
International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

DOI: 10.5121/ijcnc.2019.11104 63

AN OPEN JACKSON NETWORK MODEL FOR

HETEROGENEOUS INFRASTRUCTURE AS A SERVICE

ON CLOUD COMPUTING

Chien Nguyen Khac1, 2, Khiet Bui Thanh3, 4, 4Hung Ho Dac, 2Son Nguyen

Hong3Vu Pham Tran and 2Hung Tran Cong

1Department of Mathematics – Informatics, The People's Police University, Ho Chi Minh

City, Vietnam

2Training and Science Technology Department, Posts and Telecoms Institute of

Technology Ho Chi Minh City, Vietnam

3Faculty of Computer Science and Engineering, Ho Chi Minh City University of

Technology, Vietnam

4Faculty of Technology Engineering, Thu Dau Mot University, Vietnam

ABSTRACT

Cloud computing is an environment which provides services for user demand such as software, platform,

infrastructure. Applications which are deployed on cloud computing have become more varied and

complex to adapt to increase end-user quantity and fluctuating workload. One popular characteristic of

cloud computing is the heterogeneity of network, hosts and virtual machines (VM). There were many

studies on cloud computing modeling based on queuing theory, but most studies have focused on

homogeneity characteristic. In this study, we propose a cloud computing model based on open Jackson

network for multi-tier application systems which are deployed on heterogeneous VMs of IaaS cloud
computing. The important metrics are analyzed in our experiments such as mean waiting time; mean

request quantity, the throughput of the system. Besides that, metrics in model is used to modify number VMs

allocated for applications. Result of experiments shows that open queue network provides high efficiency.

KEYWORDS

Heterogeneous Infrastructure as a Service, Cloud Computing, Open Jackson Network

1. INTRODUCTION

Cloud computing services are provided flexibly according to user demand and access via the

internet. It helpsto increase computing power and system management cost savings.[21, 25].

Cloud computing provides services to users through three basic models: infrastructure as a service

(IaaS), including infrastructure and associated middleware - which are provided in the form of
virtual machine (VM); Platform as a Service (PaaS) include APIs for developing applications on a

specific technology platform; Software as a service (SaaS) - most of which are provided as a web-

based and remote-access application. A data center that provides cloud computing services has a
heterogeneous environment because it contains multiple generations of servers with different

hardware configurations, especially the size and speed of the processor. These servers are added

to the data center gradually and are provided to replace existing (or "the old one") machines

already available [8, 15]. The heterogeneity of these server platforms will affect the performance
of the data center. The fluctuation of the work load according to the needs of customers is

frequent, and it is difficult to predict accurately in the environment of cloud computing. In

addition, applications deployed on today's cloud are evolving towards service. Accordingly, an

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

64

application is deployed on a set of standalone services. This is different with monolithic
applications including strictly integrated modules, applications based on service-oriented

architecture that are well-suited for the infrastructure of the cloud [29].

The fluctuation of workload often occurs in the environment of cloud computing. It affects the

quality even though the architecture is scalable - the ability of dynamically resource allocating

and retrieving based on current workload requirements. As a matter of fact, Quality of Service
(QoS) is a standard of service level agreement (SLA) established between the customer and the

cloud service provider, which is one of the key issues. It is an important factor for the cloud

provider [22]. To assess QoS for cloud computing, there are many studies which use the
important system metrics such as average response time, average latency, average workload,

refuse to serve[23]. These measurements can be analyzed and modeled based on queue theory.

Applications deployed on the cloud are typically built using simple queue models such as a G/G/c

queue, where c can be changed [1]. The model is used to estimate parameters such as the
resources required for a given input job load or the average response time for the requirements.

Then, this information is transferred to the predictor, controller or to solve the optimization

problem. However, when the architecture of the application on cloud computing grows and
becomes more complex, using a single queue model becomes more difficult. Therefore, the queue

network model is used to create an application layer consisting of K application servers [24] or

consider a queue for a server [20], or just a queue for each tier [3, 27]. Most current studies are
rarely considered to the heterogeneity of cloud infrastructure services. For example, an

application deployed in multiple cloud VMs with different generations with different CPU speeds

and capabilities. Rather, studies often assume that each node operates at the same speed.

In this paper, we has been investigated and proposed a queue model of analyzing and evaluating

performance measurements in a heterogeneous environment in order to meet customer demand

for QoS. The main contributions of this paper can be summarized as follows:

- Proposed an open Jackson queue network model for multi-tier application systems which
are deployed on heterogeneous VMs of IaaS cloud computing and formulas proposed to

calculate the system performance metrics.

- The Proposed model that is evaluated through empirical simulation can be trusted.

