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ABSTRACT 

 

The Graph is a powerful mathematical tool applied in many fields as transportation, communication, 

informatics, economy, … In an ordinary graph, the weights of edges and vertexes are considered 

independently where the length of a path is the sum of weights of the edges and the vertexes on this path. 

However, in many practical problems, weights at a vertex are not the same for all paths passing this vertex 

but depend on coming and leaving edges. The presented paper develops a model of the extended linear 

multi-commodity multi-cost network that can be more exactly and effectively applied to model many 

practical problems. Then, maximal limit cost flow problems are modeled as implicit linear programming 

problems. On the base of dual theory in linear programming, an effective approximate algorithm is 

developed. 
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1. INTRODUCTION 

 

Network and its flow is a powerful mathematical tool applied in many fields as transportation, 

communications, informatics, economics, and so on. So far, most of the applications in the new 

graph solely considers to the weight of edges and nodes independently, in which the path length 

merely is the sum of weights of edges and nodes along the path. However, in many practical 

problems, the weight at one node is not the same for all paths passing through that node, but also 

depends on coming and leaving edges. For example, the transit time on the transport network 

depends on the direction of transportation: turn right, turn left or go straight, even some directions 

are forbidden. Paper [2] proposes switching cost only for directed graphs. Therefore, it is 

necessary to build an extended mixed network model in order to apply more accurate and 

effective modeling of practical problems. Multi-commodity flow in traditional network problems 

have been studied in the papers [1,3,4,5,6]. Multi-commodity flow in extended network problems 

with extended transport networks were studied in the papers [7-11]. The paper[12] studies 

maximal multi-commodity multi-cost flow problems. 

 

The paper builds the extended multi-cost multi-commodity model in sections 2 and 3 to enable 

modeling of more accurate and efficient real problems. Next, in section 4, the maximal limit cost 

multi-commodity multi-cost flow problem is defined by a hidden linear programming problem 

model. Based on the duality theory of linear programming, an approximation algorithm with 

polynomial complexity is developed in section 5. 
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2. EXTENDED LINEAR MULTI-COMMODITY MULTI-COST NETWORK  

 

Given mixed graph G = (V, E) with node set V and edge set E. The edges may be undirected or 

directed. The symbol Ev is the set of edges incident vertice v∈V. There are many kinds of goods 

circulating on the network. Commodities share the capacities of the edges, but have different 

costs. The undirected edges represent the two-way edge, in which the goods on the same edge, 

but reverse directions share the capacity of the edge. 

 

The symbol r is the commodity number,  qi> 0 is the coefficient of conversion of goods i, i =1..r. 

Given the following functions: 

 

Edge passing capacity function ce:E→R
*
, where ce(e) is the passing capability of the edge e∈E. 

 

Edge service coefficient function ze:E→R
*
, where ze(e) is the passing ratio of the edge e∈E (the 

real capacity of the edge e is ze(e).ce(e)). 

 

Node passing capability function  cv:V→R
*
, where cv(u) is the passing capability of  the node 

u∈V . 

 

Node service coefficient function zv:V→R
*, where  zv(u) is the passing ratio of the node v∈V (the 

real capacity of the node v is zv(v).cv(v)). 

 

The tuples (V, E , ce, ze, cv, zv) are called extended networks. 

 

Edge cost function i, i=1..r, bei:E→R
*, where bei(e) is the cost of passing e a converted unit of 

commodity of type i. Note that with 2-way paths, the cost of each way may vary. 

 

Node switch cost function i, i=1..r, bvi:V×Ev×Ev→R
*
, where bvi(u,e,e’) is the cost of transferring a 

converted unit of commodity of type i from edge e through u to edge e’. 

 

The sets ((V, E, ce, ze, cv, zv,{bei,bvi, qi|i=1..r}) are called the extended linear multi-commodity 

multi-cost network. 

 

◊ Note: If bei(e)=∞, commodity of type i is prohibited from circulation on path e. If  bvi(u,e,e’) = 

∞, comodity of type i is banned from path e through u to path e’. 

