
International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

DOI: 10.5121/ijcnc.2018.10106 79

EXTENDED LINEAR MULTI-COMMODITY MULTI-

COST NETWORK AND MAXIMAL FLOW LIMITED

COST PROBLEMS

Tran Quoc Chien
1
 and Ho Van Hung

2

1
The University of Education, University of Danang, Danang, Vietnam

2
Quangnam University, Tamky, Vietnam

ABSTRACT

The Graph is a powerful mathematical tool applied in many fields as transportation, communication,

informatics, economy, … In an ordinary graph, the weights of edges and vertexes are considered

independently where the length of a path is the sum of weights of the edges and the vertexes on this path.

However, in many practical problems, weights at a vertex are not the same for all paths passing this vertex

but depend on coming and leaving edges. The presented paper develops a model of the extended linear

multi-commodity multi-cost network that can be more exactly and effectively applied to model many

practical problems. Then, maximal limit cost flow problems are modeled as implicit linear programming

problems. On the base of dual theory in linear programming, an effective approximate algorithm is

developed.

KEYWORDS

Graph, Network, Multi-commodity Multi-cost Flow, Optimization, Linear-Programming.

1. INTRODUCTION

Network and its flow is a powerful mathematical tool applied in many fields as transportation,

communications, informatics, economics, and so on. So far, most of the applications in the new

graph solely considers to the weight of edges and nodes independently, in which the path length

merely is the sum of weights of edges and nodes along the path. However, in many practical

problems, the weight at one node is not the same for all paths passing through that node, but also

depends on coming and leaving edges. For example, the transit time on the transport network

depends on the direction of transportation: turn right, turn left or go straight, even some directions

are forbidden. Paper [2] proposes switching cost only for directed graphs. Therefore, it is

necessary to build an extended mixed network model in order to apply more accurate and

effective modeling of practical problems. Multi-commodity flow in traditional network problems

have been studied in the papers [1,3,4,5,6]. Multi-commodity flow in extended network problems

with extended transport networks were studied in the papers [7-11]. The paper[12] studies

maximal multi-commodity multi-cost flow problems.

The paper builds the extended multi-cost multi-commodity model in sections 2 and 3 to enable

modeling of more accurate and efficient real problems. Next, in section 4, the maximal limit cost

multi-commodity multi-cost flow problem is defined by a hidden linear programming problem

model. Based on the duality theory of linear programming, an approximation algorithm with

polynomial complexity is developed in section 5.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

80

2. EXTENDED LINEAR MULTI-COMMODITY MULTI-COST NETWORK

Given mixed graph G = (V, E) with node set V and edge set E. The edges may be undirected or

directed. The symbol Ev is the set of edges incident vertice v∈V. There are many kinds of goods

circulating on the network. Commodities share the capacities of the edges, but have different

costs. The undirected edges represent the two-way edge, in which the goods on the same edge,

but reverse directions share the capacity of the edge.

The symbol r is the commodity number, qi> 0 is the coefficient of conversion of goods i, i =1..r.

Given the following functions:

Edge passing capacity function ce:E→R
*
, where ce(e) is the passing capability of the edge e∈E.

Edge service coefficient function ze:E→R
*
, where ze(e) is the passing ratio of the edge e∈E (the

real capacity of the edge e is ze(e).ce(e)).

Node passing capability function cv:V→R
*
, where cv(u) is the passing capability of the node

u∈V .

Node service coefficient function zv:V→R
*, where zv(u) is the passing ratio of the node v∈V (the

real capacity of the node v is zv(v).cv(v)).

The tuples (V, E , ce, ze, cv, zv) are called extended networks.

Edge cost function i, i=1..r, bei:E→R
*, where bei(e) is the cost of passing e a converted unit of

commodity of type i. Note that with 2-way paths, the cost of each way may vary.

Node switch cost function i, i=1..r, bvi:V×Ev×Ev→R
*
, where bvi(u,e,e’) is the cost of transferring a

converted unit of commodity of type i from edge e through u to edge e’.

The sets ((V, E, ce, ze, cv, zv,{bei,bvi, qi|i=1..r}) are called the extended linear multi-commodity

multi-cost network.

◊ Note: If bei(e)=∞, commodity of type i is prohibited from circulation on path e. If bvi(u,e,e’) =

∞, comodity of type i is banned from path e through u to path e’.