- Based on the proposed model, we solve the auto-scaling problem for creating/removing

VMs as in [30, 14]. Specifically, optimizing the performance utilization of a system based
on a performance threshold of the VM that automatically adjusting the number of VMs is

to ensure the minimum response time of the system.

The remainder presents the relevant studies in section II. Multi-tier application on cloud

computing are presented in Section III. Part IV presents Jackson's open network model for the
cloud infrastructure service. Experimental evaluation of the model is presented in Section V.

Section VI presents the conclusions and research directions.

2. RELATED WORK

The cloud-based performance computing service model that focuses on QoS measurements is

response time, throughput and network utilization, which has been extensively studied in [19, 25-
27]. Zhang et al.[27] used a regression-based estimation to estimate the CPU demand for

customer transactions. In [25], the response time distribution of a cloud system is modeled on a

classical M/M/m open network assuming an exponential density function for time intervals and
service time To determine the optimal service level and the relationship between the maximum

the number of jobs and the minimum number of resources, namely VMs. Response time is

calculated both the waiting time in the queue and the service time.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

65

In [19], Slothouber et al. studied the parameters that affect response time when web servers and
network bottlenecks. A single queue is not enough to model a complex system such as a web

server system, so the system response time can be estimated using the Jackson network model. In

[26], a cloud center was modeled as a 𝐺𝐼𝑋/𝑀/𝑆/N queue model that identifies cloud service

performance related to error recovery. Network nodes that form the cloud architecture can be
analyzed independently as they form the Jackson open network. Internal connectivity and

behavior between queues are law-defined by Burke's theorem [4] and Jackson [10, 11]. Buke

states that they can connect multiple nodes together with a queuing network and still avoid
interpreting each node in the network when the arrival time and service time are modeled in terms

of exponential density. In addition, Jackson [10, 11] focuses on the computation of total speed to

average, we have to calculate the total time coming from outside the system plus the time coming

from all the nodes inside. As a result, we can connect different processing nodes to cloud
architecture designs over time as responses such as QoS performance metrics. In [23], Based on

queue theory and the Jackson open network, a combination of M/M/1 and M/M/m queues was

presented to model the platform for QoS requirements.

Information necessary for the queue model, such as input workload (number of requests,
transactions) or service time can be obtained by online monitoring [20]. In addition, Nah et

al.[16] state that the time available for users to skip downloading a web page may have different

scenarios and contexts. This research suggests that most users are willing to wait only two

seconds for simple web-based queries. Thus, if we apply this result to cloud computing, a
decision may be needed to design the cloud with a good and predictable response time to evaluate

QoS parameters. The authors in [2] show how many VMs can share CPUs and main memory very

efficiently in cloud computing, but networks and file systems are often unclear. Therefore, the
author designing the web application architecture will consider the separation between the

processing server and the data server. In [12], authors used the 𝑀/𝐺/𝑚/𝑚 + r queue system to

evaluate a geodatabase and obtained a full probability distribution of response time, task number
in the system and other important performance measurements. Average waiting time varies

between heterogeneous services and uniform services under the same conditions in the considered

system. In [9], the authors present a M/M/m queuing system and propose an optimized model of

optimization, function and strategy to optimize the performance of services in the center of the
cloud.

Amazon EC2

Website

Amazon S3

Load Balancer

Master

DB

Slave

DB

VM – 1 VM – 2 VM – n...

EBS

Vol

EBS

Vol

EBS

Vol

EBS

Vol

EBS

Vol

EBS

Vol

Replication

Backup

(Snapshots)

Figure 1. Example of a web application with a three-tier architecture

In addition, queue theory has been used to analyze or optimize factors such as allocation of
processing capacity, load distribution, and profit control. In [5], the M/M/m queue model,

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

66

considering factors such as the service requirements of a service and the configuration of a
multiserver system, is used to optimize the configuration. Multiserver image and maximize

profitability in the cloud. In [7], the authors present a M/M/r/k queuing system to model a server

cluster in the cloud provided with finite power to optimize returns. Another study presents a

queue model for a heterogeneous multi-core server cluster with different sizes and speeds to
optimize the allocation of processing power and load distribution in an environment.[6].

Although there have been many studies analyzing the efficiency of a cloud computing center

based on queue models, the factors include flexible cloud architecture, the heterogeneous

infrastructure of a cloud computing center is considered. Each processing node has different
speeds and different processing times. Different task roles often have different probabilities.

3. SYSTEMMODEL

3.1. Application model

An Application has an architecturein which layers are sequentially connected. For each layer,

request or processing results on the previous layeris an input of next layer for further processing
and return final results to the user.

A typical multi-level application architecture consists of three layers: front-endlayer, logic layer,
and database layer. The database layer is unable to dynamically adjust and often ignore the

automatic adjustment feature.