 

Let p be the path from node u to node v through edges ej, j=1..(h+1), and nodes  uj, j=1..h  as 

follows 

 

p = [u, e1, u1, e2, u2, …, eh, uh, eh+1, v] 

 

The cost of circulating a converted unit of commodity of type i, i = 1..r, passing the path p, is 

denoted by the symbol bi(p), and defined by the following formula: 

 

bi(p) =∑
+

=

1

1

)(
h

j

ji ebe +∑
=

+

h

j

jjji eeubv
1

1),,(                      (1) 
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3. MULTI-COMMODITY FLOW PROBLEMS IN EXTENDED LINEAR MULTI-

COMMODITY MULTI-COST NETWORK 

 

Given a multi-cost multi-commodity network G=(V,E,ce, ze, cv, zv, {bei, bvi, qi|i=1..r}). Assume, 

for each commodity of type i, i=1..r, there are ki source-target pairs (si,j, ti,j), j=1..ki, each pair 

assigned a quantity of commodity of type i, that is necessary to move from source node si,j to 

target node ti,j. 

 

Denote  Pi,j  is the set of paths from node si,j to node ti, in G, which commodity of type i can be 

passed, i=1..r, j=1..ki. Set 

 

 Pi = U
ik

j

jiP
1

,

=

.                 (2) 

For each path p∈Pi,j, i=1..r, j=1..ki,  denote xi,j(p) the flow of converted commodity of type i from 

the source node si,j to the destination node ti,j  along the path  p, i=1..r, j=1..ki. 

Denote Pi,e the set of paths in Pi passing through the edge e, ∀e∈E. 

Denote Pi,v the set of paths in Pi  passing through the node v, ∀v∈V. 

A set 

     

  F = {xi,j(p) | p∈Pi,j, i=1..r, j=1..ki}              (3) 

 

is called a multi-commodity flow on the linear extended multi-commodity multi-cost  network, if 

it satisfies the following edge and node capacity constraints: 

( )∑∑ ∑
= = ∈

r

i

k

j Pp

ji

i

ei

px
1 1

,

,

≤ ce(e).ze(e), ∀e∈E 

( )∑∑ ∑
= = ∈

r

i

k

j Pp

ji

i

vi

px
1 1

,

,

≤ cv(v).zv(v), ∀v∈V 

 

The expressions 

 

  fvi,j  = ( )∑
∈ jiPp

ji px
,

, ,i=1..r,j=1..ki               (4) 

 

is called the flow value of commodity of type i of the source-target pair (si,j,ti,j) of F. 

The expressions 

 

fvi = ∑
=

ik

j

jifv
1

, , i=1..r                (5) 

is called the flow value of commodity of type i of F. 

The expression  

 

  fv = ∑
=

r

i

ifv
1

                 (6) 

Allied the flow value of F. 
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4. MAXIMAL LIMITED COST MULTI-COMMODITY FLOW PROBLEMS  

 

Given an extended linear multi-commodity multi-cost network G=(V,E, ce, ze, cv, zv, {bei, bvi, 

qi|i=1..r}).  Assume, for each commodity of type i, i=1..r, there are ki source-target pairs (si,j, ti,j), 

j=1..ki, each pair assigned a quantity of commodity of type i, that is necessary to move from 

source node si,j to target node ti,j. Given a limit cost B. 

 

The task of the problem is to find the multi-commodity flow such that the value of  the flow fv is 

maximal. At the same time, the total cost of the flow does not exceed B. 

 

The problem is expressed by an implicit linear programming model (P) as follows: 

 

fv= ∑∑ ∑
= = ∈

r

i

k

j Pp

ji

i

ji

px
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,
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)( →max 
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≤ B 

xi,j(p) ≥0, ∀i=1..r, j=1..ki, ∀p∈Pi,j 

 

 

 

The dual linear programming problem of (P), called (D), is constructed as follows: each edge 

e∈E is assigned an dual variable le(e), each node v∈V is assigned an dual variable lv(v) while the 

dual variable ϕ  assigns the constraint of cost. The problem (D) states the following  

 

D(le,lv,ϕ) = ( ) ( )∑
∈Ee

eleezeece ).(. + ( ) ( )∑
∈Vv

vlvvzvvcv ).(. + B.ϕ → min                                             

 

