
International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

DOI: 10.5121/ijcnc.2018.10502 27

ENHANCING AND MEASURING THE

PERFORMANCE IN SOFTWARE DEFINED

NETWORKING

1
Md. Alam Hossain,

1
Mohammad Nowsin Amin Sheikh,

2,*
Shawon S. M.

Rahman,
1
Sujan Biswas, and

1
Md. Ariful Islam Arman

1
Dept. of Computer Science & Engineering, Jessore University of Science and

Technology, Jessore, Bangladesh
2
Associate Professor, Dept. of Computer Science & Engineering, University of Hawaii-

Hilo, 200 W. Kawili Street, Hilo, HI 96720, USA

ABSTRACT

Software Defined Networking (SDN) is a challenging chapter in today’s networking era. It is a network

design approach that engages the framework to be controlled or 'altered' adroitly and halfway using

programming applications. SDN is a serious advancement that assures to provide a better strategy than

displaying the Quality of Service (QoS) approach in the present correspondence frameworks. SDN

etymologically changes the lead and convenience of system instruments using the single high state

program. It separates the system control and sending functions, empowering the network control to end up

specifically. It provides more functionality and more flexibility than the traditional networks. A network

administrator can easily shape the traffic without touching any individual switches and services which are

needed in a network. The main technology for implementing SDN is a separation of data plane and control

plane, network virtualization through programmability. The total amount of time in which user can

respond is called response time. Throughput is known as how fast a network can send data. In this paper,

we have design a network through which we have measured the Response Time and Throughput comparing

with the Real-time Online Interactive Applications (ROIA), Multiple Packet Scheduler, and NOX.

KEYWORDS

Software Defined Networking, SDN, Quality of Service, QoS, Real-time Online Interactive Application,

ROIA, Network Operating System, NOX, CES, MPLSTE, Switch Capacity, Number of Queues Impact, QoE

Evaluation, Bandwidth Isolation

1. INTRODUCTION

SDN allows network operators to manage networking components using software on an external

server [1]. The SDN transport network provides abstraction in three fields. It is done by the

forwarding element (FE) and the control element (CE) between the networking architectures.

Among the many central regulators, the distribution of control software from multiple packet

forwarding nodes has been proposed to improve the flexibility of new services (i.e. virtual private

network, overlays networking, content distribution, and cloud computing); standardized
programmable APIs, and credibility among integrated IP networks [1,2,3,4,5].The installation of

control software in a few controller nodes remotely from the forwarding elements reduces the

software complexity of numerous forwarding elements and increases the overall reliability of the

network [6]. SDN makes the introduction of a new vendor operating system much easier. It

allows users to create plug-ins to connect control bridges to improve hardware, without changing

the control hardware. Real-time Online Interactive Applications (ROIA), e.g., multiplayer online

games and simulation-based e-learning, internet applications are top Internet applications that

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

28

claim the highest Quality of Service (QoS) on the underlying networks [21,31]. This demand

depends on the number of users and the actual application state and, therefore, is changed at

runtime. Some SDN-based jobs are targeted to meet the needs of network resources, policy-based
network provisioning is targeted [7, 8,22], whereas wide area networks (WANs) are targeted to

traffic engineering [9, 10, 20]. Dynamic allocations of network resources are also required in data

centers and many studies deal with these challenges. For example, an Open Flow-based algorithm

[17] for allocation of bandwidth resources in Virtual Machine is presented in data centers [11]

when [12] the author describes a platform for coordinating the provision of calculation, storage

and network resources in the data centers. The Network Operating System (NOX) does not work

on the network itself; it provides a programming interface with high-level objects (such as CPU
processing power, disk storage volume, memory, link power, etc.) of network resources, enabling

network application programs to run securely and efficiently over a wide variety of network

programs[28].