We consider an elastic application deployed on a group of VMs (Figure 1). VMs may have the

same or different resources assigned (eg 1GB of memory, 2 CPUs, ...), but each VM has a unique
number of formats (possibly its IP address). Requests received by the load balancer may come

from the actual end-user or from another application. We will assume that the execution time of a

request can change between milliseconds and minutes.

Load balancers will receive all incoming requests and forward them to one of the servers in the

business process layer (logic layer). It can be done in different ways. Assume that the load
balancer has updated information about the VMs that are being used (the active VMs): it will

immediately stop sending requests to the VMs that have been removed, and it will start sending

Load jobs to new VMs added. It also assumes that each request will be assigned to a single VM,
which will run it until the completion of the task associated with it. Some load balancing policies

may be used, for example: random policy, round robin, or least connection. In case of

heterogeneous VM clusters, workload coordination must be proportional to the processing power
of the VMs.

3.2. Infrastructure model

In this section, the model of cloud infrastructure service is presented. Virtualization resources are

provided by the IaaS cloud provider as a VM. VMs differ in terms of CPU, memory, storage,

network, and availability at different rates. An application on the cloud can be deployed on a VM
cluster, where the VMs may not be synchronized. VMs are classified according to their specific

processing roles such as compute processing, memory, storage, GPU, and so on. Customers can

choose the appropriate VMs for their applications. For example, VMs that handle CPUs for web

servers and memory optimizers for high-performance database operations.

In order to ensure QoS for customers, service providers often target certain QoS objectives, such
as response time, throughput, latency, execution time, and transaction time. Quality control will

create reputable services that bring customer satisfaction and thereby increase the number of users

and revenue.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

67

Figure 2 depicts the IaaS cloud architecture, which includes the Input Controller, responsible for
distributing requests to the VM cluster running the application at client request. The Infrastructure

Manager is responsible for supplying resources to the VM clusters according to the needs of the

customer. The Performance Manager is responsible for decision-making on input control and

dynamic resource allocation policies, which makes virtual machine creation/destroy. In order to
implement the automatic adjustment of resources in the cloud computing system, we use the

MAPE loop to automatically adjust, to monitor, to analysis, to plan and to execute tasks. The

monitoring module, a service typically provided by cloud service providers such as Amazon
CloudWatch and Google Cloud Monitoring, continuously monitors the performance of hosted

applications. Information received from the monitoring module is used during the analysis and

planning phase to estimate future resource requirements and to plan for an appropriate resource

adjustment action. Input parameters are information on job load, QoS measurements, and
thresholds.

Each VM cluster runs an application of Load Balancer that is responsible for distributing requests

to different VMs. VM clusters may be heterogeneous, so we use weighted load balancing

strategies to distribute requests to different VMs that correspond to their capabilities. Each VM
runs a local agent that queries the current performance parameters, such as CPU and memory

load.

Figure 2. Infrastructure service system architecture

3.3. Queueing network modelfor applications

As the architecture of the applications on cloud computing is growing and becoming more

complex, we proposed a model for a cloud computing using open Jackson queue network (Figure

3).In Figure 1, the application on the cloud has multiple layers that assume different roles in the
application as well as the need to use different types of VMs at each level. Specifically, in Figure

1, each application server cluster for the end user includes a load balancer, a business processing

layer, and a database processor.In this paper, we consider Load Balancer as a VM that serves as

the coordinating role required for business process layers. The business process layer consists of
many heterogeneous VMs that can be processed in parallel and capable of processing differently

depending on the configuration of each VM. Once processed at the business processing layer, the

request can be routed through a data processor, then the processing results are passed to the user.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

68

λ δλ

λ1

λ2

...

λm

μ1

μ1

μm

Load Balancer

Business processing layer

Database

Figure 3: Open queue network model for applications

The load balancer receives requests coming from the end user and then processes and dispatches

the requests to the business processing VMs based on their configuration. The policy allocates
resources to request in the form of space-shared mean at a time the VM only serves a request.

Coordination of requests from load balancers to business processors VMs is calculated according

to the Round Robin load balancing policy. Depending on the weight of each VM in the business
process layer. The speed of VM service depends on the VM's processing power. In this study, we

focus on heterogeneous VMs, whereby each VM has 𝑐𝑖 processing cores, and the execution speed

of each core is s (GIPS).

Service rate of VM is calculated as follows:

 𝜇𝑖 =
𝑠 ∗ 𝑐𝑖

𝑍̅
, (1)

In that, 𝑍̅ is the average number of orders of a request executed at the VM.

Table 1. Round Robin Algorithm

In the business processing layer, the VMs processed in the network may have dependency loads,

which means that the request rate for leaving the service is a function of the number of requests

currently in the VM that 𝜇𝑖(𝑘). In the database storage, the probability δ that a request from the

VM handles business access to the VM storage database. When we perform a web-based
modeling, not all requests will require access to the database server. However, notice that this

probability is often relatively high.