( )∑
∈pe

ele  + ( )∑
∈pv

vlv + bi(p).ϕ ≥ 1, ∀p∈Pi,j
                                                                   

(D)
 

le(e) ≥ 0,∀e∈E, lv(v) ≥ 0,∀v∈V, ϕ ≥ 0 

 

Now, given p∈Pi, i=1..r, a path from node u to node v through edges ej, j=1..(h+1),  and nodes uj, 

j=1..h, as follows 

 

p = [u, e1, u1, e2, u2, …, eh, uh, eh+1, v] 

 

We define the path length of p, denoted by lengthi(p), depending on the variables le(e), lv(v) and 

ϕ  so as to the following formula: 

 

lengthi(p) = ∑
+
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Denote disti,j(le,lv,ϕ)  the shortest path length from si,j  to ti,j calculated by function  lengthi(p), 

∀i=1..r, ∀j=1..ki. 

 

Set α(le,lv,ϕ) = min{disti,j(le,lv,ϕ) | i=1..r, j=1..ki} 

 

Consider the problem (Dα): 

 

β = 









≥→→ 0,:,:
),,(

),,(
min ** ϕ

ϕα

ϕ
RVlvREle

lvle

lvleD
            (8)  

 

• Lemma 4.1. The problem (D) is equivalent to the problem (Dα) such that their optimal value 

are equal and the optimal solution of one problem derives the optimal solution of the other 

problem and vice versa. 

 

Proof 
 

Denote min(D) and min(Dα),  respectively, the optimal values of the problem (D) and the problem 

(Dα) . Given functions le: E→R
*
,  lv:V→R

*
, ϕ > 0. Set 

 

      le’(e) = le(e)/α(le,lv,ϕ), ∀e∈E, lv’(v) = lv(v)/α(le,lv,ϕ), ∀v∈V, ϕ’ = ϕ/α(le,lv,ϕ).          (9) 

 

We have: 

 

( )∑
∈pe

ele' + ( )∑
∈pv

vlv'  +bi(p).ϕ’  ≥ 1,∀i=1..r, ∀j=1..ki, ∀p∈Pi,j         (10) 

 

So (le’,lv’,ϕ’)  is an accepted solution of (D) and   

 

D(le’,lv’,ϕ’) = 
),,(

),,(

ϕα

ϕ

lvle

lvleD
.             (11) 

Hence inferred 

 

min(D)  ≤ min(Dα)              (12) 

 

In contrast, let (le,lv,ϕ) be an accepted solution of (D). Then, we have 

 

1 ≤ disti,j(le,lv,ϕ), ∀i=1..r,∀j=1..ki   ⇒ α(le,lv,ϕ) ≥ 1 ⇒  
),,(

),,(

ϕα

ϕ

lvle

lvleD

 

≤ D(le,lv,ϕ). 

Hence Inferred 

 

min(D) ≥min(Dα)               (13) 

 

From (12) and (13), it follows min(D) = min(Dα). 

Next, if (le,lv,ϕ) is an optimal solution of the problem (Dα), then (le’,lv’,ϕ’) where 

le’(e) = le(e)/α(le,lv,ϕ), ∀e∈E, lv’(v) = lv(v)/α(le,lv,ϕ), ∀v∈V, ϕ’ = ϕ/α(le,lv,ϕ). 

is an optimal solution of problem (D). 

Conversely, if (le,lv,ϕ) is an optimal solution of the problem (D), then (le,lv,ϕ) is an optimal 

solution of the problem (Dα).  
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5. ALGORITHM 

 

• IDEAS 

 

The algorithm consists of a number of iterative steps, through the function lengthi(p), p∈Pi, 

i=1..r. At each iteration step, find the shortest path p, with respect to the length function 

lengthi(p))  between the source-destination pairs and convert c units of exchange through p, where 

c is the minimal edge and node capacity on this path. 

 

Then change the value of functions le, lv and ϕ..The algorithm stops once α ≥ 1. The initial value 

of le, lv and ϕ depends on the approximate value to be achieved. 

