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ABSTRACT 

 
Cooperative multi-objective missions for connected heterogeneous groups of autonomous underwater 

vehicles are highly complex operations and it is an important and challenging problem to effectively route 

these vehicles in the dynamic environment under given communication constraints. We propose a solution 

for the task allocation and path planning problems based on the evolutionary algorithms that allows one to 

obtain feasible group routes ensuring well-timed accomplishment of all objectives. 
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1. INTRODUCTION 
 

The rapid evolution of the subsea technologies in recent years has significantly expanded the 

scope of autonomous underwater vehicles (AUV) implementation, which includes the usage of 

distributed groups of underwater robots to perform multi-objective missions, as simultaneous use 

of multiple vehicles can improve performance and reduce mission time. During such large-scale 

missions, a number of different underwater works and operations should be accomplished 

collaboratively by AUVs within specified water area. In this regard, the effective coordination of 

AUVs network is crucial for the likelihood of mission success. Thus, the upper level of the group 

control system that is responsible for the allocating tasks between robots and both route- and 

path- planning is coming to the fore. 

 

In general, the problem of task allocation and path planning is vehicle routing problem (VRP) 

under specific spatiotemporal constraints imposed by the uncertain dynamic nature of water 

environment and by the inaccuracy of the measuring devices. In many real cases, like patrolling 

and guarding, taking samples and measurements, etc., certain underwater tasks require not the 

single but the series of periodic attendances by AUVs at scheduled intervals. The mission-

planning problem in such complex cases obtains features of such VRP variations as routing with 

time windows and periodic routing with new complex requirements and restrictions, which are 

aimed to a more accurate simulation of real-world problems [1]. 
 

Indeed, in real underwater missions vehicles in the fleet may differ not only by their dynamic 

characteristics but also by their functionality (onboard equipment) which make them able to 

perform only specific sub-sets of tasks among all tasks of the mission. The factor of the vehicle 
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hile making the mission planning more challenging, at the same time gives

more flexibility to the group performance capabilities with different combinations of vehicles

being able to accomplish the mission. In addition, communication is a critical aspect o

cooperation, especially in the dynamic and uncertain environment, and must not be trivialized, as 

underwater communication is difficult, slow and limited in the range [2]. 

Currently, the state of the art in mission planning is dominated by single AUV operations using 

preplanned trajectories with offline post-processing of the data collected during the mission. 

Multiple cooperative vehicle systems hold great promise for use in large-scale oceanographic 

surveys and it is a problem of considerable practical interest to effectively route the 

heterogeneous group of AUVs in multi-objective missions of long-duration [3]. 

In this paper, we propose an approach to task allocation and path planning for the heterogeneous 

group of AUVs to solve the complex-mission planning problem as a new variation of vehicle 

routing problem, which is to find a feasible and efficient group route under specific 

temporal constraints. To do this, we combine the work of genetic algorithms with new

nd advanced techniques. 

-objective mission of AUVs group is to visit and accomplish 

(perform some underwater works) the set of tasks (objectives) under scheduling requirements. 

Each task has its own recommended periodicity for visiting by AUVs and requires a certain set of 

instrumentations like sonars, sensors, manipulators etc. to be accomplished. The vehicles in the 

board equipment, making each AUV available for attending only a 

ain subset of mission objectives. In addition, the regular communication sessions within the 

entire group are required to answer the dynamic nature of mission in order to permanently 

ze the group efficiency in ever-changing conditions. The mission-planning problem here 

is to find a group route ensuring, as far as a possible, regular and well-timed accomplishment of 

the majority of mission tasks [4]. It is formally defined as follows. 