We consider the following assumptions, which are also used in [17, 18, 23]:(1) Requests coming

from outside of cloud computing system on a node i follow the Poisson process; (2) The service
time at each node i in the cloud system is independent and complies with the exponential

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

69

distribution and is served according to the FCFS (First-Come First-Serve) principle; (3)

Probability when a request is completed at a node i can be passed to the node 𝑗 (𝑖 ≠ 𝑗) 𝑟𝑖𝑗 ≥ 0

independent of the system state or will leave the system and not return to the probability 𝑟𝑖0 = 1 −

∑ 𝑟𝑖𝑗
𝑁
𝑗=1 , where N is the number of network nodes in the queue network.

These properties satisfy the requirements of an open queue network Jackson [4, 10]. Thus, we can

see that the cloud computing system is an open Jackson network queue with N network nodes,

each corresponding network node is a VM.

4. MODEL OF MULTI-LAYER APPLICATIONS ON CLOUD COMPUTING

4.1. Analyze the proposed model

As mentioned above, in this section, we will model a multi-layered application cloud system that

is an open Jackson network queue consisting of N nodes, each corresponding network node is a
VM and each VM is modeled as one M/M/1 queue.

The load balancer receives requests from outside users and then processes and dispatches requests

to the business process layer VMs based on their configuration. Requires an external load

balancer of Poisson distribution with the parameter γ (number of requests per second). The

interval between times to average is 1
𝛾⁄ . We set the average resource utilization factor for each

ithVM (symbol 𝜌𝑖) with the threshold in the range [𝛼𝑙 , 𝛼ℎ], depending on the different VMs with

the service rate 𝜇𝑖. This describes the rate at which the servers at each node handled the 1
𝜇𝑖

⁄

request as the average service time.

µ2

µ3

µ1

r10

r20

r30

λ1

λ3

λ2

1

i

N

Figure 4. General open network queue

The nodes can be linked together in either serial or parallel mode. Assume the length of each

queue is infinite and the queue's serving principle is FCFS. At each node of the system is a

M/M/1 queue and the generation of HTTP requests by the user is a randomized process. Let 𝑟𝑖𝑗 be

the probability of transferring the state after the request has been processed at node i which will

move to node j. Yes, the total transfer probability in the open queue network is 1 (here: 𝑟𝑖0 is the

probability of moving out of the network from the ith node):

 𝑟𝑖0 = 1 − ∑ 𝑟𝑖𝑗, 𝑖 ∈ [1, 𝑁],

𝑁

𝑗=1,𝑗≠𝑖

 (2)

Let 𝜆𝑖 be the arrival rate from the outside into the ith queue (node) and Λ𝑖 is the sum of

the arrival rates of the ith node queue (including both incoming and outgoing rates from

inner nodes network), we have:

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

70

 Λ𝑖 = 𝜆𝑖 + ∑ Λ𝑗𝑟𝑗𝑖

𝑁

𝑗=1,𝑗≠𝑖

, 𝑖 ∈ [1, 𝑁], (3)

Thus, the average resource utilization of ith VM is:

 𝜌𝑖 =
Λ𝑖

𝜇𝑖
, (4)

LetΛ = [Λ1, Λ2, … , Λ𝑁]𝑇 is the speed vector to the queues of nodes (including the incoming and

outgoing rate from the nodes in the network). Let 𝜆 = [𝜆1, 𝜆2, … , 𝜆𝑁]𝑇be the incoming vector
velocity from the outside into the nodes, then the formula (3) can be rewritten as:

 Λ = 𝜆 + 𝑅𝑇Λ, (5)

where R is the state transition matrix.

 𝑅 = (

𝑟11 𝑟12 ⋯ 𝑟1𝑁

𝑟21 𝑟12 ⋯ 𝑟2𝑁

⋮ ⋮ ⋱ ⋮
𝑟𝑁1 𝑟𝑁1 ⋯ 𝑟𝑁𝑁

) (6)

Since the number of requests in nodes may be different, let𝑋𝑖(𝑡) as the random variable that

determines the number of requests in the ith VM (𝑖 = 1,2, … , 𝑁) at time t. The state of the system

at time t is denoted by: 𝑋(𝑡) = (𝑋1(𝑡), 𝑋2(𝑡), … , 𝑋𝑁(𝑡)). Then, in steady state, we wish to

determine their probability distribution over the long term as follows: 𝑝n1,n2,…,nN
≡

𝑃(n1, n2, … , nN) = 𝑃{𝑋1(𝑡) = 𝑛1, 𝑋2(𝑡) = 𝑛2, … , 𝑋𝑁(𝑡) = 𝑛𝑁}. Since the VMs are independent

of each other and 𝑃(𝑛𝑖) is the boundary probability that 𝑋𝑖(𝑡) = 𝑛𝑖. From the joint probability,

we can compute the boundary probability of a particular number of requests at one VM.

