
International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016 

DOI: 10.5121/ijci.2016.5212                                                                                                                        109 

CASSANDRA A DISTRIBUTED NOSQL DATABASE FOR 

HOTEL MANAGEMENT SYSTEM 
 

Varalakshmi P.
1
, Hima S.

2 
and Surekha Mariam Varghese

3 

 

Department of Computer Science and Engineering, M.A. College of Engineering, 

Kothamangalam, Kerala, India  
 

ABSTRACT 
 

Apache Cassandra is a distributed storage system for managing very large amounts of structured data. 

Cassandra provides highly available service with no single point of failure. Cassandra aims to run on top 

of an infrastructure of hundreds of nodes possibly spread across different data centers with small and large 

components fail continuously. Cassandra manages the persistent state in the face of the failures which 

drives the reliability and scalability of the software systems. Cassandra does not support a full relational 

data model because it resembles a database and shares many design and implementation strategies. In this 

paper, discuss an implementation of Cassandra as Hotel Management System application. Cassandra 

system was designed to run on cheap commodity hardware. Cassandra provides high write throughput and 

read efficiency. 
 

KEYWORDS 
 

Cassandra, Data model. 
 

1.INTRODUCTION 
 

Apache Cassandra is an open source, distributed, highly available, decentralized, elastically 

scalable, fault-tolerant, consistent, column-oriented database. Cassandra’s distribution design is 

based on Amazon’s Dynamo and its data model on Google’s Bigtable. Cassandra was introduced 

at Facebook; it is now used at some of the most popular sites on the Web [1]. 

 

Apache Cassandra is a type of NoSQL database designed to handle large amounts of data across 

many servers. This database provides high availability and no single point of failure.  

 

Some of the important  points of Apache Cassandra: (1) It is scalable, consistent and fault-

tolerant, (2)  It is  key-value as well as  column-oriented database,(3)  Its data model is based on 

Google’s Bigtable and distribution design is based on Amazon’s Dynamo, (4) Introduced at 

Facebook, it differs sharply from relational database management systems,(5) Cassandra 

implements a Dynamo-style replication model, also  adds a more powerful “column family” data 

model, and (6) Cassandra is being used by some of the biggest companies such as Facebook, 

Twitter, Cisco, Rackspace, ebay, Twitter, Netflix, and more.  

 

Cassandra has become so popular because of its outstanding technical features. Given below are 

some of the features of Cassandra:  

 Elastic scalability: Cassandra allows adding more hardware to accommodate more 

customers and more data as per requirement. 

 Always on architecture: Cassandra is continuously available for critical business 

applications that cannot afford single point of failure.  



International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016 

110 

 

 Fast linear-scale performance: Cassandra increases throughput as the number of nodes in 

the cluster is increased. Therefore it provides a quick response time.  

 Flexible data storage: Cassandra handles all possible data formats including: structured, 

semi-structured, and unstructured. It can dynamically provide changes to data structures 

according to user need.  

 Easy data distribution: Cassandra provides the flexibility to distribute data where user 

need by replicating data across multiple data centers.  

 Transaction support: Cassandra supports properties like Atomicity, Consistency, 

Isolation, and Durability (ACID).  

 Fast writes: Cassandra was designed to run on cheap commodity hardware. It performs 

fast writes and can store hundreds of terabytes of data, without sacrificing the read 

efficiency. 

The rest of this paper is organized as follows. Section 2 discusses NoSQL database. Section 3 

presents the Cassandra Architecture. Section 4 describes the data model of Cassandra. Section 5 

describes the implementation details of Hotel Management System. The conclusion is given in 

Section 6. 
 

2.NOSQL DATABASE 
 

A NoSQL database (also called as Not Only SQL) is a database that provides a mechanism to 

store and retrieve data other than the tabular relations used in relational databases. These 

databases are schema-free, support easy replication, have simple API, eventually consistent, and 

can handle huge amounts of data. 
 

The primary objective of a NoSQL database is to have  

 simplicity of design,  

 horizontal scaling, and  

 finer control over availability.  

