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ABSTRACT 

 
In this paper as a development of recently introduced analytical approach for estimation of temporal cha-

racteristics of mass and heat transport we present analysis of diffusion depth of dopant in a material with 

time varying diffusion coefficient. It has been shown, that changing of time dependence of diffusion coeffi-

cient gives a possibility to accelerate or decelerate diffusion process. In this situation it is an actual ques-

tion is control of diffusion depth during manufacturing p-n-junctions. The controlling gives a possibility to 

obtain required depth of the junctions, but not larger or smaller. 
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1. INTRODUCTION 

 
One of main technological processes to manufacture of semiconductor devices is dopant diffusion 

at high temperature [1]. Increasing of temperature of annealing required to increase dopant diffu-

sion coefficient. In this situation dopant diffusion coefficient increases to manufacture p-n-

junctions and other solid state electronic device to accelerate dopant diffusion. At final stage of 

technological process temperature of annealing should be decreased to decrease dopant diffusion 

coefficient and to finish technological process. Framework the technological process a dopant 

should be infused in a homogeneous sample or in an epitaxial layer on required depth at varying 

in time of temperature of annealing. Varying in time temperature of annealing leads to varying in 

time of diffusion coefficient. However influence of law of varying in time of diffusion coefficient 

on depth of dopant has been weakly investigated. Most often analysis of dopant diffusion has 

been done at constant diffusion coefficient [1,2]. However replacing of time-varying diffusion 

coefficient by constant one is sometime not adequate [3-5]. Main aim of the present paper is anal-

ysis of influence of nonstationary diffusion coefficient on diffusion depth of dopant. The accom-

panying aim of the present paper is determination of conditions on variation in time diffusion 

coefficient, which correspond to acceleration and deceleration of dopant diffusion. 
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2. METHOD OF SOLUTION 
 

To analyze influence of nonstationary diffusion coefficient on diffusion depth and determination 

of required conditions we determine spatio-temporal distribution of concentration of dopant C 

(x,t) by solving the following the second Fick’s law [1,2] 

( ) ( ) ( )
2

2 ,,

x

txC
tD

t

txC

∂

∂

∂

∂
= .       (1) 

Boundary and initial conditions could be written as 

 

C (0,t) =C0, 
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Here C (x,t) is the spatio-temporal distribution of concentration of dopant; D (t) is the time-

dependence dopant diffusion coefficient. Boundary condition on the left side gives a possibility to 

take into account infusion of dopant through the boundary. Boundary condition on the left side 

gives a possibility to take into account absents of dopant flow through the boundary. Initial condi-

tion describes absents of dopant in the considered material before starting of doping. First of all 

we consider small variation of dopant diffusion coefficient in time. Analysis of dopant diffusion 

in this case gives a possibility to obtain more demonstrative results. In the considered case dopant 

diffusion depends first of all by average value of diffusion coefficient D0. To simplify analysis of 

dopant diffusion we transform diffusion coefficient D(t) to the following form: D 

(t)=D0[1+µ⋅v(t)], 0≤µ <<1, |v(t)|≤ 1 is the modulation depth of the diffusion coefficient [4,5]. Af-

ter that we determine solution of diffusion coefficient as the following power series 
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Substitution of the series into Eq. (1) and groping of coefficients at equal powers of parameter µ 

in left and right sides gives a possibility to obtain equations for functions Ck(x,t) 
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Initial and boundary conditions for the functions Ck(x,t) could be written with account decomposi-

tion (3) as 

C0(0,t) = α0, Ck≥1(0,t) = 0, 
( )

0
,0 =

∂

∂

=

≥

Lx

k

x

txC
, Ck≥0(x>0,0) =0.   (2a) 

Zero-order approximation of concentration of dopant, which correspond to material with aver-

aged diffusion coefficient, is the solution of the first equation of system (4) by using the Fourier 

approach 
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where a = (n+0.5)π/L. Solution of the diffusion equation with constant diffusion equation could 

be generalized to the case with time-varying diffusion coefficient by using the following replace-

ment of the product D0t on the integral ( )∫
t

uduD
0

 [6]. The replacement transforms the relation (5) 

to the following form 
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However using functions Ck(x,t) give a possibility to make more demonstrative analysis of diffu-

sion process in comparison with using the relation (6). To analyze influence of nonstationary dif-

fusion coefficient on diffusion depth of dopant it is attracted an interest to use the first-order cor-

rection to dopant concentration, because the correction usually gives a possibility to make most 

demonstrative analysis. The correction could be obtained by solving the second equation of the 

system (4) by using the Fourier approach or by decomposition of the relation (6) in the power 

series of parameter µ 
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Now we estimate diffusion depth of dopant in material. We determine the diffusion depth ( )tl  

framework the approach from [7], i.e. as the interval between boundary of material x=0 (we con-

sider the boundary as source of dopant) and coordinate of step-wise changing of function, which 

has been used for approximation of concentration of dopant C(x,t) with minimal mean-squared 

error. We used the following approximation function: ψ (x,t, ( )tl )=a0(t)+a1(t)[1(t)-1(t- ( )tl )]. Op-

timal values of parameters a0(t), a1(t) and ( )tl  have been obtain by minimization of the mean-

squared error 
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A necessary condition for the extreme of the mean-squared error U on the parameters a0, a1 and  

l  is 
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The first condition leads to the following equation to determine the considered parameters 
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Minimization of the error U by a1 и l  leads to the following equations to determine the consi-

dered parameters 
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C ( ( )tl ,t)=a0(t)+a1(t)/2.               (12) 