An open Jackson network is considered as a continuous time Markov chain with state vector

 𝑛̅ = (n1, n2, … , nN), (7)

where n𝑖 is the number of requests that are available at VM i. We can use equilibrium equation

based on the Markov system.

In Table 1, we have 𝑛̅representing the steady state of the system; When there is a request to VM i,

the system from state 𝑛̅ to state 𝑛̅; 𝑖+; whereas there is a request to leave VM i, the system will

move from state 𝑛̅ to state 𝑛̅; 𝑖−; or system state from 𝑛̅ to state𝑛̅; 𝑖+𝑗− when a request from VM j

passes to VM i.

Table 2. States description table

This Markov chain has the probability of transmitting the notation 𝑝.;. as follows:

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

71

𝑝𝑛̅;𝑖+ = 𝜆𝑖

𝑝𝑛̅;𝑖− = 𝜇𝑖𝑟𝑖0

𝑝𝑛̅;𝑖+𝑗− = 𝜇𝑗𝑟𝑗𝑖

Using the principle of balancing state flow into state 𝑛̅ with flow out of state 𝑛̅, assuming ni ≥ 1
at every processes VM, we have:

∑ 𝜆𝑖

𝑁

𝑖=1

𝑝𝑛̅;𝑖− + ∑ ∑ 𝜇𝑖𝑟𝑖𝑗𝑝𝑛̅;𝑖+𝑗−

𝑁

𝑖=1
𝑖≠𝑗

𝑁

𝑗=1

 + ∑ 𝜇𝑖𝑟𝑖0𝑝𝑛̅;𝑖+

𝑁

𝑖=1

= ∑ 𝜇𝑖(1 −

𝑁

𝑖=1

𝑟𝑖𝑖) 𝑝𝑛̅ + ∑ 𝜆𝑖

𝑁

𝑖=1

𝑝𝑛̅.

(8)

According to Jackson's theorem [10, 11] providing the general distribution for all VMs, the steady

state solution for (8) is:

𝑝𝑛̅ = 𝑃{𝑋1(𝑡) = 𝑛1 , 𝑋2(𝑡) = 𝑛2 , … , 𝑋𝑁(𝑡) = 𝑛𝑁}

= 𝑃(𝑋1(𝑡) = 𝑛1)𝑃(𝑋2(𝑡) = 𝑛2) … 𝑃(𝑋𝑁(𝑡) = 𝑛𝑁)
(9)

where 𝑃(𝑋i(𝑡) = 𝑛i) = (1 − 𝜌𝑖)𝜌𝑖
𝑛𝑖 , 𝑤𝑖𝑡ℎ𝜌𝑖 < 1.

Thus,

𝑝𝑛̅ = ∑(1 − 𝜌𝑖)𝜌𝑖
𝑛𝑖

𝑁

𝑖=1

The average number of requests 𝐿𝑖 at the ith VM for the M/M/1 queue with the total arrival rate to

Λ𝑖:

 𝐿𝑖 =
𝜌𝑖

1 − 𝜌𝑖
, 𝑖 = 1,2, … , 𝑁. (10)

The total number of average requests for an entire network is calculated as follows:

 𝐿 = 𝐿1 + 𝐿2 + ⋯ + 𝐿𝑁 = ∑
𝜌𝑖

1 − 𝜌𝑖

𝑁

𝑖=1

. (11)

Average waiting time of requests in the network with Little’s Law [10, 11]:

 𝑊 =
𝐿

𝛽
 (12)

where 𝛽 = ∑ 𝜆𝑖
𝑁
𝑖=1 is the total arrival rate from the outside. All requests from outside must go

through the load balancer, thus β = γ. The average response time of a request in the network at

each ith VM, (𝑖 = 1,2, … , 𝑁) is calculated by the following formula [10, 11]:

 𝑊𝑖 =
𝐿𝑖

Λ𝑖
=

1

𝜇𝑖(1 − 𝜌𝑖)
, (13)

WhereΛ𝑖 is calculated by formula (3) and𝑊 ≠ 𝑊1 + 𝑊2 + ⋯ + 𝑊𝑁.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

72

4.2. An example for proposed model

Figure 5 is an example of an open Jackson queue model for a three-layered application network

with four network nodes. The node 1 is 𝑉𝑀1 represents the required load balancer coming from

the outside into γ, the business processing layer consists of two nodes: 𝑉𝑀2 and 𝑉𝑀3, the

required speed are transitioned from 𝑉𝑀1 to the corresponding transition probabilities 𝑟12 = 0.4

and 𝑟13 = 0.6. Once a request has been completed at the business process layer, it is possible to

switch to access the database store 𝑉𝑀3 with probability 𝑟34 = 𝑟24 =  = 0.3 or no (𝑟30 = 𝑟20 =
0.7). The results are then feedback to the customer. The service speed at each i th VM in

exponential distribution has the parameter 𝜇𝑖 .