Let p be the path from node u to node v through edges ej, j=1..(h+1), and nodes uj, j=1..h as

follows

p = [u, e1, u1, e2, u2, …, eh, uh, eh+1, v]

The cost of circulating a converted unit of commodity of type i, i = 1..r, passing the path p, is

denoted by the symbol bi(p), and defined by the following formula:

bi(p) =∑
+

=

1

1

)(
h

j

ji ebe +∑
=

+

h

j

jjji eeubv
1

1),,((1)

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

81

3. MULTI-COMMODITY FLOW PROBLEMS IN EXTENDED LINEAR MULTI-

COMMODITY MULTI-COST NETWORK

Given a multi-cost multi-commodity network G=(V,E,ce, ze, cv, zv, {bei, bvi, qi|i=1..r}). Assume,

for each commodity of type i, i=1..r, there are ki source-target pairs (si,j, ti,j), j=1..ki, each pair

assigned a quantity of commodity of type i, that is necessary to move from source node si,j to

target node ti,j.

Denote Pi,j is the set of paths from node si,j to node ti, in G, which commodity of type i can be

passed, i=1..r, j=1..ki. Set

 Pi = U
ik

j

jiP
1

,

=

. (2)

For each path p∈Pi,j, i=1..r, j=1..ki, denote xi,j(p) the flow of converted commodity of type i from

the source node si,j to the destination node ti,j along the path p, i=1..r, j=1..ki.

Denote Pi,e the set of paths in Pi passing through the edge e, ∀e∈E.

Denote Pi,v the set of paths in Pi passing through the node v, ∀v∈V.

A set

 F = {xi,j(p) | p∈Pi,j, i=1..r, j=1..ki} (3)

is called a multi-commodity flow on the linear extended multi-commodity multi-cost network, if

it satisfies the following edge and node capacity constraints:

()∑∑ ∑
= = ∈

r

i

k

j Pp

ji

i

ei

px
1 1

,

,

≤ ce(e).ze(e), ∀e∈E

()∑∑ ∑
= = ∈

r

i

k

j Pp

ji

i

vi

px
1 1

,

,

≤ cv(v).zv(v), ∀v∈V

The expressions

 fvi,j = ()∑
∈ jiPp

ji px
,

, ,i=1..r,j=1..ki (4)

is called the flow value of commodity of type i of the source-target pair (si,j,ti,j) of F.

The expressions

fvi = ∑
=

ik

j

jifv
1

, , i=1..r (5)

is called the flow value of commodity of type i of F.

The expression

 fv = ∑
=

r

i

ifv
1

 (6)

Allied the flow value of F.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

82

4. MAXIMAL LIMITED COST MULTI-COMMODITY FLOW PROBLEMS

Given an extended linear multi-commodity multi-cost network G=(V,E, ce, ze, cv, zv, {bei, bvi,

qi|i=1..r}). Assume, for each commodity of type i, i=1..r, there are ki source-target pairs (si,j, ti,j),

j=1..ki, each pair assigned a quantity of commodity of type i, that is necessary to move from

source node si,j to target node ti,j. Given a limit cost B.

The task of the problem is to find the multi-commodity flow such that the value of the flow fv is

maximal. At the same time, the total cost of the flow does not exceed B.

The problem is expressed by an implicit linear programming model (P) as follows:

fv= ∑∑ ∑
= = ∈

r

i

k

j Pp

ji

i

ji

px
1 1

,

,

)(→max

satisfies

()∑∑ ∑
= = ∈

r

i

k

j Pp

ji

i

ei

px
1 1

,

,

≤ ce(e).ze(e), ∀e∈E

()∑∑ ∑
= = ∈

r

i

k

j Pp

ji

i

vi

px
1 1

,

,

≤ cv(v).zv(v), ∀v∈V (P)

())(.
1 1

,

,

pbpx i

r

i

k

j Pp

ji

i

ji

∑∑ ∑
= = ∈

≤ B

xi,j(p) ≥0, ∀i=1..r, j=1..ki, ∀p∈Pi,j

The dual linear programming problem of (P), called (D), is constructed as follows: each edge

e∈E is assigned an dual variable le(e), each node v∈V is assigned an dual variable lv(v) while the

dual variable ϕ assigns the constraint of cost. The problem (D) states the following

D(le,lv,ϕ) = () ()∑
∈Ee

eleezeece).(. + () ()∑
∈Vv

vlvvzvvcv).(. + B.ϕ → min

()∑
∈pe

ele + ()∑
∈pv

vlv + bi(p).ϕ ≥ 1, ∀p∈Pi,j

(D)

le(e) ≥ 0,∀e∈E, lv(v) ≥ 0,∀v∈V, ϕ ≥ 0

Now, given p∈Pi, i=1..r, a path from node u to node v through edges ej, j=1..(h+1), and nodes uj,

j=1..h, as follows

p = [u, e1, u1, e2, u2, …, eh, uh, eh+1, v]

We define the path length of p, denoted by lengthi(p), depending on the variables le(e), lv(v) and

ϕ so as to the following formula:

lengthi(p) = ∑
+

=

1

1

)(
h

j

jele +∑
=

h

j

julv
1

)(+ bi(p).ϕ (7)

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

83

Denote disti,j(le,lv,ϕ) the shortest path length from si,j to ti,j calculated by function lengthi(p),

∀i=1..r, ∀j=1..ki.