2. EXISTING SYSTEM AND IT’S PROBLEM

2.1 ROIA

Real-time Online Interactive Applications (ROIA) are a possible network application connected

with a number of users which could interact with applications and the truth, for example, a

replication to a user’s action transpires virtually immediately. Due to a large, variable user with

intensive and dynamic interaction, ROIA claims high Quality of Services (QoS) of low networks.
In addition, these needs can change constantly; the number of users and the actual application

depends on the state: In a shooter game, a high packet loss in a warring kingdom can be fatal

consequences on QoS [21]. It is less relevant when a player is exploring the landscape.

The ROIA applications are divided into two parts, a static and a dynamic part. The static part has

a non-variable and landscape objects. Playing non-game controlled by one of the other dynamic

parts in the server. These objects can change their status at any time. Figure 1 shows the structure

of an ROIA. This architecture serves only one ROIA processed ROIA client. But a group of

ROIA processes is distributed among different machines. In an approximate loop processing,

ROIA is reconsidered in a real state, is known as the real-time loop [24]. There are three main

steps for a single loop repeat. First, the user sends the input through the network and sends it and

gets cordially via the ROIA process. Then, to calculate the application state, we can apply user

input and logic to the current state. After that, the loop is transferred to the client while updating.

Figure 1.Structure of an ROIA and its real-time loop

Figure 2 shows the graph of the calculation of Response Time with ROIA [16] of Table 1.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

29

Table 1. Calculation of Response Time and Throughput with ROIA

Number of Operations Response Time (ROIA) ms Throughput (ROIA)

ms 5 1.03 0.97087

10 1.19 0.84033

15 1.22 0.81967

20 1.35 0.74074

25 1.29 0.77519

30 1.07 0.93457

35 1.48 0.67567

40 1.21 0.82644

45 1.34 0.74626

50 1.09 0.91743

55 1.42 0.70422

60 1.3 0.76923

65 1.15 0.86959

70 1.45 0.68965

Figure 2. Response Time and Throughput of ROIA

2.2 MULTIPLE PACKET SCHEDULER

The Open Flow data path plus QoS modules is for the QoS Flow data path. This datapath is a

utility space implementation where queues are located in the kernel space. The QoS module

opens a channel with the kernel through the Net link and Packet socket families to connect both

utilize and kernel space. Thus, the packet schedulers can be instantiated to enable traffic shaping

and enqueueing of flows. The components called Traffic Shaping, Packet Schedulers and

enqueueing that constructs the QoS module of the QoS Flow data path, and their relationships are

illustrated in Figure 3.

Figure 3. QoS module which has been added to the standard Open Flow data path

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

30

Traffic Shaping and Packet Schedulers: These components use Net link socket family to

manipulate OFPT_QOS_QUEUEING_DISCIPLINE message type, which is a new extension of

the message to represent the QoS message in OF protocol.

Hence, the Traffic Shaping and Packet Schedulers components administer the QoS messages

receipt from control plane by splitting the bandwidth size in queues and by attaching or detaching

packet schedulers for these queues, respectively. To establish a connection with the kernel, these

components open a Net link socket channel and send a Net link message through it. The Net link

message is the type of message that Linux kernel accepts for network resources management. In

this way, the QoS messages are mapped to Net link messages.

Enqueueing. It is the component responsible to operate OFPT_FLOW_MOD messages of the OF

protocol. This message modifies the state of the flow table, where each entry contains header

fields, counters, and actions for matching packets or flow packets. The enqueueing

mechanism maps, flow to queues using the skip-> priority of kernel data structure called sk_buff.