VM1

VM2

VM3

VM4

0.4

0.6

0.3

0.7

Figure 5. For example an open queue network model for multilevel application on the cloud computing

Then, we have the following transition matrix:

 𝑅 = (

0 0.4 0.6 0
0 0 0 0.3
0 0 0 0.3
0 0 0 0

) (14)

where the probability of leaving the system at each 𝑖, 𝑖 ∈ [1,2,3,4] is: 𝑟10 = 0, 𝑟30 = 𝑟20 =
0.7, 𝑟40 = 1.

Arrival rate of load balancer is γ = 20 requests/sec.Services time of each VMs is
1

𝜇1
=

0.03 𝑠𝑒𝑐,
1

𝜇2
= 0.06 𝑠𝑒𝑐,

1

𝜇3
= 0.05 sec 𝑎𝑛𝑑

1

𝜇4
= 0.04 𝑠𝑒𝑐.

Assuming: Calculated steady state probability of state (𝑛1 , 𝑛2, 𝑛3 , 𝑛4) = (3, 2, 4, 1).

Step 1: compute the arrival rates for each node from the traffic equations (4). We have:

Λ1 = γ = 20; Λ2 = Λ1 . r12 = 8; Λ3 = Λ1. r13 = 12; Λ2 = Λ2. r24 + Λ3. r34 = 6

Step2: Compute the state probabilities for each node

Use utilization: 𝜌𝑖 =
Λ𝑖

𝜇𝑖
to get the service demands for each node: 𝜌1 = 0.6, 𝜌2 = 0.48, 𝜌3 =

0.6, and 𝜌4 = 0.24.

Use the equation 𝑃𝑖(𝑛i) = 𝑃(𝑋i(𝑡) = 𝑛i) = (1 − 𝜌𝑖)𝜌𝑖
𝑛𝑖 to compute the probability of

having𝑛irequests in each M/M/1 queue. We have: 𝑃1(3) = 0.09, 𝑃2(2) = 0.12, 𝑃3(4) =
0.05, 𝑎𝑛𝑑𝑃4(1) = 0.18.

Step3: Compute the steady state probability P(3, 2, 4,1). According to equation (9), we have

𝑃(3, 2, 4, 1) = 𝑃1(3)𝑃2(2)𝑃3(4)𝑃4(1)=0.0000972.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

73

Some important performance measures for this open Jackson network. Compute the mean number

of requests in each queue with 𝐿𝑖 =
𝜌𝑖

1−𝜌𝑖
, we have: 𝐿1 = 1.5, 𝐿2 = 0.92, 𝐿3 = 1.5, 𝑎𝑛𝑑𝐿4 = 0.32.

Compute the mean response time of each queue with 𝑊𝑖 =
𝐿𝑖

Λ𝑖
, we have: 𝑊1 = 0.075, 𝑊2 =

0.115, 𝑊3 = 0.125, 𝑎𝑛𝑑𝑊4 = 0.053.

Compute the mean overall response time following equation (12):

𝑊 =
𝐿

γ
=

1

γ
∑ 𝐿𝑖 =

4

𝑖=1

0.212 ≠ 𝑊1 + 𝑊2 + 𝑊3 + 𝑊4 = 0.368

4.3. Optimized model uses VM in clusters

In this section, we present the application of the QoS parameter used for the model to solve the

optimization problem as in [5-7]. Assume that an application deployed on the cloud architecture

is shown in Figure 6, consisting of three layers: load balancing, business processing layer, and

database layer. The majority of cloud deployments have a load balancer and database engine so in
this context, we only see the VM model for the business process layer.

Load
Balancer

VM1 VM2 VM3 ...

VMM

Database
Server

Figure 6. The architecture of the application

Specifically, based on network queue evaluation parameters, it is possible to optimize system

performance based on the performance thresholds of VMs and to have at least one VM enabled at
the business process layer. To ensure that the system is always ready to serve, we can determine

the number of VMs processed at the business layer with minimal response time.

The parameters of the problem are as follows:

- 𝜌𝑖 is the average resource utilization level of the ith VM,

- 𝑟𝑖 is the probability that the i th VM is selected to handle incoming requests,

- 𝑊𝑖 is the average waiting time of a request in the network at a i th VM,

- 𝑧𝑖 is the binary variable that decides to turn on VM i (𝑧𝑖 = 1), in turn decides to turn off

VM on i (𝑧𝑖 = 0).