 

• ALGORITHM 

 

◊ INPUT: Extended multi-cost multi-commodity network G=(V,E, ce, ze, cv, zv, {bei, bvi, 

qi|i=1..r}). Assume, for each commodity of type i, i=1..r, there are ki source-target pairs (si,j, ti,j), 

j=1..ki, each pair assigned a quantity of commodity of type i, that is necessary to move from 

source node si,j to target node ti,j. Given a limited cost B, an approximation ratio ω. 

 

◊ OUTPUT : Maximal flow F represents a set of converged flows at the edges 

F = {xi,j(e) | e∈E, i=1..r, j=1..ki} 

 

with total cost not over the limit cost B. 

 

◊ PROCEDURE 

 

 Note  n=|V|, m=|E|, Bf total cost of the flows F. 

 

 Calculate bmin, the smallest cost in the paths from the source si,j to the destination ti,j, i=1..r, 

j=1..ki : 

 

bmin = min{bi(p) | i=1..r, j=1..ki, p∈Pi,j}.           (14) 

 

Calculate bmax, the largest cost of the paths from the source si,j to the destination ti,j, i=1..r, j=1..ki. 

 

bmax = max{bi(p) | i=1..r, j=1..ki, p∈Pi,j}.           (15) 

 

Set 

ε = 1− )1/(1 ω+
 
; δ = (1+ε)

[ ] ε
ε

/12 min)max/()1(

1

bbnm +++
;        (16) 

 

for e∈E : le(e)=δ; xi,j(e)=0 ; for v∈V :  lv(v)=δ ;           (17) 

 

ϕ = δ/bmin ; fv = 0; Bf = 0 ;             (18) 

 

do 

{ 

Use the algorithm to find the source-destination pair (si,j, ti,j), 1≤i≤r and 1≤j≤ki, having the shortest 

path from si,j to ti,j calculated by the length function lengthi(.).Note that the path p must be valid 
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for goods of type i, i.e., not containing the edge with edge cost ∞ or the node with the switch 

cost∞. 

Note 

imin and  jmin the indexes of source-destination pairs with the shortest path; 

α  is the shortest path length; 

p is the shortest path; 

c is the minimal edge and node capacity on the path p, i.e. 

 

   c=min{min{ce(e).ze(e)|e∈p},min{cv(v).zv(v)|v∈p}}; 

 

B’ = c.bimin(p); 

  if (B’>B){  c = c.B / B’; B’ = B;  } 

 

Flow adjustments: 

 

∀e∈p, xi,j(e)=xi,j(e)+c;le(e)=le(e).(1+ε.c/(ce(e).ze(e)));          (19) 

 

∀v∈p, lv(v)=lv(v).(1+ε.c/(cv(v).zv(v)));            (20) 

 

ϕ = ϕ.(1+ε.B’/B) ;  Bf = Bf + B’ ; fv = fv + c ;           (21) 

 

} while (α < 1) 

 

Modifying the resulting flows F and flow value fv. 

 

xi,j(e)=xi,j(e) /
δ

ε
ε

+
+

1
log1

 
; ∀i=1..r, j=1..ki,∀e∈E;          (22) 

fv = fv /
δ

ε
ε

+
+

1
log1

 
; Bf = Bf/

δ
ε

1
log1+ ;            (23) 

Modifying flows on scalar edge 

 

for (i=1 ; i<=r ;i++) 

for (j=1 ; j<=ki ;j++) 

for scalar e∈E 

 

if xi,j(e) >= xi,j(e’)// e’ is the opposite of the direction e 

{xi,j(e) = xi,j(e)−xi,j(e’) ;  xi,j(e’)=0}; 

else 

{xi,j(e’) = xi,j(e’)−xi,j(e) ;  xi,j(e)=0}; 

 

• PROOF OF ALGORITHM 

 

Denote 

D(0) the initial value of function D 

 

D(0)  = ( )∑
∈Ee

ezeece δ).(. + ( )∑
∈Vv

vzvvcv δ).(. + B.δ/bmin 

  = δ.( ( )∑
∈Ee

ezeece )(. + ( )∑
∈Vv

vzvvcv )(. + B/bmin)          (24) 

 D(i) is the value of the function D after the loop i, i=1, 2, ... 
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fv(0) = 0 is the initial value of the flow F. 

fv(i) is the value of the flow F after the loop i, i=1, 2, ... 

le0, lv0 and ϕ0 are, respectively, initial values of the functions le, lv and ϕ. 

lei, lvi and ϕi correspond respectively to le, lv and ϕ in the loop i. i=1, 2, ... 

pi is the shortest path p in the loop i. i=1, 2, ... 

