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ABSTRACT

This paper proposes an intelligent and compact machine learning model for IoT intrusion detection using

an ensemble of semi-parametric models with Ada boost. The proposed model provides an adequate real-

time intrusion detection at an affordable computational complexity suitable for the IoT edge networks. The

proposed model is evaluated against other comparable models using the benchmark data on IoT-IDS and

shows comparable performance with reduced computations as required.
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1. INTRODUCTION

The Internet of Things (IoT) with massively interconnected cyber-physical devices (CPD) is ex-

pected to carry a significant role in mission-critical industry applications. Many CPDs, originally

considered unworthy and unintelligent, have been re-configured for cyber communication for IoT

services with no security provision. Consequently, many of the CPDs remain vulnerable to cyber

attacks [1].

The recent botnet attacks (e.g. Mirai and its variants) have revealed the vulnerabilities of the IoT

devices as millions of weak and small IoT devices were duped to sabotage the victim services with

over 700 GBPS aggregated data attacks [2]. In response, there has been a great effort to develop an

intelligent Intrusion Detection System (IDS) for the IoT networks. The cloud-based IDS utilizes

resource-rich remote servers to offload data processing requirements from the IoT devices, but

they can only offer reactive and postmortem responses as a remote decision module, as depicted

in Figure 1. On another hand, an edge-based IDS is a resource-poor alternative but it can provide

proactive and prompt security responses [3].

There have also been approaches combining cloud-based and edge-based intrusion detection sys-

tems. For example, Hosseinpour et al [4] have proposed a three-layered approach including the

cloud, the fog, and edge layers. The fog is the intermediate layer between the edge devices of

the network and the cloud. Generally, as the number of layers increases, the cost of detection

increases.
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For real-time and mission-critical IoT applications, the edge-based IDS is preferred, but the chal-

lenge remains on how to satisfy data analytic computing requirements using only the limited pool

of computing resources at the edge of IoT networks.

Figure 1. IoT Communication Architecture

Intrusion detection in IoT network, in general, is a major challenge because the data generated

by the IoT devices is massive, information-poor, heterogeneous, and dynamic. Detection of any

pattern in such a data space is a challenge to most of the simple statistical IDS models, thus it

becomes a data mining problem.

In general, a non-parametric or heuristic data mining model is useful in learning and recognizing

the underlying patterns from the incomplete and dynamic data sample. They can achieve higher

intrusion detection accuracy than the simpler models, but their computational complexity can in-

crease exponentially in modeling massively interconnected IoT networks [5].

The parametric data mining models; on the other hand, are simpler but their detection performance

is usually lower and often not acceptable. This phenomenon is well-known as bias and variance

dilemma [6]. The challenge is to create a machine learning model that can achieve high accu-

racy (like a non-parametric model) but maintaining a reduced computational complexity (like a

parametric model).

To this aim, we introduce an innovative machine learning model with an ensemble of semi-

parametric probabilistic models to approximate a much more complex and powerful non-parametric

model (or an ensemble of non-parametric models). The proposed model is to retain the high detec-

tion accuracy of a non-parametric model while reducing its computational complexity to the level

comparable to the parametric models. A simple analogy is to apply a piece-wise linear regression

model to approximate a non-linear regression model under reduced computations.

In this paper, we firstly review the security concerns of IoT networks followed by a literature

review of recent machine learning research in IoT-IDS. In the following section(s), our model is

introduced and compared to other machine learning models using the benchmark IoT botnet attack

data from [7]. The paper concludes with the analysis of the experimental outcomes and the final

remarks on IoT security.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.6, November 2018

  136



2. IOT SECURITY CONCERNS

In this section, we review the IoT architecture including device, receiver, classifier, and response

modules, as shown in Figure 2. We further discuss the security concerns for each part.

Figure 2. IoT Security Architecture

2.1. IoT Devices

For the sake of ubiquitous computing, many small computing devices have been converted as IoT

devices. Some of the devices are resource-enabled with limited memory and processing power,

but the majority of others are not given any processing power (in exception of basic Machine

to Machine communication capacity). Such devices may include IoT-enabled lamps, doorbells or

light switches. The major concern is that these weak and vulnerable resource-depleted IoT devices

are still a part of the larger IoT network without any provision of protection.

The small and weak IoT devices are easy targets for binding and privilege escalation attacks. We

can harden the IoT devices but its basic Machine to Machine (M2M) messaging [8] will quickly

expose the vulnerabilities of these devices [9].