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

74

The objective function is defined as follows:

 𝑚𝑖𝑛
{𝜌𝑖,𝑟𝑖,𝑊𝑖}

𝑓: ∑ 𝑧𝑖𝑟𝑖

𝑁

𝑖=1

𝑊𝑖 , (15)

Subject to:

(1) 𝜌𝑖 = {
0, 𝑧𝑖 = 0

𝜖[𝛼𝑙 , 𝛼ℎ], 𝑧𝑖 = 1
,

(2) 𝑧𝑖 ∈ {0,1}𝑣ớ𝑖 1 ≤ 𝑖 ≤ 𝑁,

(3) ∑ 𝑟𝑖 = 1𝑁
𝑖 𝑣ớ𝑖𝑟𝑖 ∈ [0,1],

(4) ∑ 𝑧𝑖 ≥ 1𝑁
𝑖 .

In the optimization problem we have the variable 𝑧𝑖 that determines creating/removing of the VM

so this is a 0/1 Knapsack problem [28]. We use the met heuristic algorithm in particular as the
optimal PSO algorithm [13] to solve the optimal tuning (creating/removing) of the target function

f and its constraints on response time average response.

Table 3. VM Auto Scaling

5. EXPERIMENT

5.1. System setup

In this section, we conducted an experiment to evaluate performance measured in Java language
on a laptop with an Intel® Core ™ i7-7500U CPU configuration @ 2.70GHz, 8GB Ram, 1 TB

HDD. and run the Windows operating system. 10. Experimental review of the cloud infrastructure

service system consists of two VM clusters that serve requests from web service clients. Each VM
cluster has 7 VMs (IDs 1 through 7). In each cluster, there is a VM that performs the work of the

load balancer (𝑉𝑀1), 1 VM takes on the database storage (𝑉𝑀7) and the rest takes care of the

workload. Business process layer (𝑉𝑀𝑖, with i = 2,3, ..., 6). The processing power of each VM is

calculated based on GIPS. Two VM clusters have different configurations as shown in Table 3.2,
in both clusters on the load balancer and the database storage server have the same capacity. In

VMC#1 cluster, business processors have the ability to be consistent. In VMC#2 cluster the

business processors are not homogeneous.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

75

Table 4. Configuration of VM clusters

5.2. Experimental results

Experiment 1 evaluates the parameters in the model, for the number of requests to 1000, 𝜆 =

{158,161,164,167,170,173,176,179,181,185, 188} the load balancer's processing rate is 𝜇𝐿𝐵 =
𝜆

𝜌𝐿𝐵
. The probability of passing to the business processing VM is calculated using the formula 𝑟𝑖𝑗.

After 30 experimental runs, we calculated the average waiting time 𝑊̅, the average response time

𝑇̅. We then calculated 95% confidence intervals for empirical data and computed data from the

model.

Experiment 1 shows that when we adjust the required speed increases from 158 to 188, the

average waiting time is normal but the amplitude is not large. For the VMC#1 cluster the

machines have identical CPU configurations, while the VMC#2 cluster has a heterogeneous CPU
configuration and processing speed is greater than VMC#1 so that the average response time

VMC#2 is much smaller than VMC#1 (Figure 7b).

In Experiment 2 we use the data set of Table 2 with λ = 185, which is executed 30 times and we

calculate the average waiting time 𝑊̅. We then calculated 95% confidence intervals for empirical

data and computed data from the model.

The results in Figure 8 show that the average response times of VM1 and VM7 are very small in

both VMC#1 and VMC#2 clusters. VM1 takes care of load balancing, fast processing time. For
VM7 taking on the task of storing the database, with probability to low δ = 0.2. The VM i (i =

2,3,..., 6) in the business process layer has an average response time in two different clusters.

Accordingly, the average response time of each machine in VMC#1 cluster is not too large. While
VMC#2 cluster tends to dwindle from VM2 to VM6, as the VM2's VM2 configuration to VM6 in

VMC cluster 2 increases, the processing time on these machines decreases dramatically.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

76

Figure 7. Average waiting time of the VM cluster

Figure 8. Average waiting time of VMs

Experiment 3 is to analyse the relationship of parameters in the model. We use the two VM

clusters as shown in Table 2 at average speed𝜆 = 185, adjusting the resource utilization 𝜌𝑖of each

VM in Table 2, and then analysing the average system response time for each VM in clusters. We

adjusted the resource utilization of the VMs in the application's business layer from 0.71 to 0.79.