α(i)= α(lei,lvi,ϕi), i = 1, 2, ... 

c(i) is the value of c in the loop i. i = 1, 2, ... 

 

We have 

 

 fv(j) = fv(j−1) + c(j),              (25) 

 D(j)  = ( ) ( )∑
∈Ee

j eleezeece ).(. + ( ) ( )∑
∈Vv

j vlvvzvvcv ).(.  + B.ϕj 

  = ( ) ( )∑
∈

−
Ee

j eleezeece 1).(. + ( ) ( )∑
∈

−
Vv

j vlvvzvvcv 1).(. +B.ϕj−1 

  + ( )∑
∈

−

jpe

j elejc 1)(.ε + ( )∑
∈

−

jpv

j vlvjc 1)(.ε  + ε.B’.ϕj−1 

  = D(j−1) + ε.c(j).( ( )∑
∈

−

jpe

j ele 1
+ ( )∑

∈

−

jpv

j vlv 1
 + bimin(pj-1).ϕj−1) 

  = D(j−1) + ε.c(j).α(j−1).             (26) 

 

It follows 

D(i) = D(0)+ε ( )∑
=

−−−
i

j

jjfvjfv
1

)1()1()( α , ∀i≥1          (27) 

Consider functions lei−le0 và lvi−lv0  và ϕi−ϕ0. We have 

 

D(lei−le0,lvi−lv0,ϕi−ϕ0) = D(i)– D(0).            (28) 

 

Next, consider α(lei−le0,lvi−lv0,ϕi−ϕ0). We have 

 

α(le,lv,ϕ) = min{distg,l(le,lv,ϕ) | g=1..r, l=1..kg}            (29) 

and 

 

distg,l(le,lv,ϕ)  

= min{∑
+

=

1

1

)(
h

j

jele +∑
=

h

j

julv
1

)( + bg(p).ϕ|p = [si,j, e1, u1, e2, u2, …, eh, uh, eh+1,ti,j]∈Pg,l }       (30) 

Thus 

 

distg,l(lei−le0,lvi−lv0,ϕi−ϕ0)  

 

= min{ ( )∑
+

=

−
1

1

0 )()(
h

j

jj eleele + ( )∑
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−
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j
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1

0 )()( + bg(p).ϕi−bg(p).ϕ0 

| p = [si,j, e1, u1, e2, u2, …, eh, uh, eh+1,ti,j]∈Pg,l }          (31) 

= min{∑
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1
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+

=

1

1

0 )(
h

j

jele +∑
=

h

j

julv
1
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| p = [si,j, e1, u1, e2, u2, …, eh, uh, eh+1,ti,j]∈Pg,l }          (32) 
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≥ min{∑
+
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ji ele +∑
=

h

j

ji ulv
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)( + bg(p).ϕi−(m.δ+ n.δ +δ.bg(p)/bmin) 
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≥ min{∑
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= min{∑
+

=

1

1

)(
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ji ele +∑
=

h
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ji ulv
1

)( + bg(p).ϕi| p = [si,j, e1, u1, e2, u2, …, eh, uh, eh+1,ti,j]∈Pg,l} 

−δ.(m + n +bmax/bmin)             (35) 

 

= distg,l(lei,lvi,ϕi)−δ.(m + n +bmax/bmin)            (36) 

 

Hence,  

α.(lei−le0,lvi−lv0,ϕi−ϕ0) ≥ α(i)−δ.(m+n+bmax/bmin).              (37) 

 

Denote i0  the smallest index sastifies 

 

α(i0) ≥ δ.(m+n+bmax/bmin)  and α(i0−1) < δ.(m+n+bmax/bmin)         (38) 

 

On the other hand, we have 

 

lei(e)  ≤ lei−1(e).(1+ε.c(j) /(ce(e).ze(e))) ≤ lei−1(e).(1+ε), ∀e∈E, ∀i ≥ 1        (39) 