 
 

 

Schematic representation of the multi-objective misson for the heterogeneus group of three AUVs 

with four different kinds of tasks. 
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Within the given water area with a known seabed profile (Fig. 1, a) there is a set of tasks 

{1,..., n}N = . These tasks (Fig. 1, b) are defined not only with their location in space, but also with 

the type of equipment {1,..., }
i

w w∈  (colored circles on Fig. 1, b) and time interval 
i

s  required for 

corresponded works. In addition, each task i N∈  receives its periodicity value
i

p  (numbers inside 

circles on Fig. 2, b) due to its predefined priority. Periodicity value defines the desired duration of 

a time interval between two successive task’s visits by any allowed AUVs. Color bars around each 

circle on Fig. 2, b represents remaining time interval to accomplish corresponded task in time: in 

case of arriving ahead of time, AUVs should stand idle this time period before starting to perform 

required underwater works. 

 

The group of vehicles performing the mission consists of M  vehicles with their cruising speed 

, 1,...,k
v k M= , range of communication channel , 1,...,k

с k M=  and set of installed on-board 

equipment 
1 2, ,..., ,k k k k

wu u u u=  {0,1}k

lu ∈ , 1,...,l w=  (colored sections on Fig. 2, c). Thus, the k-th 

AUV is able to perform works of i-th task if and only if 1
i

k

wu = .  

 

Group coordination is provided only by transferring data between robots through hydro-acoustic 

channel. Two AUVs i and j are able to transfer data between each other if ( , ) min( , )i j
d i j c c< , 

where d stands for distance between two vehicles. Complete data alignment within the group in 

this case could be achieved only if each pair of vehicles would be able to transfer data to each 

other directly or through other AUVs. In other words, to initiate the communication session the  

group must form a connected graph with only communicatively coupled vehicles. 
 

  

 
 

 

Fig.2. AUVs group functioning during a single period of planning 

 

sessions within the entire group. Communication stability requirement arises due to the dynamic 

nature of underwater missions: some unexpected changes may occur in real time, making it 

necessary to adjust the current route (re-plan) in order to maximize the group efficiency in new 

conditions. Among the events that require route re-planning are adding new tasks or removing 

existing ones; change of task’s equipment requirements or periodicity; adding new vehicles; 

equipment functional loss or even full AUVs breakdowns. 

 

The effectiveness of the group work is determined, in the first place, by the regularity of 

scheduled tasks accomplishments. Situations, when AUV arrives too late and delays performing 

of corresponded works are undesirable and should be penalized via efficiency criteria. Thus, the 

routing problem is to find a feasible group route that provides the minimum time of AUVs late 

attendances up to the end of the mission.  



International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.2, March 2018 

36 

 

To solve the group routing problem in described conditions the following features has to be 

considered: 

 

• undefined duration of the whole mission; 

• dynamic conditions of the mission; 

• communication stability requirement; 

• expectable large-size of the problem. 

 

Given these features, we suggest the following decomposition approach: to divide the process of 

mission implementation on finite time periods (periods of planning) with communication sessions 

at the end of each period. In this case, the AUVs group operational sequence on a single period of 

planning can be represented as the block scheme on Fig. 2. 

 

According to this scheme, each vehicle computes to find the best group route for the next period 

of planning while following their previously planned routes on the current period. Full data 

alignment at the end of each period allows vehicles to receive all information obtained by other 

AUVs, to update the actual state of the group and to exchange their best-found solutions. Then, 

the most effective route among suggested is selected to become current on the new planning 

period for the whole group. This approach also allows to parallelizing all calculations among the 

vehicles in a natural way. 

  

3.EFFICIENCY CRITERIA 
 

Limited duration of planning period allows us to construct efficiency criteria for the group route in 

an explicit form. First, we define the route of single vehicle 1 2(r), (r),..., (r)
h

r V V V=  as a list of 

tasks numbers in the consecutive order of their planned visits, where h is the route length due to 

the planning period horizon. It should be noted that any task could be included more than once into 

the route of a single robot. The group route { }1 ,..., r
M

R r=  is a set of all single AUVs routes. 