NoSql databases use different data structures compared to relational databases. It makes some 

operations faster in NoSQL. The suitability of a given NoSQL database depends on the problem it 

must solve. 
  

3.CASSANDRA ARCHITECTURE 
 

The design goal of Cassandra is to handle big data workloads across multiple nodes without any 

single point of failure. Cassandra has peer-to-peer distributed system, and data is distributed 

among all the nodes in a cluster [2]. 
 

 All the nodes in a cluster play the same role. Each node is independent and at the same 

time interconnected to other nodes. 

 Each node in a cluster can accept read and write requests, regardless of where the data is 

actually located in the cluster. 

 When a node goes down, read/write requests can be served from other nodes in the 

network. 



International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016 

111 

 

3.1.Data Replication In Cassandra 

 
In Cassandra, one or more of the nodes in a cluster act as replicas for a given piece of data. If it is 

detected that some of the nodes responded with an out-of-date value, Cassandra will return the 

most recent value to the client. After returning the most recent value, Cassandra performs a read 

repair in the background to update the stale values. 

 

The figure 1 shows a schematic view of how Cassandra uses data replication among the nodes in 

a cluster to ensure no single point of failure. Cassandra uses the Gossip Protocol to allow the 

nodes to communicate with each other and detect any faulty nodes in the cluster. 

 

Figure. 1 Schematic view of Cassandra 

 

3.2.Components of Cassandra 

 
The key components of Cassandra are as follows:  

 

 Node: It is the place where data is stored.  

 Data center: It is a collection of related nodes.  

 Cluster: A cluster is a component that contains one or more data centers. 

 Commit log: The commit log is a crash-recovery mechanism in Cassandra. Every write 

operation is written to the commit log.  

 Mem-table: A mem-table is a memory-resident data structure. After commit log, the data 

will be written to the mem-table. Sometimes, for a single-column family, there will be 

multiple mem-tables.  

 SSTable: It is a disk file to which the data is flushed from the mem-table when its 

contents reach a threshold value.  

 Bloom filter: These are quick, nondeterministic, algorithms for testing whether an 

element is a member of a set. It is a special kind of cache. Bloom filters are accessed after 

every query. 



International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016 

112 

 

3.3.Cassandra Query Language 

 
Users can access Cassandra through its nodes using Cassandra Query Language (CQL). CQL 

treats the database (Keyspace) as a container of tables. Programmers use cqlsh: a prompt to work 

with CQL or separate application language drivers.  

3.4.Write Operations 

 
Every write activity of nodes is captured by the commit logs written in the nodes. Then the data 

will be captured and stored in the mem-table. Whenever the mem-table is full, data will be written 

into the SStable data file. All writes are automatically partitioned and replicated throughout the 

cluster. Cassandra periodically consolidates the SSTables, deleting unnecessary data. 

 

3.5.Read Operations 

 
During read operations, Cassandra gets values from the mem-table. It checks the bloom filter to 

find the appropriate SSTable that holds the required data. 

 

4.DATA MODEL 

 
The data model of Cassandra is significantly different from the normal RDBMS [2]. 

 

4.1.Cluster 

 
Cassandra database is distributed over several machines that operate together [3]. The outermost 

container is known as the Cluster. For failure handling, every node contains a replica. In case of a 

failure, the replica takes charge. Cassandra arranges the nodes in a cluster, in a ring manner, and 

assigns data to them. 

 

4.2.Keyspace 

 
Keyspace is the outermost container for data in Cassandra. The basic attributes of a Keyspace in 

Cassandra are: 

 

 Replication factor: It is the number of machines in the cluster that will receive copies of 

the same data. 

 Replica placement strategy: It is the strategy to place replicas in the ring. The different 

strategies such as simple strategy (rack-aware strategy), old network topology strategy 

(rack-aware strategy), and network topology strategy (data center-shared strategy) are 

available. 

 Column families: Keyspace is a container for a list of one or more column families. A 

column family is a container of a collection of rows. Each row contains ordered columns. 

Column families represent the structure of data. Each keyspace has at least one and often 

many column families. 