 

lvi(v) ≤ lvi−1(v).(1+ε.c(j) /(cv(v).zv(v)))  ≤ lvi−1(v).(1+ε), ∀v∈V, ∀i ≥ 1        (40) 

 

and 

ϕi = ϕi−1(1+ε.B’/ B) ≤ ϕi−1(1+ε),             (41) 

 

⇒ α(i) ≤  (1+ε).α(i−1), ∀i ≥ 1.             (42) 

 

It follows 

 

α(i0) ≤  (1+ε).α(i0−1) < (1+ε).δ.(m+n+bmax/bmin)           (43) 

 

Then, we have 

 

           β ≤ 
( )
( )000

000

,,

,,

ϕϕα

ϕϕ

−−−

−−−

iii
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lvlvlele
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≤ 
min)max/()(

)0()(

bbnmi

DiD

++−

−

δα
, ∀i ≥ i0 +1       (44) 

 

Substituting D(i)–D(0) from (27) into (44), we obtain: 

 

α(i) ≤ δ.(m+n+bmax/bmin) + 
β

ε
( )∑

=

−−−
i

j

jjfvjfv
1

)1()1()( α , ∀i ≥ i0 +1       (45) 

We define  x(i0), x(i0 +1), ..., x(i0 +i), ... as follows: 

x(i0) = α(i0) và x(i) = δ.(m+n+bmax/bmin)+
β

ε
( )∑

=

−−−
i

j

jxjfvjfv
1

)1()1()( , ∀i ≥i0+1         (46) 



International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.1, January 2018 

88 

 

Inductively, it folows 

α(i) ≤ x(i), ∀i ≥ i0 +1              (47) 

We have 

x(i) =δ.(m+n+bmax/bmin)+
β

ε
( )∑

−

=

−−−
1

1

)1()1()(
i

j

jxjfvjfv +
β

ε
(fv(i)−fv(i−1)).x(i−1)       (48) 

 

     = x(i−1) (1+ε( fv(i)−fv(i−1))/β) ≤ x(i−1)
( ) βε /)1()( −− ifvifve ≤ x(i−2)

( ) βε /)2()( −− ifvifve  ≤ …       (49) 

 

     ≤ x(i0)
βε /))()(.( 0ifvifv

e
−

≤ α(i0).
βε /)(. ifve  ≤ (1+ε).δ.(m+n+bmax/bmin) 

βε /)(. ifve ,        (50) 

 

for α(i0) ≤  (1+ε).δ.(m+n+bmax/bmin). 

 

It then follows 

 

α(i) ≤ (1+ε).δ.(m+n+bmax/bmin) 
βε /)(. ifve , ∀I ≥ i0+1.          (51) 

 

Suppose the algorithm ends in the loop t, α(t) ≥ 1. Then 

 

1 ≤ (1+ε).δ.(m+n+bmax/bmin)
βε /)(. tfve             (52) 

 

that follows 

 
)(tfv

β

 

≤ 

)bmax/bmin.().1(

1
ln

+++ nmδε

ε
           (53) 

 

Lemma 5.1. There exists an accepted flow with value 

δ

ε
ε

+
+

1
log

)(

1

tfv
. 

Proof. Consider any edge e. We have : 

 

For each transfer of ce(e)ze(e) converted units of commodities through e, the length le(e) of e 

increases by a factor ≥ (1+ε). Indeed, at each iteration we only transfer c≤ce(e)ze(e) converted 

units of commodities through e. So, in order to transfer of ce(e)ze(e) converted units of 

commodities through e, commodities must be transferred through e at least in one iteration. 

Suppose it starts at iteration i. Let q be the number of iterations to transfer of ce(e)ze(e) converted 

units of commodities through e. Denote cj  the value of c at the j-th transfer through e, j=1..q. 

Denote l the last iteration that transfers cq converted units of commodities through e. We have 

 

lel(e)  = lei(e). 







+

)()(
.1 1

ezeece

c
ε … 








+

)()(
.1

ezeec

cqε             (54) 

=lei(e). ( ) 







++++ ...