This configuration is done through the use of the SO_PRIORITY option of the Packet socket

family [33]. Sinceuserspace cannot access such data structure directly. The QoS development

strategy for OF enabling networks to overcome packet scheduling issues. The main goal of QoS

Flow is to allow control of multiple packet schedulers. In another word, QoS Flow brings the

traffic control of Linux to become part of ONF networks.[30] Our proposal extends the OF

protocol 1.0 and the standard datapath based on it. This way, developers can deploy their own

application to enable, for instance, a control of bandwidth-on-demand with one or more packet

schedulers on the network. Currently, QoS Flow provides control of the following packet
schedulers: HTB (Hierarchical Token Bucket) [25], RED (Randomly Early Detection) [26], and

SFQ (Stochastic Fairness Queuing) [27].Currently, QoS Flow controls the following packet

schedulers: HTB, SFQ, and RED where the HTB is a classfull, while SFQ and RED are classless

queuing discipline. Thus, the current QoS Flow features come from these Linux kernel packet

schedulers.

HTB: Allows splitting bandwidth size of the network. By default, the Linux kernel automatically
attaches a FIFO packet scheduler to each bandwidth segment. It creates logical links which are

slower than a physical link.

SFQ: Belongs to fair queuing algorithms. The SFQ schedules the packet transmission based on

information about the IPv4/v6 source and destination address, and TCP/UDP source port to

assign each flow to each hash bucket, on the enqueueing phase.

RED: It drops packets in a queue gradually. It performs a tail drop like FIFO, but smartly. Such a

packet scheduler has a threshold value to mark packets to be discarded after queue length

becomes greater than the threshold value.

Figure 4 shows the graph of the calculation of Response Time and Throughput with Multiple

Packet Scheduler [18] of Table 2

.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

31

Table 2. Calculation of Response Time and Throughput with Multiple Packet Schedulers

Number of

Operations

Respon

se Time

(HTB)

ms

Respons

e Time

(SFQ)

ms

Respons

e Time

(RED)

ms

Throughput

(HTB) ms

Throughput

(SFQ) ms

Thro

ughp

ut

(RE
5 1.28 0.1 0.55 .12206 .15625 0.028

4 10 2.56 0.2 1.1 .244125 .3125 0.056

81 15 3.84 0.3 1.65 .36618 .46875 0.085

22 20 5.12 0.4 2.2 .48825 .625 0.113

635 25 6.4 0.5 2.75 .6103125 .78125 0.142

04 30 7.68 0.6 3.3 .732375 .9375 0.170

45 35 8.96 0.7 3.85 .8544375 1.09375 0.198

86 40 10.24 0.8 4.4 .9765 1.25 0.227

27 45 11.52 0.9 4.95 1.09856 1.40625 0.255

67 50 12.8 1 5.5 1.220625 1.5625 0.284

08 55 14.08 1.1 6.05 1.34268 1.71875 0.312

49 60 15.36 1.2 6.6 1.46472 1.875 0.340

905 65 16.64 1.3 7.15 1.58678 2.03125 0.369

31 70 17.92 1.4 7.7 1.70884. 2.1875 0.397

72

Figure4. Response Time and Throughput of Multiple Packet Schedulers

2.3 NOX

Network Operating System (NOX) management applications are built as a central program in

order to engender high caliber relinquishments of network resources in contrast to the algorithms

distributed on low-level addresses [23, 24]. The network operating system does not manage the
network itself. It provides a programming interface with high calibers of network resources (e.g.

recollection, disk storage volume, CPU processing puissance, disk storage volume, link potency,

etc.) that enables network application programs to perform involutes tasks safely and efficiently

in a wide range of networking technologies [23]. The NOX, however, fails in giving the

indispensable functions for QoS-assured Software Defined Networking (SDN) [22, 25, 35]

accommodation provisioning on the bearer grade provider internet, such as QoS-vigilant virtual

network seating, end-to-end network QoS quantification, and cooperation among control elements
in another domain network. Figure 5 shows the graph of the calculation of Response Time and

Throughput with NOX [19] of Table 3.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