International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016 

113 

 

5.IMPLEMENTATION DETAILS 
 

The implementation of Apache Cassandra includes installing and configuring Cassandra. Initially 

download Cassandra from cassandra.apache.org. Copy the folder named cassandra. Move to bin 

folder. Open the Cassandra.yaml file which is available in the bin folder of the Cassandra folder. 

Verify that the following configurations. 

 

 data_file_directories“/var/lib/cassandra/data”  

 commitlog_directory“/var/lib/cassandra/commitlog”  

 saved_caches_directory“/var/lib/cassandra/saved_caches”  

 

Setting the path  

Set the path as Cassandra_Home=C:\apache-cassandra-1.2.19 

Starting Cassandra 

$ cd $CASSANDRA_HOME  

$./bin/cassandra –f 

Starting cqlsh 
Start cqlsh using the command cqlshas shown below. It gives the Cassandra cqlsh prompt as 

output.  

$ cqlsh Connected to Test Cluster at 127.0.0.1:9042.  

[cqlsh 5.0.1 | Cassandra 2.1.2 | CQL spec 3.2.0 | Native protocol v3]  

cqlsh> 

An application of Cassandra implementation is Hotel Management System (HMS) [5].Cassandra 

database is chosen for this application because of its increasing throughput as the number of 

nodes increases, continuous availability for critical business applications and elastic scalability. 

Moreover Cassandra handles all possible data formats and distribution of data by replicating data 

across multiple data centres. Cassandra supports ACID properties and it works on cheap 

commodity hardware. 

 

In the keyspace of Hotel Management System Figure 2 we have the followingcolumn families: 

Hotel, HotelByCity, Guest, Reservation, PointOfInterest, Room, Room Availability. 

 

In this design, transferred some of the tables, such as Hotel and Guest, to column families. Other 

tables, such as PointOfInterest, have been denormalized into a super column family. We have 

created an index in the form of the HotelByCity column family. 

 

We have combined room and amenities into a single column family, Room. The columns such as 

type and rate will have corresponding values; other columns, such as hot tub, will just use the 

presence of the column name itself as the value, and be otherwise empty. 

 

Hotel Management System includes details about different hotels, guests who stay in the hotels, 

availability of rooms for each hotel, and a record of the reservation, which is a certain guest in a 

certain room for a certain period of time (called the “stay”). Hotels typically also maintain a 

collection of “points of interest,” which are shopping galleries, monuments, museums, parks, or 

other places near the hotel that guests might like to visit during their stay. 

 

Our application Hotel Management System designed with Cassandra includes the following 

characteristics: 



International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016 

114 

 

 Find hotels in a given area. 

 Find information about a specific hotel, such as its name, location, room 

availability etc. 

 Find interesting locations near to a given hotel. 

 Find availability of rooms in a given date range. 

 Find the amenities and rate for a room.   

 Possible to book the selected rooms by entering guest information. 

The database in Cassandra is created using keyspace. A keyspace in Cassandra is a namespace 

which defines data replication on nodes. A cluster contains one keyspace per node. 

 

The application we’re building will do the following things: 

 

1. Create the database structure. 

2. Prepopulate the database with hotel and point of interest data. The hotels are stored in   

standard   column families, and the points of interest are in super column families. 

3. Search for a list of hotels in a given city. This uses a secondary index. 

4. Select one of the hotels returned in the search, and then search for a list of points of 

interest      near the chosen hotel. 

5. Booking the hotel by doing an insert into the Reservation column family should be 

straightforward at this point, and is left to the reader. 

 

 

 

Figure. 2 Hotel Management System 
 

5.1.Table Operations 
 

To create a table use the command CREATE TABLE. The tables required for the Hotel 

Management System application can be created using this command. The syntax is   

CREATE (TABLE | COLUMNFAMILY) <tablename> ('<column-definition>', '<column-

definition>') 
 



International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016 

115 

 

The primary key is represented by a column that is used to uniquely identify a row. Therefore, 

defining a primary key is mandatory while creating a table.  A primary key is also made of one or 

more columns of a table [4]. 