)()(
....1 1

ezeec
cc q

ε
           (55) 

Then, we have 

∑
=

q

j

jc
1

≥ ce(e)ze(e).              (56) 

Thus 
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lel(e) ≥ (1+ε).lei(e).              (57) 

 

Assumes x (e) be the sum of the flows through e. Set 

 

x(e) = h.ce(e)ze(e), h∈R
*.             (58) 

 

So there are h times of ce(e)ze(e) unit of goods passes e, then the length of e is 

 

let(e) ≥ (1+ε)h.le0(e)                        (59) 

 

 Let j, j<t, be the last iteration of increasing le(e). Then lej(e) < 1, (for if lej(e) ≥ 1, then α(j)≥1, 

and the algorithm stopped at step j<t). So, 

 

let(e) ≤ (1+ε).lej(e) < (1+ε)               (60) 

 

 From (59), (60) and le0(e)=δ  it follows 

 

(1+ε)
h
.le0(e) ≤ let(e) < (1+ε)  ⇒ h < 

δ

ε
ε

+
+

1
log1 .          (61) 

 So 

x(e) ≤ ce(e)ze(e).
δ

ε
ε

+
+

1
log1 , ∀e∈E.            (62) 

 Similarly, we also have 

x(v) ≤ cv(v).zv(v).
δ

ε
ε

+
+

1
log1

, ∀v∈V            (63) 

where x(v) is the total converted units of commodities passing through the node v∈V. 

Thus, divide all flows xi,j(e) by 
δ

ε
ε

+
+

1
log1

: 

xi,j(e) = xi,j(e)/
δ

ε
ε

+
+

1
log1 , ∀i=1..r, j=1..ki, ∀e∈E,          (64) 

we receive accepted flows, which satisfies the conditions of edge and node capacities, with the 

flow value of 

δ

ε
ε

+
+

1
log

)(

1

tfv
.               

Lemma 5.2. Flow with value  

δ

ε
ε

+
+

1
log

)(

1

tfv

 

 is maximal with approximation ratio 1+ω. 

Proof 

 

Denote γ  the ratio of the dual optimal value divided by the flow value of 

{xi,j(e) | e∈E, i=1..r, j=1..ki } 

 

We have 

γ =  
)(tfv

β
.

δ

ε
ε

+
+

1
log1 .             (65) 

 

Using (53) we have 
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γ≤

min)max/()1(

1
ln

bbnm +++ δε

ε
.

δ

ε
ε

+
+

1
log1 = 

)1ln( ε

ε

+
.

min)max/()1(

1
ln

1
ln

bbnm +++

+

δε

δ

ε

.                        (66) 

Select  

δ = (1+ε)
[ ] ε

ε
/12 min)max/()1(

1

bbnm +++
.            (67) 

We have 

min)max/()1(

1
ln

1
ln

bbnm +++

+

δε

δ

ε

 = (1−ε)−1             (68) 

⇒ 

 γ  

 

≤
( )( )2/.1 2εεε

ε

−−  

≤ 
( )2
1

1

ε−             

(69) 

 So 1 < γ ≤ 
( )2
1

1

ε−
. In order to get approximation ratio (1+ω), we choose ε such that 

( )2
1

1

ε−  

≤≤≤≤ (1+ω). So, with 0 < ε ≤ 1− )1/(1 ω+ , the flow with value 

δ

ε
ε

+
+

1
log

)(

1

tfv
 is maximal at 

approximation ratio 1+ω . 

              

• Note. From the converting flows {xi,j(e) | e∈E, i=1..r, j=1..ki } we can deduce the actual flows 

by dividing the converted flows xi,j(e) by the conversion factor qi,∀i=1..r, j=1..ki, ∀e∈E. 

• Lemma 5.3. The total flow cost in t iterations does not exceed B.
δ

ε
ε

+
+

1
log1 . That is, the total 

cost of the flow after divide by 
δ

ε
ε

+
+

1
log1  does not exceed B. 

