUAGE

The second step involves the translation of the interpreted pseudocode into programming

language. User can specify output in any of the available programming languages. So the tool

must be able to support all the available programming language features (in this paper we are

concentrating on C and C++ only). That is it must support the object oriented concepts, forms and

so on.

4. METHODOLOGY

4.1. LEXICAL ANALYSIS

The first phase of the software tool is called lexical analysis or scanning. The lexical analyser

reads the stream of characters making up the pseudocode and groups the characters into

meaningful sequences called lexemes. For each lexeme, the lexical analyser produces as output a

token of the form {token- name, attribute-value} that it passes on to the subsequent phase, syntax

analysis. In the token, the first component token- name is an abstract symbol that is used during

syntax analysis, and the second component attribute-value points to an entry in the symbol table

for this token. Information from the symbol-table entry 'is needed for semantic analysis and code

generation. For example, suppose a source program contains the declare statement[1],[2].

Declare an integer variable called sum# (1.1)

The characters in this assignment could be grouped into the following lexemes and mapped into

the following tokens passed on to the syntax analyser:

1. Declare a, is a lexeme that would be mapped into a token (Declare, 59), where Declare is

a keyword and 59 points to the symbol table entry for position.

2. Integer, is a lexeme that would be mapped into a token (Integer, 112), where Integer is a

keyword and 112 points to the symbol table entry for position.

3. Variable, is a lexeme that would be mapped into a token (Variable, 179), where Variable

is a keyword and 179 points to the symbol table entry for position.

4. Called, is a lexeme that would be mapped into a token (Called, 340), where Called is a

keyword and 340 points to the symbol table entry for position.

5. Sum,is a lexeme that would be mapped into a token (sum, 740), where sum is an

identifier and 740 points to the symbol table entry for position.

(Blanks separating the lexemes would be discarded by the lexical analyser.)

4.2. SYNTAX ANALYSIS

The second phase of the compiler is syntax analysis or parsing. The parser uses the first

components of the tokens produced by the lexical analyser to create a tree-like intermediate

representation that depicts the grammatical structure of the token stream. A typical representation

is a syntax tree in which each interior node represents an operation and the children of the node

represent the arguments of the operation [12], [13]. The syntax of programming language

constructs can be specified by context-free grammars or BNF (Backus-Naur Form) notation;

Grammars offer significant benefits for both language designers and compiler writers.A grammar

gives a precise, yet easy-to-understand, syntactic specification of a programming language. From

International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016

82

certain classes of grammars, we can construct automatically an efficient parser that determines

the syntactic structure of a source program. As a side benefit, the parser-construction process can

reveal syntactic ambiguity and trouble spots that might have slipped through the initial design

phase of a language. The structure imparted to a language by a properly designed grammar is

useful for translating source programs into correct object code and for detecting errors. A

grammar allows a language to be evolved or developed iteratively, by adding new constructs to

perform new tasks. These new constructs can be integrated more easily into an implementation

that follows the grammatical structure of the language.

4.3. CONTEXT-FREE GRAMMARS

Grammars were introduced to systematically describe the syntax of programming language

constructs like expressions and statements. Using a syntactic variable „Stmt‟ to denote statements

and variable „expr‟ to denote expressions, In particular, the notion of derivations is very helpful

for discussing the order in which productions are applied during parsing. The Formal Definition

of a Context-Free Grammar (grammar for short) consists of terminals, non-terminals, a start

symbol, and productions.

1. Terminals are the basic symbols from which strings are formed. The term "token name"

is a synonym for "terminal" and frequently we will use the word "token" for terminal

when it is clear that we are talking about just the token name. We assume that the

terminals are the first components of the tokens output by the lexical analyser.

2. Non terminals are syntactic variables that denote sets of strings. The set of string denoted

by non-terminals helps to define the language generated by the grammar. Non terminals

impose a hierarchical structure on the language that is the key to syntax analysis and

translation.

3. In a grammar, one nonterminal is distinguished as the start symbol, and the set of strings

it denotes is the language generated by the grammar. Conventionally, the productions for

the start symbol are listed first.

4. The productions of a grammar specify the manner in which the terminals and non-

terminals can be combined to form strings. Each production consists of:

a) A nonterminal called the head or left side of the production; this production defines some

of the strings denoted by the head.

b) The symbol --+. Sometimes:: = has been used in place of the arrow.

c) A body or right side consisting of zero or more terminals and non-terminals.