2.2. IoT Data Receivers and Collectors

The IoT communications can be either non-Internet Protocols (IP) based or IP-based. The popular

non-IP protocols include ZigBee, WirelessHart and PROFIBUS which are mostly isolated and

remain incompatible in heterogeneous IoT networks. The IP protocol is fast becoming the de facto

standard in mission-critical IoT applications with innovations in IPSO (IP smart object alliance)

and PROFITNET, a real-time Ethernet standard for the IoT networks [10].

For secure IoT communications, we require efficient hardware sensor devices to collect the ma-

chine 2 machine or machine 2 server signals and communicate them securely to the edge network

controller. The wireless signals can be easily eavesdropped and spoofed, hence we need some

access control and integrity checking modules in place.
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2.3. IoT Data Analytic Module

The data analytic module on the edge network is to receive and analyze the IoT data in real time as

described in Figure 2. The edge computing will have limited computing resources (in comparison

to the cloud-based servers). The edge computing cluster is likely to consist of resource-enabled

IoT devices, small office computer controller, and personal computing devices in the proximity of

the IoT edges. The edge computing can make the use of intelligent distributed processing through

either fog computing or other forms of distributed computing [3].

2.4. IoT Responses and Controls

The majority of current system responses are based on disruptive incident response paradigm in

which the devices are powered off or restarted. These disruptive responses, in fact, serve the

purpose of the attackers. For mission-critical IoT services, we need more sophisticated security

responses. The advanced method is to segment the network for efficient security responses [11].

3. LITERATURE REVIEW

Intelligent network intrusion detection is a timeless challenge in machine learning community.

In particular, IoT edge computing introduces an even more challenge because of their limited

computational resources. The general consensus is to deploy a form of distributed computing and

shared memory amongst the small IoT devices and mobile devices in the proximity of the IoT

edge as shown in Figure 3. The distributed computing is to offer virtualized server to run data

analytic processing for IoT-IDS over the IoT edge devices.

In this section, we review the latest advances in distributed computing over the IoT edge networks

followed by some recent works on the use of machine learning models on the IoT edges.

3.1. Distributed Computing

There has been some significant research work on embedding data analytic modeling in the edge

IoT devices for proactive critical responses.

The IoT edge computing is mainly used for computational offloading of data storage and analytic

processing. The offloading must take into consideration of the dynamic nature of network access

requirements, number of edge devices, and available computational resources at the edge devices.

We must take into consideration the granularity and hierarchy of edge network topology and how

to dynamically partition the application for offloading [12].

In literature, MAUI [13] offers code offloading for adaptive utilization of network resources.

COMET [14] offers virtual machine synchronization and shared memory over the IoT edge net-

work, and ThinkAir [15] uses parallel virtualization over the IoT edge devices for distributed data

processing. Nishio et al [16] introduces the mobile cloud in which small portions of processing

tasks are distributed amongst small mobile devices under the direction of the supervisory control

module in awareness of latency and resource optimization.
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The underlying idea is to divide the processing task into small modules for distributed processing

in awareness of latency and resource optimization amongst the myriad of small mobile devices as

shown in Figure 3. The challenge remains on how to segment the data analytic processing tasks

into small modules for distributed processing.

Figure 3. Edge Devices Pooling

3.2. Machine Learning Models

Data analytic computing is inherently intensive, and it may require distributed processing as dis-

cussed in this subsection.

A well-known heuristic model such as Multi-Layer Perceptron (MLP) is known for deep learning

through multiple layers of interconnected intricate memory modules. MLP is not suitable for

distributed processing as the hierarchical segmentation of the network itself is a challenge. The

reassembly of the outputs from the segmented components may not reflect the true learning of the

global MLP [17].

Another popular model such as Self Organizing Map (SOM) is useful in uncovering data pat-

terns. An advanced variant of SOM has been applied to IoT resource scheduling and sharing

with the stringent restriction on energy consumption. This work is appropriate for cloud-server

based processing but not suitable for edge-based processing because the sample data points in-

crease exponentially in predictive modeling of IoT network usage requirements, capacities, and

availability [18]

Other popular models such as Support Vector Machine (SVM) and its advanced variant such as

knn-SVM-PSO [19] are exciting advancement; however, again, they are developed for remote

cloud server processing, not for the resource limited IoT edge devices [20].
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Given the challenge of the resource-limited IoT edge devices, an intuitive solution is to use an

ensemble of simple (data analytic) models. In such case, each data analytic component is al-

ready well segmented from the inception; and there are some options to intelligently combine the

outcomes from the disjoint learning modules for optimal global learning.

In particular, we take a great interest in Adaboost ensemble of simple semi-parametric probabilis-

tic (kernel-based) models for IoT-IDS on the edges. This model has shown to outperform other

complex (non-parametric) models in other dynamic modeling applications [21]. In this paper, we

further adjust and modify the model to be suitable for IoT-IDS over the IoT edge networks.