Proof.  We have ϕ0 = δ/bmin. After (t−1) iterations, we have α(t−1) <1, it mean 

 

( )∑
−∈

−

1

1

tpe

t ele + ( )∑
−∈

−

1

1

tpv

t vlv  + bimin(p−-1).ϕt−1 < 1            (70) 

⇒  ϕt−1< 1/bimin(pt-1) ≤ 1/bmin.             (71) 

 

Furthermore, while transferring commodities on the networks makes the total cost increasing to 

B, so that ϕ increases to a factor of not less than (1+ε). Thus, calling  x is the number of times the 

algorithm increases the cost per unit B in the t loop, we have ϕ0.(1+ε)x ≤ ϕt ≤ (1+ε).ϕt−1 ≤ (1+ε) 

/bmin. Due ϕ0 = δ/bmin, it follows  x ≤ 
δ

ε
ε

+
+

1
log1 . 
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So the total cost of the flows after t iterations does not exceed B.
δ

ε
ε

+
+

1
log1

. When dividing the 

flow by 
δ

ε
ε

+
+

1
log1 , we also have the total cost decreasing factor 

δ

ε
ε

+
+

1
log1   to satisfy the 

requirements of the problem.  

        

6. ALGORITHM COMPLEXITY 

 

Theorem 6.1. The algorithm has a complexity of 

 

O(ω−2
.k.n

3
.(m+n).ln(m+n+bmax/bmin)), 

 

where k=k1+…+kr, m is the number of edges in the graph, n is the number of vertices. 

Proof. Consider the iterations i. Suppose e is the edge capacity of passing the smallest 

ce(e)ze(e)=c(i) along the shortest path pi. We increase the lei(e) of e factor (1+ε). Considering any 

e, let te be the number of iterations in which e has minimal capacity on corresponding path. Since 

le0(e) =δ  and let(e) <1+ε, we have 

 

le0(e).(1+ε)
te 

= δ.(1+ε)
te ≤ let(e) < 1+ε,             (72) 

 

what follows te < 
δ

ε
ε

+
+

1
log1 . 

 On the other hand, 

 

δ = (1+ε)
[ ] ε

ε
/12 min)max/()1(

1

bbnm +++
  

           (73) 

⇒   te ≤ 
ε

1
(2+log1+ε(m+n+bmax/bmin))            (74) 

≤ 
)1ln(.

1

εε +
(2ln(1+ε)+ln(m+n+bmax/bmin)).           (75) 

Set 

t* = 
)1ln(.

1

εε +
(2ln(1+ε)+ln(m+n+bmax/bmin)).          (76) 

  

Then, each edge e∈E corresponds to at most t* times of finding shortest paths. 

Similarly, each node v∈V corresponds to at most t* times of finding shortest paths. 

So the times of finding shortest paths ≤ (m+n).t*.  

 

The algorithm that finds the shortest path between the two source-destination ends has a 

complexity of O(n
3
) [7, 8], which inferred the shortest path finding algorithm between k pairs of 

destination source ends with complexity O(k.n
3). Inferring the complexity of the algorithm is 

 

O(k.n
3).O((m+n).

)1ln(.

min)max/ln(

εε +

++ bbnm
)           (77) 
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On the other hand, because of ε ≤ 1− )1/(1 ω+ , we have 

ε.ln(1+ε) ≈ ε2 ≤  (1− )1/(1 ω+ )2 = (1−(1−0.5ω+o(ω)))2 = O(ω2)        (78) 

 

Finally, from (77) and (78) it deduce the complexity of the algorithm 

 

O(ω−2
.k.n

3
.(m+n).ln(m+n+bmax/bmin)). 

 

7. CONCLUSIONS 

 

The paper develops a model of extended linear multi-commodity multi-cost network that can be 

more exactly and effectively applied to model many practical problems. Then, maximal limit cost 

flow problems are modeled as implicit linear programming problems. On the base of dual theory 

in linear programming an effective approximate algorithm is developed. Correctness and 

algorithm complexity are justified. The results of this paper are the basis for studying the multi-

commodity multi-cost flow optimization problem.  

 

At last we emphasis that there is no efficient method solving implicit linear problems. Otherwise, 

it is almost impossible to present this problem as an explicit linear problem, for the number of all 

paths p, which determines the variables x(p), is as big as O(n
n
).   So, in case this problem is 

converted to an explicit linear problem and solved by any known method (f.e. simplex method), 

the complexity is much bigger than O(nn), that is not practically acceptable. 
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