The Context Free Grammar generated from 1.1 by the Software tool is

Stmt -> declare_an <DataType> variable Called <Identifier> (1.2)

DataType->integer

Identifier->sum

4.4. SEMANTIC ANALYSIS

The semantic analyser uses the syntax tree and the information in the symbol table to check the

source program for semantic consistency with the language definition. It also gathers type

information and saves it in either the syntax tree or the symbol table, for subsequent use during

intermediate-code generation An important part of semantic analysis is type checking, where the

compiler checks that each operator has matching operands. For example, many programming

language definitions require an array index to be an integer; the compiler must report an error if a

floating-point number is used to index an array .The language specification may permit some type

International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016

83

conversions called coercions. For example, a binary arithmetic operator may be applied to either a

pair of integers or to a pair of floating-point numbers. If the operator is applied to a floating-point

number and an integer, the compiler may convert or coerce the integer into a floating-point

number. The Parse Tree generated from 1.2 by the Software tool is by array representation as

follows,

The pre order traversal:

Stmt-> declare_an DataType integer variable Called Identifier sum (1.3)

4.5. INTERMEDIATE CODE GENERATION

In the process of translating a source program into target code, a compiler may construct one or

more intermediate representations, which can have a variety of forms. Syntax trees are a form of

intermediate representation; they are commonly used during syntax and semantic analysis. After

syntax and semantic analysis of the source program, many compilers generate an explicit low-

level or machine-like intermediate representation, which we can think of as a program for an

abstract machine[10],[11]. This intermediate representation should have two important properties:

it should be easy to produce and it should be easy to translate into the target machine. In our

software tool intermediate code is generated to convert the code to various languages from single

pseudocode.

The intermediate code for 1.3 is as follows:149 i780 300o (1.4)

4.6. CODE GENERATION

The code generator takes as input an intermediate representation of the source program and maps

it into the target language. If the target language is machine Code, registers or memory locations

are selected for each of the variables used by the program. Then, the intermediate instructions are

translated into sequences of machine instructions that perform the same task.

The resultant program code for 1.4 is as follows:int sum; (1.5)

5. SCHEMA DESCRIPTION

International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016

84

Fig:-1 System environment of the proposed software tool

The proposed software tool consists of several modules which are used to process the input

4.1. INPUT DESIGN

This is a process of converting user inputs into computer based formats. The data is fed into

system using simple interactive forms. The forms have been supplied with messages so that user

can enter data without facing any difficulty. The data is validated wherever it requires in the

project. This ensures that only the correct data have been incorporated into the system. It also

includes determining the recording media methods of input, speed of capture and entry into the

system. The input design or user interface design is very important for any application. The

interface design defines how the software communicates with in itself, to system that interpreted

with it and with humans who use.

The main objectives that guide input design are as follows:

User friendly code editor- Providing line numbers and shaded graphical rows to easily identify

each line of code.

Arise that lead to processing delays- Input is designed so that it does not lead to bottlenecks and

thus avoid processing delays.

Dynamic check for errors in data-errors in data can lead to delays. Input design should be such

that the data being entered should be free from error to the maximum possible limit.

Avoided extra steps-more the number of steps more is the chance of an error. Thus the number of

steps is kept to a minimum possible.

Kept the process simple-the process should be kept as simple as possible to avoid errors.

4.2. OUTPUT DESIGN

A quality output is one, which meets the requirements of the end user and presents the

information clearly. In the output design, it is determined how the information is to be displayed

for immediate need and also the hard copy output. The output design should be understandable to

the user and it must offer great convenience. The output of the proposed software tool is designed

as opening the text file containing the translated code.

The main objectives that guide the output design are as follows:

a. User can copy the code and run it in any of the IDE available.

b. Since the output is written in a standard text file, the user can directly call the file

in the host program.

c. User can add some more code to the existing output and edit it easily.

4.3. DATA STRUCTURES USED

4.3.1. DATA BANK, TOKEN AND TOKEN ID

International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016

85

Here a table with all the tokens and there ID codes used in lexical analysis are tabulated. These

tokens and there IDs are stored using Hash Table while implementing.

4.3.2. LIBRARY FILE, FOR A PARTICULAR PROGRAMMING LANGUAGE:

This is the data in the library file stored in the Library in the software tool. The file consists of all

the keywords and header files in the language.

For example:-

Library File:For ‘C’:-

 It includes the data in the library file stored in the Library of the software tool for all the

keywords and header files in the language „C‟.

6. EXPERIMENT ANALYSIS

Figure 1. Comparison of Final Lines of Code(FLOC)and Lines of code(LOC)

Figure 2. Comparison of Lines of Code(LOC)and Optimized Intermediate Lines of code(LOC)

Analysis: The graphs are plotted with the Lines of Code (LOC) against the number of

experiments. From the plots, it is clear that the initial LOC of the pseudocode given by the user is

reduced proportionally in the optimized intermediate generated codes (OILOC).Then the final

International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016

86

LOC of the generated code is comparatively larger in proportion of the LOC of the pseudocode

(see fig. 1).This measures indicates the efficiency of the tool in the generation of the code of

the specified programming language. This measures depends on the efficiency and compatibility

of the new developed tool.

7. CONCLUSIONS

This paper is focused on providing a user friendly environment for the beginners in programming.