In the following section, we examine the aforementioned model and examine its architecture to

make it suitable for IoT edge computing. The proposed model is discussed in detail and compared

against other related state-of-the-art models in a simple experiment.

4. PROPOSED MODEL

The proposed model consists of two modules: Adaptive Booster (AB) and Ensemble of Weak

Probabilistic Learners (EPL).

4.1. AdaBoost (AB) Module

The weights for each base hypothesis are updated to minimize the model error while maximizing

the diversity in each base learner [22]. The procedures are explained below:

The initial weak base learner is constructed based on the available sample data

(x1, y1), ... , (xn, yn), yi ∈ {−1, +1} (4.a)

For the first weak base learner, the weights are simply initialized as

W1(i) =
1

N
(4.b)

The weights of the clusters are iteratively updated (e.g strengthened) based on the model error

from the previous set of weights (of the previous weak base learner) as

Wt+1(i) =
Wt(i)exp(−αtyiht(xi))

Zt

(4.c)

where

αt =
1

2
log

(

1− εt

εt

)

(4.d)

and

ht = arg min
hj

εj =
∑n

i=1
Wt(i) [[yi 6= hj(xi)]] (4.e)

The iteration of weight updates will construct a series of weak base classifiers. The final classifiers

is the ensemble of the weak base classifiers. The process is described in Figure 4.
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Figure 4. Adaboost Scheme

4.2. The Base Learner

For our base learner, we use kernel-based probabilistic learning network with strong Bayesian

statistical framework (instead of linear regression model) [23]. This model can adjust its attributes

from parametric to non-parametric modeling by the selection of a single smoothing value. The

smoothing value can adjust the granularity of the clusters enabling the approximation of non-

parametric model with a simpler semi-parametric model as shown in Figure 5.

This approach can reduce the model complexity whilst maximizing the learning in Adaboost.

The semi-parametric base classifier model is represented as:

∧

y(x) =

∑M
i=0

Ziyifi(x−ci, σ)
∑M

i=0
Zifi(x− ci, σ)

(4.f)

with semi-parametric approximation shown below:

∑Zk

i=0
fi(x− xi, σ) ≈ Zkfk(x− ck, σ) (4.g)

Where ci is the center vector for class i in the input space, fi(x, σ) is the radial basis function

with centre x and the width parameter σ , yi is the output related to ci , Zi is the number of vectors

xj associated with centre ci .
∑

i Zi = NV
∑

i Zi = NV is the total number of training vectors.

Equation 4.g represents semi-parametric approximation of data sample points to simplify the data

space as shown Figure 5. The semi-parametric approximation (cluster) is shown with dotted lines

in Figure 5.

The proposed base model is a simple semi-parametric model with a set of data points (centres

of each clusters) to represent points of influence. The influence is determined by the size of the

training data samples in that particular cluster. In our proposed model, the influence on the single

point is further adjusted by the weighting factor from the Adaboost as shown in Figure 5.

As mentioned above, the dotted circles present the semi-parametric approximation of the data
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Figure 5. Comparison of Adaboost and Our Model

clusters. In the newly proposed model, the dotted circles are further enlarged by the adjusting

weight factor from Adaboot.

4.3. Ensemble Model

This iterative learning is to reduce the model complexity by semi-parametric approximation of the

data points (by amalgamation of data points) while to maximize the learning by iterative cluster

weight adjust by Adaboot.

The difference(s) between our proposed approach and normal Adaboot is that, in our proposed

model, Adaboost weight update is applied to the centre of data cluster instead of each data samples,

making the process far more computationally compact.

The final model is an intelligent and compact ensemble of semi-parametric base learners which can

provide high detection accuracy at significantly reduced computational cost, as shown in Figure 6.

5. EXPERIMENTAL RESULTS

The proposed model is applied to the detection of botnet attacks on the IoT devices using the

benchmark data from [7]. Botnet attack refers to an attack in which a set of host computers or IoT

devices are compromised and duped to initiate DDoS (distributed denial of service) attacks on the

victim networks or infrastructure.

For botnet attack detection, we use the collection of destination/source IP addresses and their

associated port numbers. The abnormal connections within a specified time window is to trigger

the alert in the intrusion detection system. The abrupt derivative change in network behavior is
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Figure 6. Learning Model Architecture

also to trigger IDS.

For a comprehensive testing of IDS over Botnet attacks, we select to use the benchmark data

offered by Meidan et al in [7].