 

In order to construct reasonable efficiency criterion for the group route, we define an additional 

function ( )
i

a t  corresponding to each task i  of the mission that defines the “hotness” of the 

corresponded task at a specified moment of time: 
 

1[ s , ]( s ) / ,
( ) , k 1, 2,...,

[ , s ]0,

ik i ikik i i

i

ik ik i

t t ta t t p
a t

t t t

+∈ +⋅ − −
= =

∈ +
        (1) 

 

where 
1 2
, ,...

i i
t t  is a sequence of moments, when task i  is expected to be attended by AUVs 

according to the current route, and a  is a constant threshold value that is equal for all tasks. The 

accomplishment of the task by any acceptable AUV i  resets its “hotness” to a zero value, 

following that the function (1) begins to increase until next attendance, while reaching threshold 

value a  in period of 
i

p  (Fig. 3). 
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Now we define a penalty for the single delay of the task accomplishment: 

 

( )(t) ,
( , ) .

( )0,

ii

i

i

a t aa a
a t

a t a
ϕ

>−
= 

≤  

                                                         (2) 

Hence, the total route penalty is an aggregation of penalties on each task attendance for all AUVs 

within the group route:  

 

1

1 1

(R) ( , ),
M h

m m

i j

f a tϕ
= =

=∑∑                                                                 (3) 

Where m  stands for (r )j iV  and 
m

t  values represent the time moments of expected 

accomplishments of corresponding tasks.  
 

Function (3) insufficiency is what it considers penalties on only those tasks that are being included 

in the group route R  and only at the moments of AUVs attendances if any. For this reason, it is 

needed to consider an additional function, which would care not about well-timed accomplishment 

of tasks within the route as (3), but would estimate the level of “completeness” of all tasks at the 

end of group movement: 

 

2

1

( ) a ( ),
N

i R

i

f R t
=

=∑                                                                    (4) 

 

 
 

 Fig.3. Graphical representation of the “hotness” function 

 

Where 
R

t  is the end of current planning period. Function (4) also indirectly normalizes all single 

vehicle routes durations. 

 

The final efficiency criteria for the group route is: 

 

1 2( ) ( ) ( ), Z,f R M f R f R R= ⋅ + ∈                                                           (5) 

 

Where Z  is the set of all feasible (in terms of equipment requirements)and communicatively 

stable group routes.  

 

The timestamps sequent required in (1) and (4) cannot be calculated explicitly since the idle time 

for each AUV on each task of its route depends not only on previous actions of this specific 

vehicle, but also on actions of all other vehicles of the group up to that moments. To unravel all 

timestamps of AUVs actions on their route we use special time-line table (Table I) that is 

algorithmically filled using following scheme. 
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Set «Current order number» = 1 for all AUVs; 

Fill «Current task» according to the current group state; 

While (Route is not finished) 

Define i as AUV with minimal «Expected time»; 

Work with i-th String; 

Define j = «Current order number»; 

Define m as j-th task in the route of i-th AUV;  

If («Action» = Move) 

Write: Action = Work; 

Write: «Expected time» = «Expected time» + s(m); 

If («Action» = Work) 

t(m) = «Expected time»; 

Save t(m) as the Timestamp to the Sequence list; 

j = j + 1; 

Write: «Current order number» = j; 

Define m as j-th task in the route of i-th AUV;  

Write: «Task number» = m; 

Write: Action = Move; 

Define d as path length from i-th AUV to task m; 

Define t1 = d/v(i) as i-th AUV travel time; 

Define t1 = «Expected time» + t1; 

Define t2 = t(m)+p(m) as next schedule time for m; 

Define t = max(t1, t2); 

Write: «Expected time» = t; 
 

Define t(r) = max (all «Expected time») as Period end time; 
 

It is also should be noted that the function (1) is constructed in such way, that “hotness” of tasks 

with lesser periodicity grows faster. In that way, delaying of attendance would happen preferably 

with tasks of the biggest periodicity. 
 