 
The considered criterion of estimation of diffusion depth is nonlinear. The nonlinearity is not a 

problem for analysis of physical results. Increasing of dimension of the considered sample L leads 

to correction of parameters a0, a1 and l . 

 

To obtain analytical results asymptotically optimal criterion is attracted an interest. Framework 

the asymptotically optimal criterion the condition should be taken into account L>> ( )tl  [7]. At 

the same time one can obtain for the case: a1(t)=α0-C (x,0) and a2(t)=α0. In this situation it should 

be determined only coordinate of step-wise changing of approximation function ψ. In this situa-

tion we obtain linear relation for estimation of the coordinate ( )tl  as the rectangle with equal 

square [4,5,7] 
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Linearity of the criterion (13) on concentration and decomposition (3) gives a possibility to use 

superposition principle and present diffusion depth of dopant into sample as a power series on 

parameter µ 
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),(),(χ  are the normalized corrections of the diffusion depth. Substitu-

tion of solutions of diffusion equation (5) and (7) into the series (14) leads to the following results 
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3. Example of Calculation of Diffusion Depth 

 

Diffusion coefficient depend on temperature framework Arrhenius law [9,10]: D(T) = D⋅exp[-

E/kT], where D is the pre-exponential multiplayer, E is the activation energy, k is the Boltzmann 

constant, T is the temperature of material. Time dependence of temperature of material during 

heating and cooling could be approximated by the following function: T(t)=Tk+T0[1-exp(-t/τ)] 

[1(t)-1(t-tо)]+T0[1-exp(-tо/τ)] exp(-t/τ)[1(t)-1(t-tо-3τ)], where 1(t) is the unit function; Tk is the ini-

tial temperature (in our case is the room temperature); τ is the time scale of heating and cooling of 

material, which depends on speed of heat transport; tо is the continuance of heating of material; 

temperature of heating T0 depends on power P of source of heat. The temperature could be esti-

mated as T0=Ptо/C, where C is the heat capacitance of material. We assume, that at the time scale 

t~tо achieves its maximal value Tk+T0, i.e. tо≥3τ. In this situation dependence of dopant diffusion 

coefficient on time at high-temperature doping could be written as 

 

D(t)≈D exp{-E/k[Tk+T0[1-exp(-t/τ)][1(t)-1(t-tо)]+T0exp(-(t-tо)/τ)[1(t-tо)-1(t-tо-3τ)]]},    (17) 
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=to+3τ, value of the parameter µ depends on value of temperature T0: increasing of the tempera-

ture leads to increasing of the parameter µ. Linearity of the correction χ1(t) on function v(t) gives 
a possibility to use spectral decomposition [11] of the function v(t) on orthogonal system of func-

tions. Usually harmonic functions are used for spectral for the spectral decomposition. We con-

sider decomposition of time dependence of dopant diffusion coefficient into discrete Fourier se-

ries with period θ=to+3τ. Linearity of dopant diffusion depth on function v(t) for spectral compo-

nents v (t) =cos (ω  t+ϕ) with account relation (17) gives the possibility to obtain for the first-

order correction for diffusion depth χ1(t) the following relation 
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Fig. 1 shows dependences of the correction (18) on frequency of spectral components ω for dif-

ferent values of initial phase ϕ. For zero value of the initial phase one can obtain increasing of 

value of dopant diffusion coefficient. In this situation one can obtain increasing of value of cor-

rection χ1(t) to diffusion depth (see curve 1). If the initial phase is equal to π  /2 one can not ob-

tain any changing of values of dopant diffusion coefficient and correction χ1(t) (see curve 2). If 

the initial phase is equal to π or to 3π  /2 one can obtain changing of sign of spectral component v 

(t) = cos (ω t +ϕ) with appropriate changing of dopant diffusion coefficient and correction χ1(t) 

(see curves 3 and 4). 
 

4. CONCLUSIONS 
 

In this paper we introduce a criterion to estimate diffusion depth of dopant in a material with va-

rying in time diffusion coefficient. Based on this criterion we analyzed diffusion depth of dopant 

in the material as a functional of varying in time diffusion coefficient. We obtain conditions to 
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acceleration and deceleration of dopant diffusion in the material. In this situation we obtain condi-

tions to increase or to decrease (depends on choosing of time varying law) the above depth. 
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Fig. 1. Dependences of correction to the diffusion depth χ1(t) on frequency of spectral components of do-

pant diffusion coefficient 
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