Set α(le,lv,ϕ) = min{disti,j(le,lv,ϕ) | i=1..r, j=1..ki}

Consider the problem (Dα):

β =

≥→→ 0,:,:
),,(

),,(
min ** ϕ

ϕα

ϕ
RVlvREle

lvle

lvleD
 (8)

• Lemma 4.1. The problem (D) is equivalent to the problem (Dα) such that their optimal value

are equal and the optimal solution of one problem derives the optimal solution of the other

problem and vice versa.

Proof

Denote min(D) and min(Dα), respectively, the optimal values of the problem (D) and the problem

(Dα) . Given functions le: E→R
*
, lv:V→R

*
, ϕ > 0. Set

 le’(e) = le(e)/α(le,lv,ϕ), ∀e∈E, lv’(v) = lv(v)/α(le,lv,ϕ), ∀v∈V, ϕ’ = ϕ/α(le,lv,ϕ). (9)

We have:

()∑
∈pe

ele' + ()∑
∈pv

vlv' +bi(p).ϕ’ ≥ 1,∀i=1..r, ∀j=1..ki, ∀p∈Pi,j (10)

So (le’,lv’,ϕ’) is an accepted solution of (D) and

D(le’,lv’,ϕ’) =
),,(

),,(

ϕα

ϕ

lvle

lvleD
. (11)

Hence inferred

min(D) ≤ min(Dα) (12)

In contrast, let (le,lv,ϕ) be an accepted solution of (D). Then, we have

1 ≤ disti,j(le,lv,ϕ), ∀i=1..r,∀j=1..ki ⇒ α(le,lv,ϕ) ≥ 1 ⇒
),,(

),,(

ϕα

ϕ

lvle

lvleD

≤ D(le,lv,ϕ).

Hence Inferred

min(D) ≥min(Dα) (13)

From (12) and (13), it follows min(D) = min(Dα).

Next, if (le,lv,ϕ) is an optimal solution of the problem (Dα), then (le’,lv’,ϕ’) where

le’(e) = le(e)/α(le,lv,ϕ), ∀e∈E, lv’(v) = lv(v)/α(le,lv,ϕ), ∀v∈V, ϕ’ = ϕ/α(le,lv,ϕ).

is an optimal solution of problem (D).

Conversely, if (le,lv,ϕ) is an optimal solution of the problem (D), then (le,lv,ϕ) is an optimal

solution of the problem (Dα).

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

84

5. ALGORITHM

• IDEAS

The algorithm consists of a number of iterative steps, through the function lengthi(p), p∈Pi,

i=1..r. At each iteration step, find the shortest path p, with respect to the length function

lengthi(p)) between the source-destination pairs and convert c units of exchange through p, where

c is the minimal edge and node capacity on this path.

Then change the value of functions le, lv and ϕ..The algorithm stops once α ≥ 1. The initial value

of le, lv and ϕ depends on the approximate value to be achieved.

• ALGORITHM

◊ INPUT: Extended multi-cost multi-commodity network G=(V,E, ce, ze, cv, zv, {bei, bvi,

qi|i=1..r}). Assume, for each commodity of type i, i=1..r, there are ki source-target pairs (si,j, ti,j),

j=1..ki, each pair assigned a quantity of commodity of type i, that is necessary to move from

source node si,j to target node ti,j. Given a limited cost B, an approximation ratio ω.

◊ OUTPUT : Maximal flow F represents a set of converged flows at the edges

F = {xi,j(e) | e∈E, i=1..r, j=1..ki}

with total cost not over the limit cost B.

◊ PROCEDURE

 Note n=|V|, m=|E|, Bf total cost of the flows F.