Now that we have the final criteria (5) in the explicit form, we can use it as the objective function 

to compare the efficiency of different group routes. 

 
Table 1.Example of The Time-Line Table In Process 

 

 
 

4.EVOLUTIONARY APPROACH 
 

For a broad combinatorial class of vehicle routing problems, there are no algorithms solving it in 

polynomial time, which leads us to the class of approximation algorithms allowing to obtain 

rational sub-optimal solutions in low computational time. Evolutionary methods have proven to be 

efficient on the standard VRP and on a number of other variants like VRP with time windows [5]. 

Noteworthy is the contribution of Prins [6], who introduced an important methodological element, 
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namely the solution representation for the VRP as a Travelling salesman problem (TSP) tour 

without delimiters [7]. 

 

Their main advantage of evolutionary algorithms (EAs) is the ability to find solutions for poorly 

structured problems and problems with complex constraints, as EAs require a relatively small 

amount of information about the nature of the problem. An Essential drawback of evolutionary 

methods is very strong speed and efficiency dependence on the construction and improvement 

heuristics being used. 

 

Another layer of complexity is implied by a “bad” neighborhood structure of the described multi-

objective routing problem, making it difficult to allocate and find qualitative and feasible solutions, 

as they may not be in the neighborhood of other feasible high-quality solutions in the search space. 

Until recently, however, the most successful contributions to this class of problems were based on 

the serial explorations of neighborhoods [6]. 

 

We propose a hybrid evolutionary approach featuring specialized genetic operators, advanced local 

search heuristics and solution improvement techniques to address both the expectable large-size of 

the problem and complex spatiotemporal constraints that primarily arise from the AUVs 

heterogeneity. The block diagram for the proposed evolutionary hybrid algorithm is shown on 

Fig.4. 
 

 
 

Fig. 4. The block diagram of hybrid evolutionary approach with colored blocks of advanced procedures  

and author’s modifications. 

 

The construction of the initial population of solutions is the first and crucial step to achieve good 

rational solutions rapidly. The aim of this step is to construct a set of feasible only chromosomes 

ensuring both covering a significant portion of the search space and containing a variety of good 
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solutions. We propose to achieve this requirement by use of three different construction heuristics: 

random sequential insertion and two parallel insertions in the rate of 40/30/30.  

The first heuristic is "random insertion with no duplicates" and it generates AUVs routes 

sequentially: at first, the full route for the first vehicle, then for the second, etc. The starting task 

for each vehicle is randomly selected from the entire set of affordable tasks. All subsequent tasks 

are selected in the same manner but with the additional requirement to be different, if possible, 

from the previous task of this vehicle. 
 

The next two constructive heuristics are based on the time-oriented nearest-neighbor insertion 

heuristic by Solomon [8] and are parallel, i.e. they build routes for all robots in the group 

simultaneously. Both parallel heuristics use the “ultimate” schedule without any delays to form the 

ordered list of tasks to pick and insert into routes of different vehicles. For the first heuristic of 

"time-greedy insertion", the probability to select each AUV for the current task is inversely 

proportional to the number of tasks already assigned to this vehicle, while for the second "quality-

greedy insertion" this probability depends also on the distance between current task and the last 

task in the route of each AUV. The use of two parallel heuristics here provides the population 

diversity not only among the solutions built with the random insertion, but also within the set of 

more qualitative solutions. It should be noted, that on each iteration of construction heuristics only 

those AUVs are considered, which has all the required onboard equipment. 
 

The constructed populations are evaluated then with the objective function (5). According to the 

results of ranking, the tournament selection chooses a set of solutions for procreation and 

mutations. We suggest using a number of specialized genetic operators that guarantee the ultimate 

feasibility of offspring solution in terms of equipment requirement: two different variants of 

crossover and a multimode mutation.  
 