They can easily build a code in specified language from a pseudocode without considering the

factor of knowledge about the syntax of the particular language. A beginner level programmer

familiar with writing pseudocode can implement his logic in any particular language, simply by

using this tool. The main advantage of this tool is that, user can build program code in any

language from a single pseudocode. For a beginner in programming, it is difficult to learn the

syntax of a particular language at the very first time. The user can implement his logic in a

pseudocode and the pseudocode required for this software tool requires simple syntax. A

formulated pseudocode is simple to be generated by a beginner. Then this pseudocode is simply

submitted to the text area in our tool. Then specify the language of the output required. Then after

processing he will get the resultant programming code in a file, which is much simpler with user

friendly interface. Then the resultant code can be executed in its programming platform. The

library files in the software tool can be manipulated to add more syntaxes into the database.

Future versions can be built with giving support to more languages. We can develop this software

tool to a universal programming tool, which can be used to build programming code in any of the

programming language, from simple, single pseudocode generated by the user. It reduces the

user‟s overhead to be known about the syntax of various languages.

REFERENCES

[1] G Alfred V.Aho,Monica S.Lam,Ravi Sethi,Jeffrey D.Ullman,Compilers Principles,Techniques and

Tools, Second edition 2007

[2] Allen Holub, “Compiler Design in C”, Prentice Hall of India, 1993.

[3] Kenneth C Louden, “Compiler Construction Principles and Practice”,Cenage Learning Indian

Edition..

[4] V Raghavan, “Priniples of Compiler Design”,Tata McGraw Hill,India, 2010

[5] Arthur B. Pyster, “Compiler design and construction: tools and techniques with C and Pascal”,

2nd Edition, Van Nostrand Reinhold Co. New York, NY, USA.

[6] D M Dhamdhare, System programming and operating system, Tata McGraw Hill & Company

[7] Tremblay and Sorenson, The Theory and Practice of Compiler Writing - Tata McGraw Hill &

Company.

[8] Steven S. Muchnick, “Advanced Compiler Design & plementation”, Morgan Kaufmann

Pulishers, 2000.

[9] Dhamdhere, “System Programming & Operating Systems”, 2nd edition, Tata McGraw Hill, India.

[10] John Hopcroft, Rajeev Motwani & Jeffry Ullman: Introduction to Automata Theory Languages

& Computation , Pearson Edn.

[11] Raymond Greenlaw,H. James Hoover, Fundamentals of Theory of

Computation,Elsevier,Gurgaon,Haryana,2009

[12] John C Martin, Introducing to languages and The Theory of Computation, 3rd Edition, Tata

McGraw Hill,New Delhi,2010

[13] Kamala Krithivasan, Rama R, Introduction to Formal

Languages,Automata Theory and Computation, Pearson Education Asia,2009.

[14] Rajesh K. Shukla, Theory of Computation, Cengage Learning, New Delhi,2009.

[15] K V N Sunitha, N Kalyani: Formal Languages and Automata Theory, Tata McGraw Hill,New

Delhi,2010.

[16] S. P. Eugene Xavier, Theory of Automata Formal Language &Computation,New Age

International, New Delhi ,2004.

[17] K.L.P. Mishra, N. Chandrashekharan , Theory of Computer Science , Prentice Hall of India.

International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016

87

[18] Michael Sipser, Introduction to the Theory of Computation, Cengage Learning,New Delhi,2007.

[19] Harry R Lewis, Christos H Papadimitriou, Elements of the theory of computation, Pearson Education

Asia.

[20] Bernard M Moret: The Theory of Computation, Pearson Education.

[21] Rajendra Kumar,Theory of Automata Language & Computation,Tata McGraw Hill,New Delhi,2010.

[22] Wayne Goddard, Introducing Theory of Computation, Jones & Bartlett India,New Delhi2010.

AUTHORS

Amal M R is currently pursuing M.Tech in Computer Science and Engineering Mar

Athanasius College of Engineering, Kothamangalam. He completed his B.Tech from

Lourdes Matha College of Science and Technology Thiruvananthapuram. His areas of

research are Compiler and Cloud Computing.

Jamsheedh C V is currently pursuing M.Tech in Computer Science and

Engineering in Mar Athanasius College of Engineering, Kothamangalam. He

completed his B.Tech from Govt. Engineering College Idukki. His areas of research are

Networking and Cloud Computing

Linda Sara Mathew received her B.Tech degree in Computer Science and Engineering

from Mar Athanasius College of Engineering ,Kothamangaam,Kerala in 2002 and

ME degree in Computer Science And Engineering Coimbatore in 2011. She is

currently, working as Assistant Professor, with Department of Computer Science and

Engineering in Mar Athanasius College of Engineering, Kothamangalam and has a

teaching experience of 8 years. Her area of interests include digital signal processing,

Image Processing and Soft Computing.