 Calculate bmin, the smallest cost in the paths from the source si,j to the destination ti,j, i=1..r,

j=1..ki :

bmin = min{bi(p) | i=1..r, j=1..ki, p∈Pi,j}. (14)

Calculate bmax, the largest cost of the paths from the source si,j to the destination ti,j, i=1..r, j=1..ki.

bmax = max{bi(p) | i=1..r, j=1..ki, p∈Pi,j}. (15)

Set

ε = 1−)1/(1 ω+

; δ = (1+ε)

[] ε
ε

/12 min)max/()1(

1

bbnm +++
; (16)

for e∈E : le(e)=δ; xi,j(e)=0 ; for v∈V : lv(v)=δ ; (17)

ϕ = δ/bmin ; fv = 0; Bf = 0 ; (18)

do

{

Use the algorithm to find the source-destination pair (si,j, ti,j), 1≤i≤r and 1≤j≤ki, having the shortest

path from si,j to ti,j calculated by the length function lengthi(.).Note that the path p must be valid

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

85

for goods of type i, i.e., not containing the edge with edge cost ∞ or the node with the switch

cost∞.

Note

imin and jmin the indexes of source-destination pairs with the shortest path;

α is the shortest path length;

p is the shortest path;

c is the minimal edge and node capacity on the path p, i.e.

 c=min{min{ce(e).ze(e)|e∈p},min{cv(v).zv(v)|v∈p}};

B’ = c.bimin(p);

 if (B’>B){ c = c.B / B’; B’ = B; }

Flow adjustments:

∀e∈p, xi,j(e)=xi,j(e)+c;le(e)=le(e).(1+ε.c/(ce(e).ze(e))); (19)

∀v∈p, lv(v)=lv(v).(1+ε.c/(cv(v).zv(v))); (20)

ϕ = ϕ.(1+ε.B’/B) ; Bf = Bf + B’ ; fv = fv + c ; (21)

} while (α < 1)

Modifying the resulting flows F and flow value fv.

xi,j(e)=xi,j(e) /
δ

ε
ε

+
+

1
log1

; ∀i=1..r, j=1..ki,∀e∈E; (22)

fv = fv /
δ

ε
ε

+
+

1
log1

; Bf = Bf/

δ
ε

1
log1+ ; (23)

Modifying flows on scalar edge

for (i=1 ; i<=r ;i++)

for (j=1 ; j<=ki ;j++)

for scalar e∈E

if xi,j(e) >= xi,j(e’)// e’ is the opposite of the direction e

{xi,j(e) = xi,j(e)−xi,j(e’) ; xi,j(e’)=0};

else

{xi,j(e’) = xi,j(e’)−xi,j(e) ; xi,j(e)=0};

• PROOF OF ALGORITHM

Denote

D(0) the initial value of function D

D(0) = ()∑
∈Ee

ezeece δ).(. + ()∑
∈Vv

vzvvcv δ).(. + B.δ/bmin

 = δ.(()∑
∈Ee

ezeece)(. + ()∑
∈Vv

vzvvcv)(. + B/bmin) (24)

 D(i) is the value of the function D after the loop i, i=1, 2, ...

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

86

fv(0) = 0 is the initial value of the flow F.

fv(i) is the value of the flow F after the loop i, i=1, 2, ...

le0, lv0 and ϕ0 are, respectively, initial values of the functions le, lv and ϕ.

lei, lvi and ϕi correspond respectively to le, lv and ϕ in the loop i. i=1, 2, ...

pi is the shortest path p in the loop i. i=1, 2, ...

α(i)= α(lei,lvi,ϕi), i = 1, 2, ...

c(i) is the value of c in the loop i. i = 1, 2, ...

We have

 fv(j) = fv(j−1) + c(j), (25)

 D(j) = () ()∑
∈Ee

j eleezeece).(. + () ()∑
∈Vv

j vlvvzvvcv).(. + B.ϕj

 = () ()∑
∈

−
Ee

j eleezeece 1).(. + () ()∑
∈

−
Vv

j vlvvzvvcv 1).(. +B.ϕj−1

 + ()∑
∈

−

jpe

j elejc 1)(.ε + ()∑
∈

−

jpv

j vlvjc 1)(.ε + ε.B’.ϕj−1

 = D(j−1) + ε.c(j).(()∑
∈

−

jpe

j ele 1
+ ()∑

∈

−

jpv

j vlv 1
 + bimin(pj-1).ϕj−1)

 = D(j−1) + ε.c(j).α(j−1). (26)

It follows

D(i) = D(0)+ε ()∑
=

−−−
i

j

jjfvjfv
1

)1()1()(α , ∀i≥1 (27)

Consider functions lei−le0 và lvi−lv0 và ϕi−ϕ0. We have

D(lei−le0,lvi−lv0,ϕi−ϕ0) = D(i)– D(0). (28)

Next, consider α(lei−le0,lvi−lv0,ϕi−ϕ0). We have

α(le,lv,ϕ) = min{distg,l(le,lv,ϕ) | g=1..r, l=1..kg} (29)

and

distg,l(le,lv,ϕ)