The first crossover is called "one-plus-one-point" and it is a modification of the standard two-point 

crossover with the additional rule to choose randomly only the first point: the second one has then 

defined automatically within the route of the same vehicle as the first point. 
 

The second crossover is "focused on inheritance" and it is based on the “adaptive memory” 

crossover proposed in [9]. The proposed crossover identifies the common characteristics of the 

parental individuals and copies them to the offspring-solution, which is a kind of adaptive memory 

procedure. Initially, the two solutions are selected. If there are common parts between the 

solutions, then these common parts are inherited to the offspring; all parts left empty inherit the 

values from the best solutions in the adaptive memory or from some random solutions in the 

population. In each iteration, the adaptive memory is updated based on the best solutions found. 

The structure of this crossover also ensures the feasibility of all resulting chromosomes. 
 

The proposed multimode mutations consist of four operators: add a new task into the route, 

remove the task from the route, change the task within the rote to another task, swap two tasks 

within the route of the same AUV. When mutation operators are implied, all changes are also 

verified on admissibility. Group communication stability is also guaranteed by the special 

verifying procedure. If it is necessary, some virtual tasks can be added to the mission automatically 

to assist group gathering at the end of the planning period.  
 

 

The mechanisms of parallel populations with migration (island model) and elitism provide faster 

algorithm convergence rate while preventing premature convergence to local optima. The 

procedure of clone removal allows preserving the diversity of new populations on each iteration of 

the algorithm.  
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In order to further improve our newly received individuals, the deterministic heuristic search 

techniques of 2-opt exchange and �-interchange are applied periodically to the whole population 

for a deeper exploitation. 
 

To improve the efficiency of a population creation procedure, all probabilistic genetic parameters 

are changed constantly at the end of each iteration of EA. Being determined by the current 

efficiency of the genetic operators these changes allow algorithm to adapt to the different 

situations on different steps of processing. In general, the adaptation mechanism is to keep track of 

the paths, which lead to the solution improving more often than others, and to increase their 

probabilities for the next generation of solutions. The scheme of the ant colony optimization 

algorithm allows to implement such an adaptation in a natural way. The implementation of the 

adaptation mechanism may significantly increase the speed of computing in those cases when 

some genetic operators begin to work significantly better than others do [1]. 
 

5.CONCLUSION 
 

The high efficiency of the suggested approach is shown through a series of simulation studies in 

the modeling framework “AUV Mission Planner”. To do this we have expanded our simulation 

framework “AUV Mission Planner” to test and work out our newly proposed heterogeneous group 

routing problem with new complex constraints and restrictions. We have also updated our path-

planning algorithms for “AUV Mission Planner” to a near-optimal hierarchical path finding 

(HPA*) [10] to achieve almost 30% improvement on the computational speed when generating 

AUVs trajectories. 
 

 The described evolutionary algorithm has demonstrated the ability to generate rapidly a high-

quality set of rational and feasible solutions and to effectively improve the whole population to 

meet the required conditions. The algorithm is proved to be used for efficient multi scale routing of 

various automated vehicles as a high-level control algorithm. Its structure and new heuristics can 

be used not only to efficiently route the heterogeneous robot groups during multi-objective 

missions, but also to address other complex statements of VRP and its modern variations. 

We have evaluated the impact of each of the embedded heuristic and procedures on the rate and 

quality of the algorithm convergence (Table II). 
 

Table.2. Average impact of different heuristics (in %) 
 

 
 

Due to the complex and non-polynomial nature of the problem, we have been able to find global 

solutions only for a group of small sized (with a number of permutations not exceeding 20
10 ) 

experimental problems that have been generated randomly. For this series of experiments, our 

hybrid evolutionary algorithm has obtained the global solution in 42% of launches with a 2.34% 

average deviation of resulted solutions from optimal ones. 
 

 

The problem is still open to be expanded with new entities, parameters and constraints, such as 

new various types of objectives, a necessity in battery charging etc. 
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