32

Table 3. Calculation of Response Time and Throughput with NOX

Number of

Operations

Response Time (NOX)

ms

Throughput (NOX) ms

5 0.7948 0.09

10 0.983 0.091

15 0.8542 0.08

20 0.808 0.075

25 0.888 0.0859

30 0.899 0.0848

35 0.9585 0.079

40 0.97 0.082

45 0.787 0.072

50 0.9095 0.0797

55 0.755 0.0976

60 0.7777 0.0776

65 0.842 0.0923

70 0.7888 0.0948

Figure 5. Response Time and Throughput with NOX

3. RELATED WORK

SDN allows network operators to manage networking components using software on an external

server [4, 41]. The SDN Transport Network (Distribution Status, Forwarding, and Configuration)

provides an abstraction in three fields, the simplest way to create simplicity. It is done by

forwarding element (FE) and the control element (CE) between the networking architecture.

Among the many central regulators, the distribution of control software from multiple packet

forwarding nodes has been proposed to improve the flexibility of new services (i.e. virtual private
network, overlays networking, content distribution, and cloud computing); standardized

programmable APIs, and credibility among integrated IP networks[4-7].Since installing

distribute, forward components, central control software on several remote control nodes reduces

the software complexity of many forwarding components, and it increases network overall

fidelity [5]. SDN makes the introduction of a new vendor operating system much easier. It allows

users to create plug-ins to connect control bridges to improve hardware, without changing the

control hardware, without changing the hardware included.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

33

Real-time Online Interactive Applications (ROIA), e.g., multiplayer online games and simulation-

based e-learning, Internet applications are top Internet applications that claim high-quality

services (QoS) underlying networks. This demand depends on the number of users and the actual
application state and, therefore, is changed at runtime.[32] Common networks have very limited

potential to influence network behavior to meet dynamic QoS requirements, as most ROIA uses

underlying networks based on a best-effort basis.

Some SDN-based jobs are targeted to meet the needs of network resources, policy-based network

provisioning is targeted at [11, 12, 37], whereas wide area networks (WANs) are targeted to

traffic engineering [13,14, 20]. Dynamic allocation of network resources is also required in data
centers and many studies deal with this challenge. For example, an OpenFlow-based algorithm

[17] for allocation of bandwidth resources in Virtual Machine is presented in Data Centers [15],

when [16] the author describes a platform for coordinating the provision of calculation, storage

and network resources in the data centers. However, the most relevant work focuses on the

service logic for QoS-aware resource provisioning, finding out the details of how managed and

privileged the network resources are in resources.

The Network Operating System (NOX) does not work on the network itself; it provides the NOX

Carrier Grade Production Internet, such as QoS-aware virtual network embedding, end-to-end

network QoS evaluation, QoS-guaranteed software scheduled networking (SDN) [4] fails to

provide the functions required to provide the service, and co-operation between control elements

of other domain networks.

4. OVERVIEW OF THE PROPOSED SYSTEM

We have designed a QoS module for getting better performance during packet passing. We can

test our designed QoS module on the basis of response time, throughput, and bandwidth isolation

and switch capacity.

In our proposed architecture there are three networks. Each network consists of three routers and

three users or hosts connected with each other. In every network, the routers are interconnected

with each other. Three networks are connected with the SDN controller, which is QoS

performance monitor also. After interconnecting the routers of each network, the network will be

connected to each other. By interconnecting these networks, all hosts and routers will be

interconnected with themselves.

We implemented our proposed architecture in mininet environment in Linux operating system. To

implement this architecture, at first, we have to set up mininet environment of our machine. We

have created a topology to build up the architecture with the help of the Python language. We

define the hosts and routers, add the hosts by self-addhost function and add the routers by self-add

switch function. After combining all the routers and hosts we have checked all the hosts.[29] For

checking the establishment of the architecture we use the ping command in mininet environment.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

Table 4: Calculation of Response Time

Number of

Operations

Response Time

(Developed_QoS_module) ms

5 0.7104
10 0.783
15 0.8062
20 0.7372
25 0.797
30 0.809
35 0.7736
40 0.892
45 0.6482
50 0.8104
55 0.666
60 0.6454
65 0.703
70 0.7054

Figure 7.

Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

Figure 6: Developed_QoS_module

Response Time and Throughput with Developed QoS module

Response Time

(Developed_QoS_module) ms

Throughput

(Developed_QoS_module) ms

0.0514
0.0792
0.0612
0.0488
0.0606
0.0646
0.062
0.059
0.06
0.0582
0.0466
0.0556
0.0752
0.0738

Figure 7. Response Time of Proposed System

Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

34

with Developed QoS module

(Developed_QoS_module) ms

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

35

Pseudo code

1. Take the number of hosts and routers as n and r

2. Connect n hosts and r routers

3. for i=1 to n

4. for j=1 to r

5. Self. Add link(host[i],router[j])

6. End

5. PERFORMANCE ANALYSIS

5.1 COMPARISON OF THROUGHPUT

We can calculate the performance in two cases. The first case is our developed module is better

and another case is existing systems are better than our system. We can calculate how much better

our developed module than other systems by the following equation:

Performance (p) = m/n

Where m=sum of throughput of Developed QoS module and n=sum of throughput of existing

systems.

We also calculate how much better other systems than our developed module by the following

equation:

Performance (p) = n/m

Where n=sum of throughput of Developed QoS module and m=sum of throughput of existing
systems.

We executed 70 operations in our Developed QoS module. In comparison with a throughput of

ROIA and our Developed QoS modules, the throughput of the Developed QoS module is 13.17x

better than the throughput of ROIA. The throughput of the ROIA and Developed QoS module is

given below.

The throughput of Developed_QoS_module is 14.97x and 19.16x higher in comparison with HTB

and SFQ packet schedulers. In case of a RED packet scheduler, the throughput of RED is 1.53x

higher for the first 10 packets in comparison with our Developed QoS module. After passing of

the first 10 packets our Developed QoS modules' throughput is 3.99x better than a RED packet

scheduler. The throughput of Developed_QoS_module is 1.38x better than the throughput of

NOX.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

36

Table 5: Comparison of Throughput

Number

of

Operatio

ns

Through

put

(ROIA)

ms

Through

put

(HTB)

ms

Through

put

(SFQ)

ms

Through

put

(RED)

ms

Through

put

(NOX)

ms

Through

put

(Propose

d System)

ms

5 0.97087 0.12206 0.15625 0.0284 0.09 0.0514
10 0.84033 0.244125 0.3125 0.05681 0.091 0.0792
15 0.81967 0.36618 0.46875 0.08522 0.08 0.0612
20 0.74074 0.48825 0.625 0.11363 0.075 0.0488
25 0.77519 0.610312 0.78125 0.14204 0.0859 0.0606
30 0.93457 0.732375 0.9375 0.17045 0.0848 0.0646
35 0.67567 0.854437 1.09375 0.19886 0.079 0.062
40 0.82644 0.9765 1.25 0.22727 0.082 0.059
45 0.74626 1.09856 1.40625 0.25567 0.072 0.06
50 0.91743 1.22062 1.5625 0.28408 0.0797 0.0582
55 0.70422 1.34268 1.71875 0.31249 0.0976 0.0466
60 0.76923 1.46472 1.875 0.34090 0.0776 0.0556
65 0.86959 1.58678 2.03125 0.36931 0.0923 0.0752
70 0.68965 1.70884 2.1875 0.39772 0.0948 0.0738

5.2 COMPARISON OF RESPONSE TIME

In a comparison of response time between ROIA and our Developed QoS module, the response

time of the Developed QoS module is 1.677x higher than the response time of ROIA. In a

comparison of response time with multiple packet schedulers, there are three packet schedulers

we have compared with our Developed QoS module. They are HTB, SFQ and RED packet

scheduler. The response time of the Developed QoS module is 1.7x better than an HTB packet

scheduler. In case of a RED packet scheduler, the response time of first 6 packets is 1.2x better

than Developed QoS module and for other packet passing response time of Developed
QoS,themodule is 1.37x higher than a RED packet scheduler. We have compared the response

time with SFQ packet scheduler, the response time of first 41 packets passing is 7.70x higher than

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

37

a Developed QoS module. The response time of next 29 packets in Developed QoS module is

8.74x better than SFQ packet scheduler. The response time of Developed QoS_module is 1.07x

higher than the response time of NOX.