= min{∑
+

=

1

1

)(
h

j

jele +∑
=

h

j

julv
1

)(+ bg(p).ϕ|p = [si,j, e1, u1, e2, u2, …, eh, uh, eh+1,ti,j]∈Pg,l } (30)

Thus

distg,l(lei−le0,lvi−lv0,ϕi−ϕ0)

= min{ ()∑
+

=

−
1

1

0)()(
h

j

jj eleele + ()∑
=

−
h

j

jj ulvulv
1

0)()(+ bg(p).ϕi−bg(p).ϕ0

| p = [si,j, e1, u1, e2, u2, …, eh, uh, eh+1,ti,j]∈Pg,l } (31)

= min{∑
+

=

1

1

)(
h

j

ji ele +∑
=

h

j

ji ulv
1

)(+ bg(p).ϕi−(∑
+

=

1

1

0)(
h

j

jele +∑
=

h

j

julv
1

0)(+bg(p).ϕ0)

| p = [si,j, e1, u1, e2, u2, …, eh, uh, eh+1,ti,j]∈Pg,l } (32)

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

87

≥ min{∑
+

=

1

1

)(
h

j

ji ele +∑
=

h

j

ji ulv
1

)(+ bg(p).ϕi−(m.δ+ n.δ +δ.bg(p)/bmin)

| p = [si,j, e1, u1, e2, u2, …, eh, uh, eh+1,ti,j]∈Pg,l } (33)

≥ min{∑
+

=

1

1

)(
h

j

ji ele +∑
=

h

j

ji ulv
1

)(+ bg(p).ϕi−δ.(m + n +bmax/bmin)

| p = [si,j, e1, u1, e2, u2, …, eh, uh, eh+1,ti,j]∈Pg,l } (34)

= min{∑
+

=

1

1

)(
h

j

ji ele +∑
=

h

j

ji ulv
1

)(+ bg(p).ϕi| p = [si,j, e1, u1, e2, u2, …, eh, uh, eh+1,ti,j]∈Pg,l}

−δ.(m + n +bmax/bmin) (35)

= distg,l(lei,lvi,ϕi)−δ.(m + n +bmax/bmin) (36)

Hence,

α.(lei−le0,lvi−lv0,ϕi−ϕ0) ≥ α(i)−δ.(m+n+bmax/bmin). (37)

Denote i0 the smallest index sastifies

α(i0) ≥ δ.(m+n+bmax/bmin) and α(i0−1) < δ.(m+n+bmax/bmin) (38)

On the other hand, we have

lei(e) ≤ lei−1(e).(1+ε.c(j) /(ce(e).ze(e))) ≤ lei−1(e).(1+ε), ∀e∈E, ∀i ≥ 1 (39)

lvi(v) ≤ lvi−1(v).(1+ε.c(j) /(cv(v).zv(v))) ≤ lvi−1(v).(1+ε), ∀v∈V, ∀i ≥ 1 (40)

and

ϕi = ϕi−1(1+ε.B’/ B) ≤ ϕi−1(1+ε), (41)

⇒ α(i) ≤ (1+ε).α(i−1), ∀i ≥ 1. (42)

It follows

α(i0) ≤ (1+ε).α(i0−1) < (1+ε).δ.(m+n+bmax/bmin) (43)

Then, we have

 β ≤
()
()000

000

,,

,,

ϕϕα

ϕϕ

−−−

−−−

iii

iii

lvlvlele

lvlvleleD

≤
min)max/()(

)0()(

bbnmi

DiD

++−

−

δα
, ∀i ≥ i0 +1 (44)

Substituting D(i)–D(0) from (27) into (44), we obtain:

α(i) ≤ δ.(m+n+bmax/bmin) +
β

ε
()∑

=

−−−
i

j

jjfvjfv
1

)1()1()(α , ∀i ≥ i0 +1 (45)

We define x(i0), x(i0 +1), ..., x(i0 +i), ... as follows:

x(i0) = α(i0) và x(i) = δ.(m+n+bmax/bmin)+
β

ε
()∑

=

−−−
i

j

jxjfvjfv
1

)1()1()(, ∀i ≥i0+1 (46)

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

88

Inductively, it folows

α(i) ≤ x(i), ∀i ≥ i0 +1 (47)

We have

x(i) =δ.(m+n+bmax/bmin)+
β

ε
()∑

−

=

−−−
1

1

)1()1()(
i

j

jxjfvjfv +
β

ε
(fv(i)−fv(i−1)).x(i−1) (48)

 = x(i−1) (1+ε(fv(i)−fv(i−1))/β) ≤ x(i−1)
() βε /)1()(−− ifvifve ≤ x(i−2)

() βε /)2()(−− ifvifve ≤ … (49)

 ≤ x(i0)
βε /))()(.(0ifvifv

e
−

≤ α(i0).
βε /)(. ifve ≤ (1+ε).δ.(m+n+bmax/bmin)

βε /)(. ifve , (50)

for α(i0) ≤ (1+ε).δ.(m+n+bmax/bmin).