The data attribute information includes:

* Stream aggregation:

• H: Stats summarizing the recent traffic from this packet’s host (IP)

• HH: Stats summarizing the recent traffic going from this packet’s host (IP) to the packet’s

destination host.

• HpHp: Stats summarizing the recent traffic going from this packet’s host+port (IP) to the

packet’s destination host+port. Example 192.168.4.2:1242 -> 192.168.4.12:80

• HH jit: Stats summarizing the jitter of the traffic going from this packet’s host (IP) to the

packet’s destination host.

* Time-frame (The decay factor Lambda used in the damped window): How much recent history

of the stream is captured in the statistics L5, L3, L1, ...

* The statistics extracted from the packet stream: weight: The weight of the stream (can be viewed

as the number of items observed in recent history)

• mean:

• std:

• radius: The root squared sum of the two streams’ variances
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• magnitude: The root squared sum of the two streams’ means

• cov: an approximated covariance between two streams

• pcc: an approximated covariance between two streams

From the benchmark dataset, 2/3 of benign data is selected to train the classifier to learn the normal

operating conditions of 9 IoT devices. The other 1/3 of benign data is combined with the attack

data to create a set of testing data. There are several types of attacks, but for the simplicity of the

experiment, we categorize data as either benign or malicious.

The experimental outcome is a simple confusion matrix. The evaluation was carried out using

the Matlab Simulink code exported to run on IoT-edge-hub simulated on the Microsoft Azure

platform.

Table 1. Experimental comparison of IoT IDS

Classifier Detection

Accuracy

Computational

Time (in ratio)

MLP (multi layer

perceptron)

92 1

Hierarchical MLP 98 12+

Self-organising map

(SOM)

88 6+

Distributed SOM 93 20+

Online ensemble of

parametric model

94 0.37

Our proposed ensemble

of semi-parametric models

94 0.71

The experiment compares the performance of the proposed model against the other models in

terms of detection accuracy and the computational cost. The computational cost is estimated by

the average learning time, given the same computational environment.

The proposed model showed comparable classification performance to the other models including

the boosted ensemble of parametric models. The boosted ensemble of parametric models was

compact and useful; however, it could not detect intrusion under somewhat more demanding input

episodes which required non-parametric modeling. The proposed model, on the other hand, could

traverse between the characteristics of parametric model and non-parametric model handing better

diverse type of input episodes.

The classification performance was very high for all the testing models as each model was op-

timized according to the well-known model selection (e.g. sizes of layers and learning units)

practices with rigorous testing [24].

6. CONCLUSION

This paper examined the opportunity of utilizing innovative machine learning tools in practical

deployment of real-time IoT-IDS.
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We introduced an ensemble of semi-parametric probabilistic learning models for intrusion detec-

tion at the IoT edge network. The proposed model was applied to IoT-IDS using the benchmark

data for comparative analysis against other state-of-the-art IDS (using other machine learning al-

gorithms). The proposed model has shown an improved intrusion detection performance given

much constrained computational resources at the edge of IoT networks.

IDS at IoT-edge can greatly improve the responsiveness of the IoT network against real-time at-

tacks, thereby significantly improving the overall IoT security. As the IoT poses to bring a new

era of the inter-connected world, such a responsive and prompt security system can be very timely

and useful.
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Tenhunen, (2016) “An Intrusion Detection System for Fog Computing and IoT based Lo-

gistic Systems using a Smart Data Approach”, International Journal of Digital Content

Technology and its Applications, Vol. 10.

[5] Bernard W Silverman, (2018) Density estimation for statistics and data analysis, Routledge.

[6] Ron Kohavi, David H Wolpert, et al., (1996) “Bias plus variance decomposition for zero-one

loss functions”, in ICML, Vol. 96, pp. 275–83.

[7] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Dominik Breitenbacher, Asaf

Shabtai, and Yuval Elovici, (2018) “N-BaIoT: Network-based Detection of IoT Botnet At-

tacks Using Deep Autoencoders”, arXiv preprint arXiv:1805.03409.

[8] Alya Geogiana Buja, Shekh Faisal Abdul-Latip, and Rabiah Ahmad, (2018) “A Security

Analysis of IoT Encryption: Side-channel Cube Attack on Simeck32/64”, arXiv preprint

arXiv:1808.03557.

[9] Ryan Williams, Emma McMahon, Sagar Samtani, Mark Patton, and Hsinchun Chen, (2017)

“Identifying vulnerabilities of consumer Internet of Things (IoT) devices: A scalable ap-

proach”, in Intelligence and Security Informatics (ISI), 2017 IEEE International Conference

on, pp. 179–181.