Table 6. Comparison of Response Time

6. CONCLUSION

Software Defined Networking is an emerging topic for the modern era. It is an idea which has

recently reignited the interest of network researchers for programmable networks. Enabling

added-value services are the main target for this work. Not only this but also ensuring the security
[34][35][36]is another purpose of this work. The SDN enables an easy and flexible realization of

existing dynamic Quality of Service (QoS) mechanisms in today’s communication networks.

Although SDN and, in particular, Open Flow claims to provide a standardized interface, the

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

38

existing diversity of Open Flow enables switches leads to varying behavior for the same QoS

mechanisms. We will improve Quality of Services (QoS) in SDN by building an architecture

which will be implemented in any network emulator.

7. FUTURE WORK

In this paper, we have used with two parameters, such as Response Time and Throughput.In the

future implementation; we aim to use Switch Capacity, Number of Queues Impact, QoE

Evaluation, and Bandwidth Isolation.

REFERENCES

[1] “Improving QoS in Real-Time Internet Applications: From Best-Effort to Software-Defined Networks

- IEEE Xplore Document.”10 April 2014.

[2] “Control of Multiple Packet Schedulers for Improving QoS on OpenFlow/SDN Networking - IEEE

Xplore Document.” 12 December 2013.

[3] Mudit Saxena, and Dr. Rakesh Kumar.”A Recent Trends in Software Defined Networking (SDN)

Security.” International Conference on Computing for Sustainable Global Development

(INDIACom).on 2016 IEEE.

[4] Natasha Gude et al., “NOX: Towards an Operating System for Networks,” editorial note submitted to

CCR.

[5] Arsalan Tavakoli et al, “Applying NOX to the Datacenter,” in Proc. Of SIGCOMM Hotnet 2009.

[6] Dimitri Staessens et al., “Software Defined Networking: Meeting Carrier Grade Requirements,” in

Proc. of IEEE Workshop on Local & Metropolitan Area Networks (LANMAN), 2011.

[7] P. Georgopoulos, Y. Elkhatib, M. Broadbent et al., “Towards network wide QoE fairness using

OpenFlow-assisted adaptive video streaming,” in Proc. of the 2013 ACM SIGCOMM Workshop on

Future Human- Centric Multimedia Networking (FhMN 2013), Hong Kong, China, 2013, pp. 15–20.

[8] T. Zinner, M. Jarschel, A. Blenk et al., “Dynamic application-aware resource management using

software-defined networking: implementation prospects and challenges,” in Proc. of the 2014 IEEE

Network Operations and Management Symposium (NOMS ’14), Krakow, Poland, 2014, pp. 1–6.

[9] Lazaris, D. Tahara, X. Huang et al., “Tango: simplifying SDN control with automatic switch property

inference, abstraction, and optimization,” in Proc. of the 10th ACM International on Conference on

emerging Networking Experiments and Technologies (CoNEXT), Sydney, Australia, 2014, pp. 199–

212.

[10] M. Kuzniar, P. Peresini, and D. Kostic, “What you need to know about SDN control and data planes,”

EPFL, Lausanne, Switzerland, Tech. Rep. EPFL-REPORT-199497, 2014.

[11] V. Mann, A. Vishnoi, A. Iyer et al., “VMPatrol: dynamic and automated QoS for virtual machine

migrations,” in Proc. of the 8th International Conference on Network and Service Management

(CNSM), Las Vegas, USA, 2012, pp. 174–178.