It then follows

α(i) ≤ (1+ε).δ.(m+n+bmax/bmin)
βε /)(. ifve , ∀I ≥ i0+1. (51)

Suppose the algorithm ends in the loop t, α(t) ≥ 1. Then

1 ≤ (1+ε).δ.(m+n+bmax/bmin)
βε /)(. tfve (52)

that follows

)(tfv

β

≤

)bmax/bmin.().1(

1
ln

+++ nmδε

ε
 (53)

Lemma 5.1. There exists an accepted flow with value

δ

ε
ε

+
+

1
log

)(

1

tfv
.

Proof. Consider any edge e. We have :

For each transfer of ce(e)ze(e) converted units of commodities through e, the length le(e) of e

increases by a factor ≥ (1+ε). Indeed, at each iteration we only transfer c≤ce(e)ze(e) converted

units of commodities through e. So, in order to transfer of ce(e)ze(e) converted units of

commodities through e, commodities must be transferred through e at least in one iteration.

Suppose it starts at iteration i. Let q be the number of iterations to transfer of ce(e)ze(e) converted

units of commodities through e. Denote cj the value of c at the j-th transfer through e, j=1..q.

Denote l the last iteration that transfers cq converted units of commodities through e. We have

lel(e) = lei(e).

+

)()(
.1 1

ezeece

c
ε …

+

)()(
.1

ezeec

cqε (54)

=lei(e). ()

++++ ...

)()(
....1 1

ezeec
cc q

ε
 (55)

Then, we have

∑
=

q

j

jc
1

≥ ce(e)ze(e). (56)

Thus

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

89

lel(e) ≥ (1+ε).lei(e). (57)

Assumes x (e) be the sum of the flows through e. Set

x(e) = h.ce(e)ze(e), h∈R
*. (58)

So there are h times of ce(e)ze(e) unit of goods passes e, then the length of e is

let(e) ≥ (1+ε)h.le0(e) (59)

 Let j, j<t, be the last iteration of increasing le(e). Then lej(e) < 1, (for if lej(e) ≥ 1, then α(j)≥1,

and the algorithm stopped at step j<t). So,

let(e) ≤ (1+ε).lej(e) < (1+ε) (60)

 From (59), (60) and le0(e)=δ it follows

(1+ε)
h
.le0(e) ≤ let(e) < (1+ε) ⇒ h <

δ

ε
ε

+
+

1
log1 . (61)

 So

x(e) ≤ ce(e)ze(e).
δ

ε
ε

+
+

1
log1 , ∀e∈E. (62)

 Similarly, we also have

x(v) ≤ cv(v).zv(v).
δ

ε
ε

+
+

1
log1

, ∀v∈V (63)

where x(v) is the total converted units of commodities passing through the node v∈V.

Thus, divide all flows xi,j(e) by
δ

ε
ε

+
+

1
log1

:

xi,j(e) = xi,j(e)/
δ

ε
ε

+
+

1
log1 , ∀i=1..r, j=1..ki, ∀e∈E, (64)

we receive accepted flows, which satisfies the conditions of edge and node capacities, with the

flow value of

δ

ε
ε

+
+

1
log

)(

1

tfv
.

Lemma 5.2. Flow with value

δ

ε
ε

+
+

1
log

)(

1

tfv

 is maximal with approximation ratio 1+ω.

Proof

Denote γ the ratio of the dual optimal value divided by the flow value of

{xi,j(e) | e∈E, i=1..r, j=1..ki }

We have

γ =
)(tfv

β
.

δ

ε
ε

+
+

1
log1 . (65)

Using (53) we have

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

90

γ≤

min)max/()1(

1
ln

bbnm +++ δε

ε
.

δ

ε
ε

+
+

1
log1 =

)1ln(ε

ε

+
.

min)max/()1(

1
ln

1
ln

bbnm +++

+

δε

δ

ε

. (66)

Select

δ = (1+ε)
[] ε

ε
/12 min)max/()1(

1

bbnm +++
. (67)

We have

min)max/()1(

1
ln

1
ln

bbnm +++

+

δε

δ

ε

 = (1−ε)−1 (68)

⇒

 γ

≤
()()2/.1 2εεε

ε

−−

≤
()2
1

1

ε−

(69)

 So 1 < γ ≤
()2
1

1

ε−
. In order to get approximation ratio (1+ω), we choose ε such that

()2
1

1

ε−

≤≤≤≤ (1+ω). So, with 0 < ε ≤ 1−)1/(1 ω+ , the flow with value

δ

ε
ε

+
+

1
log

)(

1

tfv
 is maximal at

approximation ratio 1+ω .