[10] Sudhi R Sinha and Youngchoon Park, (2017) Building an Effective IoT Ecosystem for Your

Business, Springer.

[11] Briana Arrington, LiEsa Barnett, Rahmira Rufus, and Albert Esterline, (2016) “Behavioral

modeling intrusion detection system (bmids) using internet of things (iot) behavior-based

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.6, November 2018

145



anomaly detection via immunity-inspired algorithms”, in Computer Communication and

Networks (ICCCN), 2016 25th International Conference on, pp. 1–6.

[12] Otávio Carvalho, Manuel Garcia, Eduardo Roloff, Emmanuell Diaz Carreño, and

Philippe OA Navaux, (2017) “IoT Workload Distribution Impact Between Edge and Cloud

Computing in a Smart Grid Application”, in Latin American High Performance Computing

Conference, pp. 203–217.

[13] Eduardo Cuervo, Aruna Balasubramanian, Dae ki Cho, Alec Wolman, Stefan Saroiu, Ran-

veer Chandra, and Paramvir Bahl, (2010) “MAUI: making smartphones last longer with code

offload”, in Proceedings of the 8th international conference on Mobile systems, applications,

and services, pp. 49–62.

[14] Mark S Gordon, Davoud Anoushe Jamshidi, Scott A Mahlke, Zhuoqing Morley Mao, and

Xu Chen, (2012) “COMET: Code Offload by Migrating Execution Transparently.”, in OSDI,

Vol. 12, pp. 93–106.

[15] Sokol Kosta, Andrius Aucinas, Pan Hui, Richard Mortier, and Xinwen Zhang, (2012)

“Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code

offloading”, in Infocom, 2012 Proceedings IEEE, pp. 945–953.

[16] Takayuki Nishio, Ryoichi Shinkuma, Tatsuro Takahashi, and Narayan B Mandayam, (2013)

“Service-oriented heterogeneous resource sharing for optimizing service latency in mobile

cloud”, in Proceedings of the first international workshop on Mobile cloud computing &

networking, pp. 19–26.

[17] Elike Hodo, Xavier Bellekens, Andrew Hamilton, Pierre-Louis Dubouilh, Ephraim Iorkyase,

Christos Tachtatzis, and Robert Atkinson, (2016) “Threat analysis of IoT networks using

artificial neural network intrusion detection system”, in Networks, Computers and Commu-

nications (ISNCC), 2016 International Symposium on, pp. 1–6.

[18] Nof Abuzainab, Walid Saad, Choong-Seon Hong, and H Vincent Poor, (2017) “Cognitive

hierarchy theory for distributed resource allocation in the internet of things”, arXiv preprint

arXiv:1703.07418.

[19] Abdulla Amin Aburomman and Mamun Bin Ibne Reaz, (2016) “A novel SVM-kNN-PSO

ensemble method for intrusion detection system”, Applied Soft Computing, Vol. 38, pp.

360–372.

[20] Wathiq Laftah Al-Yaseen, Zulaiha Ali Othman, and Mohd Zakree Ahmad Nazri, (2017)

“Multi-level hybrid support vector machine and extreme learning machine based on modified

K-means for intrusion detection system”, Expert Systems with Applications, Vol. 67, pp.

296–303.

[21] Milad Yousefi, Moslem Yousefi, Ricardo Poley Martins Ferreira, Joong Hoon Kim, and

Flavio S Fogliatto, (2018) “Chaotic genetic algorithm and Adaboost ensemble metamodeling

approach for optimum resource planning in emergency departments”, Artificial intelligence

in medicine, Vol. 84, pp. 23–33.

[22] YANG Xinwu, M A Zhuang, and YUAN Shun, (2016) “Multi-class Adaboost Algorithm

Based on the Adjusted Weak Classifier”, Journal of Electronics & Information Technology,

Vol. 38, No. 2, pp. 373–380.

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.6, November 2018

146



[23] Anthony Zaknich, (1998) “Introduction to the modified probabilistic neural network for

general signal processing applications”, IEEE Transactions on Signal Processing, Vol. 46,

No. 7, pp. 1980–1990.

[24] Elike Hodo, Xavier Bellekens, Andrew Hamilton, Pierre-Louis Dubouilh, Ephraim Iorkyase,

Christos Tachtatzis, and Robert Atkinson, (2016) “Threat analysis of IoT networks using

artificial neural network intrusion detection system”, in Networks, Computers and Commu-

nications (ISNCC), 2016 International Symposium on, pp. 1–6.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

International Journal of Computer Networks & Communications (IJCNC) Vol.10, No.6, November 2018

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

147

http://www.tcpdf.org