[12] Z. Bozakov and A. Rizk, “Taming SDN controllers in heterogeneous hardware environments,” in

Proc. of Second European Workshop on Software Defined Networks (EWSDN), Berlin, Germany,

2013, pp. 50 – 55.

[13] M. Kuzniar, P. Peresini, and D. Kostic, “What you need to know about sdn flow tables,” in Passive

and Active Measurement, ser. Lecture Notes in Computer Science, J. Mirkovic and Y. Liu, Eds.

Springer International Publishing, 2015, vol. 8995, pp. 347–359.

[14] P. M. Mohan, D. M. Divakaran, and M. Gurusamy, “Performance study of TCP flows with QoS-

supported OpenFlow in data center networks,” in Proc. of the 19th IEEE International Conference on

Networks (ICON), Singapore, Singapore, 2013, pp. 1–6

[15] Nguyen-Ngoc, S. Lange, S. Gebert et al., “Investigating isolation between virtual networks in case of

congestion for a Pronto 3290 switch,” in Proc. of the Workshop on Software-Defined Networking and

Network Function Virtualization for Flexible Network Management (SDNFlex 2015), Cottbus,

Germany, 2015.

[16] Bari, M.F., Chowdhury, S.R., Ahmed R., Boutaba, R.: PolicyCop: an autonomic QoS policy

enforcement framework for software defined networks. In: IEEE SDN for Future Networks and

Services, Trento, Italy, pp. 1–7, November 2013.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

39

[17] Egilmez, H.E., Dane, S.T., Bagci, K.T., Tekalp, A. M.: OpenQoS: an openflow controller design for

multimedia delivery with end-to-end Quality of Service over Software-Defined Networks. In:

Proceedings of the Signal and Information Processing Association Annual Summit and Conference,

Hollywood, California, US, pp. 1–8, December 2012.

[18] Guo, J., Fangming, L., Haowen, T., Yingnan, L., Hai, J., John, L.: Falloc: fair network bandwidth

allocation in IaaS datacenters via a bargaining game approach. In: Proceedings of the ICNP,

Gotingen, Germany, pp. 1–10, October 2013.

[19] Benson, T., Akella, A., Shaikh, A., Sahu, S.: CloudNaaS: a cloud networking platform for enterprise

applications. In: Proceedings of the 2nd ACM Symposium on Cloud Computing, Cascais, Portugal

(2011).

[20] Jain, S., et al.: B4: Experience with a globally-deployed software defined WAN. ACM SIGCOMM

Comput. Commun. Rev. 43(4), 3–14 (2013).

[21] Kim, W., et al.: Automated and scalable QoS control for network convergence. In: Proceedings of the

INM/WREN, San Jose, California, US (2010).

[22] M. Betts, S. Fratini, N. Davis, R. Dolin and others, “SDN Architecture”. Open Networking

Foundation ONF SDN ARCH, Issue 1, June, 2014.

[23] M. Joselli et al., “An Architeture with Automatic Load Balancing for Real-Time Simulation and

Visualization Systems,” Journal of Computational Interdisciplinary Sciences, vol. 1, no. 3, pp. 207–

224, 2010.

[24] Bert Hubert, Thomas Graf, Gregory Maxwell, Remco Van Mook, Martijn Van Oosterhout, Paul B.

Schroeder, Jasper Spaans, and Pedro Larroy. Linux Advanced Routing & Traffic Control HOWTO.

Linux Advanced Routing & Traffic Control, http://lartc.org/, April 2004.

[25] Paul E McKenney. Stochastic fairness queueing. In INFOCOM’90. Ninth Annual Joint Conference of

the IEEE Computer and Communication Societies.’The Multiple Facets of Integration’. Proceedings.

IEEE, pages733–740. IEEE, 1990.

[26] “On Scalability of Software-Defined Networking - IEEE Xplore Document.” 14 February 2013.