• Note. From the converting flows {xi,j(e) | e∈E, i=1..r, j=1..ki } we can deduce the actual flows

by dividing the converted flows xi,j(e) by the conversion factor qi,∀i=1..r, j=1..ki, ∀e∈E.

• Lemma 5.3. The total flow cost in t iterations does not exceed B.
δ

ε
ε

+
+

1
log1 . That is, the total

cost of the flow after divide by
δ

ε
ε

+
+

1
log1 does not exceed B.

Proof. We have ϕ0 = δ/bmin. After (t−1) iterations, we have α(t−1) <1, it mean

()∑
−∈

−

1

1

tpe

t ele + ()∑
−∈

−

1

1

tpv

t vlv + bimin(p−-1).ϕt−1 < 1 (70)

⇒ ϕt−1< 1/bimin(pt-1) ≤ 1/bmin. (71)

Furthermore, while transferring commodities on the networks makes the total cost increasing to

B, so that ϕ increases to a factor of not less than (1+ε). Thus, calling x is the number of times the

algorithm increases the cost per unit B in the t loop, we have ϕ0.(1+ε)x ≤ ϕt ≤ (1+ε).ϕt−1 ≤ (1+ε)

/bmin. Due ϕ0 = δ/bmin, it follows x ≤
δ

ε
ε

+
+

1
log1 .

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

91

So the total cost of the flows after t iterations does not exceed B.
δ

ε
ε

+
+

1
log1

. When dividing the

flow by
δ

ε
ε

+
+

1
log1 , we also have the total cost decreasing factor

δ

ε
ε

+
+

1
log1 to satisfy the

requirements of the problem.

6. ALGORITHM COMPLEXITY

Theorem 6.1. The algorithm has a complexity of

O(ω−2
.k.n

3
.(m+n).ln(m+n+bmax/bmin)),

where k=k1+…+kr, m is the number of edges in the graph, n is the number of vertices.

Proof. Consider the iterations i. Suppose e is the edge capacity of passing the smallest

ce(e)ze(e)=c(i) along the shortest path pi. We increase the lei(e) of e factor (1+ε). Considering any

e, let te be the number of iterations in which e has minimal capacity on corresponding path. Since

le0(e) =δ and let(e) <1+ε, we have

le0(e).(1+ε)
te

= δ.(1+ε)
te ≤ let(e) < 1+ε, (72)

what follows te <
δ

ε
ε

+
+

1
log1 .

 On the other hand,

δ = (1+ε)
[] ε

ε
/12 min)max/()1(

1

bbnm +++

 (73)

⇒ te ≤
ε

1
(2+log1+ε(m+n+bmax/bmin)) (74)

≤
)1ln(.

1

εε +
(2ln(1+ε)+ln(m+n+bmax/bmin)). (75)

Set

t* =
)1ln(.

1

εε +
(2ln(1+ε)+ln(m+n+bmax/bmin)). (76)

Then, each edge e∈E corresponds to at most t* times of finding shortest paths.

Similarly, each node v∈V corresponds to at most t* times of finding shortest paths.

So the times of finding shortest paths ≤ (m+n).t*.

The algorithm that finds the shortest path between the two source-destination ends has a

complexity of O(n
3
) [7, 8], which inferred the shortest path finding algorithm between k pairs of

destination source ends with complexity O(k.n
3). Inferring the complexity of the algorithm is

O(k.n
3).O((m+n).

)1ln(.

min)max/ln(

εε +

++ bbnm
) (77)

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

92

On the other hand, because of ε ≤ 1−)1/(1 ω+ , we have

ε.ln(1+ε) ≈ ε2 ≤ (1−)1/(1 ω+)2 = (1−(1−0.5ω+o(ω)))2 = O(ω2) (78)

Finally, from (77) and (78) it deduce the complexity of the algorithm

O(ω−2
.k.n

3
.(m+n).ln(m+n+bmax/bmin)).

7. CONCLUSIONS

The paper develops a model of extended linear multi-commodity multi-cost network that can be

more exactly and effectively applied to model many practical problems. Then, maximal limit cost

flow problems are modeled as implicit linear programming problems. On the base of dual theory

in linear programming an effective approximate algorithm is developed. Correctness and

algorithm complexity are justified. The results of this paper are the basis for studying the multi-

commodity multi-cost flow optimization problem.