 

5.2.CURD Operations 

 
To create data in a table use the command INSERT. The syntax for creating data in a table is  

INSERT INTO <tablename> (<column1 name>, <column2 name>....) VALUES (<value1>, 

<value2>....) 

UPDATE is the command used to update data in a table. The syntax of update is  

UPDATE <tablename> SET <column name> = <new value> 

<column name> = <value>.... WHERE <condition> 

Reading Data using SELECT Clause from a table in Cassandra. Using this clause we can read a 

whole table, a single column, or a particular cell. The syntax of SELECT is 

SELECT FROM <table name> WHERE <condition> 

Delete data from a table using the command DELETE. Its syntax is 

DELETE FROM <identifier> WHERE <condition> 

5.3.Performance Evaluation 

 
One of the hallmarks of Cassandra is its high performance, for both reads and writes operations. 

When new nodes are added to a cluster, Cassandra scales it linearly. The performance of Hotel 

Management System application is evaluated with various hardware requirements such as Intel 

core CPU @ 1.80 GHz, 64-bit operating system, x64 based processor, 4.00GB RAM. The 

software specifications include Apache Cassandra version 1.2.19. Figure 3 gives performance of 

Cassandra operations. 
 

In the graph of performance evaluation of Cassandra database X axis represents the throughput in 

ops/sec and Y axis represents average latency in ms. Here three operations such as update, insert 

and read are evaluated for performance. In the graph it is clear that update operation has very high 

throughput while it is in low latency. Similarly insert operation has high throughput [6] while it is 

in low latency which is greater than latency of update operation. In the case of read operation 

which has low throughput while it is in high latency. 
 

 

 Figure.3.Performance Evaluation 
 



International Journal on Cybernetics & Informatics (IJCI) Vol. 5, No. 2, April 2016 

116 

 

6. CONCLUSION  

 
NoSQL database: Cassandra is built, implemented, and operated a scalable storage system 

providing high performance, and wide applicability. Demonstrated that Cassandra can support a 

very high update throughput while delivering low latency. It is very efficient as compared with 

other databases. 

 

REFERENCES 

 
[1] http://cassandra.apache.org   

[2] http://www.tutorialspoint.com/cassandra/  

[3] Dietrich Featherston, Cassandra: Principles and Application, 2010 

[4] A. Lakshman, P. Malik, Cassandra - A Decentralized  Structured Storage System, Cornell, 2009. 

[5] https://www.safaribooksonline.com/library/view/cassandra-thedefinitive/9781449399764/ch04.html 

[6] Matthias Nicola and Matthias Jarke. Performance modeling of distributed and replicated 

databases.IEEE Trans. on Knowl.and Data Eng.,12(4):645–672, July 2000. 

 

Authors 
 

Varalakshmi P. is currently pursuing M.Tech in Computer Science and Engineering in Mar 

Athanasius College of Engineering. She completed her B.Tech from P.R.S. College of 

Engineering and Technology, Thiruvananthapuram. Her areas of research are Data Mining, 

Databases and Image Processing. 

 

Hima S. is currently pursuing M.Tech in Computer Science and Engineering in Mar 

Athanasius College of Engineering. She completed her B.Tech from Mohandas College of 

Engineering and Technology, Thiruvananthapuram. Her areas of research are Image 

Processing, Database and Data Mining. 

 

Surekha Mariam Varghese is currently heading the Department of Computer Science and 

Engineering, M.A. College of Engineering, Kothamangalam, Kerala, India. She received 

her B-Tech Degree in Computer Science and Engineering in 1990 from College of 

Engineering, Trivandrum affiliated to Kerala University and M-Tech in Computer and 

Information Sciences from Cochin University of Science and Technology, Kochi in 1996. 

She obtained Ph.D in Computer Security from Cochin University of Science and 

Technology, Kochi in 2009. She has around 25 years of teaching and research experience in various 

institutions in India. Her research interests include Network Security, Database Management, Data 

Structures and Algorithms, Operating Systems and Distributed Computing, Machine learning. She has 

published 17 papers in international journals and international conference proceedings. She has been in 

the chair for many international conferences and journals. 