[27] Alexander So.” Survey on Recent Software-Defined Network Cross-Layer Designs.”

https://www.researchgate.net/publication/311953252_Survey_on_Recent_Software.Defined_Network

_Cross-Layer_Designs on December 2016.

[28] Cisco 2016. Unicast flooding in switched campus networks; http:// www.

Cisco.com/c/n/us/support/docs/switches/catalyst/6000-series-switches/23563-143.html.

[29] ONF.OpenFlow table type patterns, Open Network-ing Foundation, Tech. Rep.Available from:

https://www.opennetworking.org/images/stories/downloads/sdnresources/onfspecifications/openflow/

OpenFlow,[Accessed on: March 9, 2018].

[30] Haleplidis E, Denazis S, Pentikousis K, Denazis S,Salim JH, Meyer D, Koufopavlou O.SDN

layersand architecture terminology, Internet draft, Internet engineering task force. Available from:

https://www.ietf.org/id/draft-irtfsdnrg-layer-terminology-02.txt,[Accessed on: February 20, 2018].

[31] ON.LAB. ONOS: Open Network Operating System. In ONS, 2017.

[32] H. Howard, D. Malkhi, and A. Spiegelman. Flexible Paxos: Quorum intersection revisited. CoRR,

abs/1608.06696, 2016.

[33] Loukaka, Alain and Rahman, Shawon; “Discovering New Cyber Protection Approaches From a

Security Professional Prospective”; International Journal of Computer Networks & Communications

(IJCNC) Vol.9, No.4, July 2017

[34] Al-Mamun, Abdullah, Rahman, Shawon and et al;“ Security Analysis of AES and Enhancing its

Security by Modifying S-Box with an Additional Byte ”; International Journal of Computer Networks

& Communications (IJCNC), Vol.9, No.2, March 2017

[35] Opala, Omondi John; Rahman, Shawon; and Alelaiwi, Abdulhameed; “The Influence of Information

Security on the Adoption of Cloud computing: An Exploratory Analysis”, International Journal of

Computer Networks & Communications (IJCNC), Vol.7, No.4, July 2015

[36] Halton, Michael and Rahman, Syed (Shawon); "The Top 10 Best Cloud-Security Practices in Next-

Generation Networking"; International Journal of Communication Networks and Distributed Systems

(IJCNDS), Vol. 8, Nos. ½, 2012, Pages:70-84

[37] Schuett, Maria and Rahman, Syed (Shawon); “Information Security Synthesis in Online

Universities”; International Journal of Network Security & Its Applications (IJNSA), Vol.3, No.5,

Sep 2011

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.5, September 2018

40

AUTHORS

Md. Alam Hossain is working as an Assistant Professor at the Department of Computer Science &

Engineering in Jessore University of Science & Technology, Bangladesh. He completed his B.Sc and M.Sc

(Thesis) in Computer Science & Engineering from Islamic University, Bangladesh. Currently, he is

pursuing Ph.D. on Cloud Computing Security.

Mohammad Nowsin Amin Sheikh is working as an Assistant Professor at the Department of Computer

Science & Engineering in Jessore University of Science & Technology (JUST), Jessore, Bangladesh. He

completed his B.Sc. (Engg.) in Computer Science & Engineering from Jessore University of Science &

Technology (JUST), Jessore, Bangladesh.

Dr. Shawon S. M. Rahman is an Associate professor in the Department of Computer Science and

Engineering at the University of Hawaii-Hilo. His research interests include software engineering

education, information assurance and security, web accessibility, cloud computing, and software testing

andquality assurance. He has published over 100 peer-reviewed papers. He is an active member of

manyprofessional organizations including IEEE, ACM, ASEE, ASQ, and UPE.

Sujan Biswas completed his B.Sc in Computer Science & Engineering from Jessore University of Science

& Technology, Bangladesh.

Md. Ariful Islam Arman completed his B.Sc in Computer Science & Engineering from Jessore University

of Science & Technology, Bangladesh.