At last we emphasis that there is no efficient method solving implicit linear problems. Otherwise,

it is almost impossible to present this problem as an explicit linear problem, for the number of all

paths p, which determines the variables x(p), is as big as O(n
n
). So, in case this problem is

converted to an explicit linear problem and solved by any known method (f.e. simplex method),

the complexity is much bigger than O(nn), that is not practically acceptable.

REFERENCES

[1] Naveen Garg, Jochen Könemann: Faster and Simpler Algorithms for Multicommodity Flow and

Other Fractional Packing Problems, SIAM J. Comput, Canada, 37(2), 2007, pp. 630-652.

[2] Xiaolong Ma, Jie Zhou: An Extended Shortest Path Problem with Switch Cost Between Arcs,

Proceedings of the International MultiConference of Engineers and Computer Scientists 2008 Vol

IIMECS 2008, 19-21 March, 2008, Hong Kong.

[3] Tran Quoc Chien: Linear multi-channel traffic network, Ministry of Science and Technology, code

B2010DN-03-52.

[4] Tran Quoc Chien, Tran Thi My Dung: Application of the shortest path finding algorithm to find the

maximum flow of goods. Journal of Science & Technology, University of Danang, 3 (44) 2011.

[5] Tran Quoc Chien: Application of the shortest multi-path finding algorithm to find the maximum

simultaneous flow of goods simultaneously. Journal of Science & Technology, University of Danang,

4 (53) 2012.

[6] Tran Quoc Chien: Application of the shortest multi-path finding algorithm to find the maximal

simultaneous flow of goods simultaneously the minimum cost. Journal of Science & Technology, Da

Nang University, 5 (54) 2012.

[7] Tran Quoc Chien: The algorithm finds the shortest path in the general graph, Journal of Science &

Technology, University of Da Nang, 12 (61) / 2012, 16-21.

[8] Tran Quoc Chien, Nguyen Mau Tue, Tran Ngoc Viet: The algorithm finds the shortest path on the

extended graph. Proceeding of the 6th National Conference on Fundamental and Applied Information

Technology (FAIR), Proceedings of the Sixth National Conference on Scientific Research and

Application, Hue, 20-21 June 2013. Publisher of Natural Science and Technology. Hanoi 2013.

p.522-527.

[9] Tran Quoc Chien: Applying the algorithm to find the fastest way to find the maximum linear and

simultaneous minimum cost on an extended transportation network, Journal of Science &

Technology, University of Da Nang . 10 (71) 2013, 85-91.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018

93

[10] Tran Ngoc Viet, Tran Quoc Chien, Nguyen Mau Tue: Optimized Linear Multiplexing Algorithm on

Expanded Transport Networks, Journal of Science & Technology, University of Da Nang. 3 (76)

2014, 121-124.

[11] Tran Ngoc Viet, Tran Quoc Chien, Nguyen Mau Tue: The problem of linear multi-channel traffic

flow in traffic network. Proceedings of the 7th National Conference on Fundamental and Applied

Information Technology Research (FAIR'7), ISBN: 978-604-913-300-8, Proceedings of the 7th

National Science Conference "Fundamental and Applied Research IT ", Thai Nguyen, 19-20 / 6/2014.

Publisher of Natural Science and Technology. Hanoi 2014. p.31-39.

[12] Tran Quoc Chien, Ho Van Hung: Extended linear multi-commodity multi-cost network and maximal

flow finding problem. FAIR-2017.

AUTHORS

Ass. Prof. DrSc. Tran Quoc Chien (http://scv.ued.udn.vn/ly_lich/chi_tiet/275).He

has 14 papers in SCIE of Journal (http://www.kybernetika.cz/contact.html). Born in

1953 in Dien Ban, Quang Nam, Vietnam. He graduated from Maths_IT faculty. He

got Ph.D Degree of maths in 1985 in Charles university of Prague, Czech Republic

and hold Doctor of Science in Charles university of Prague, Czech Republic in 1991.

He received the tittle of Ass. Pro in 1992. He work for university of Danang,

Vietnam. His main major: Maths and computing, applicable mathematics in

transport, maximum flow, parallel and distributed process, discrete mathemetics,

graph theory, grid Computing, distributed programming.

M.Si. Ho Van Hung (http://qnamuni.edu.vn/viewLLKH.asp?MaGV=134). Born in

1977 in Thang Binh, Quang Nam, Vietnam. He graduated from Faculty of Information

Technology – College of Sciences – Hue University in 2000. He got master of science

(IT) at Danang university of technology. His main major: Applicable mathematics in

transport, maximum flow, parallel and distributed process, graph theory and

distributed programming.