Experiment 4 for the evaluation of the performance max model values using VM at the business

processing from VM2 to VM6. We adjust the performance of the hosts with the distribution with
mean = 0.5 (Figure 9). Follow the formula (14), we use the metaheuristic algorithm for the best

fighter algorithm for PSO to resolve to find the best VM (enable/disable) history of 𝑓 and find

force it about the average response time. Figure 9 shows𝜌 ∈ (0,1) of the VM in the logical level

of an application with sample get template t = 50. Confused the selected VM processing with
same. Then, we got at the time of the way of the different VM account.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

77

Table 5. 95% confidence interval of average waiting time of each VM in each cluster

Figure 9. Average expected time of VM

Figure 11 shows the decision to enable/disable the VM based on the resource usage of each VM

at each specific time point. For example, at t = 4 use level VM#2,4,5,6 low VM#3 high algorithm

decided to turn off the VM#2,4,5,6 and turn on VM#3.

6. CONCLUSIONS

Ensuring QoS in the cloud is an important issue. Accordingly, the performance analysis of

heterogeneous datacenter is an important aspect for both cloud service providers and cloud
service customers. Based on the complexity and heterogeneity of the deployment application on

cloud computing, we propose a model of a closed-loop opportunity-based cloud computing

system that evaluates the performance of a cloud-based system through measures such as average

latency, average resource utilization factor of VMs, problem of adjusting VMs in a cluster when
there is load variation in workload to implement automatic adjustment mechanism in cluster.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

78

Figure 10. ρ usage level of the VM

Figure 11. Adjust VM on/off over time

The results of the evaluation of the proposed model have shown its optimization. Through

empirical simulation, the average waiting time, the average resource utilization coefficient 𝜌𝑖 and

the problem of adjusting the VMs in each cluster show up the effect of the non-uniformity. Most

of the performance is great. In the future, we use this model in proposing an automatic adjustment

mechanism in the cloud computing system.

REFERENCES

[1]. Ali-Eldin, Ahmed, Tordsson, Johan, and Elmroth, Erik (2012), An adaptive hybrid elasticity

controller for cloud infrastructures, Network Operations and Management Symposium (NOMS), 2012

IEEE, IEEE, pp. 204-212.

[2]. Armbrust, Michael, et al. (2010), "A view of cloud computing", Communications of the ACM. 53(4),

pp. 50-58.

[3]. Bai, Wei-Hua, et al. (2015), "Performance analysis of heterogeneous data centers in cloud computing

using a complex queuing model", Mathematical Problems in Engineering. 2015.

[4]. Burke, Paul J (1956), "The output of a queuing system", Operations research. 4(6), pp. 699-704.

[5]. Cao, Junwei, et al. (2013), "Optimal multiserver configuration for profit maximization in cloud

computing", ieee transactions on parallel and distributed systems. 24(6), pp. 1087-1096.

[6]. Cao, Junwei, Li, Keqin, and Stojmenovic, Ivan (2014), "Optimal power allocation and load

distribution for multiple heterogeneous multicore server processors across clouds and data centers",
IEEE Transactions on Computers. 63(1), pp. 45-58.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

79

[7]. Chiang, Yi-Ju and Ouyang, Yen-Chieh (2014), "Profit optimization in SLA-aware cloud services with

a finite capacity queuing model", Mathematical Problems in Engineering. 2014.

[8]. Delimitrou, Christina and Kozyrakis, Christos (2013), Paragon: QoS-aware scheduling for

heterogeneous datacenters, ACM SIGPLAN Notices, ACM, pp. 77-88.

[9]. Guo, Lizheng, et al. (2014), "Dynamic performance optimization for cloud computing using m/m/m

queueing system", Journal of applied mathematics. 2014.

[10]. Jackson, James R (1957), "Networks of waiting lines", Operations research. 5(4), pp. 518-521.

[11]. Jackson, James R (1963), "Jobshop-Like Queueing Systems. Mgmt. Sci. 10, 131-142",
Jackson13110Mgmt. Sci.

[12]. Khazaei, Hamzeh, Misic, Jelena, and Misic, Vojislav B (2012), "Performance analysis of cloud

computing centers using m/g/m/m+ r queuing systems", IEEE Transactions on parallel and distributed

systems. 23(5), pp. 936-943.

[13]. Liang, Yanbing, et al. (2010), Optimizing particle swarm optimization to solve knapsack problem,

International Conference on Information Computing and Applications, Springer, pp. 437-443.

[14]. Mao, Ming, Li, Jie, and Humphrey, Marty (2010), Cloud auto-scaling with deadline and budget
constraints, Grid Computing (GRID), 2010 11th IEEE/ACM International Conference on, IEEE, pp.

41-48.

[15]. Mars, Jason, Tang, Lingjia, and Hundt, Robert (2011), "Heterogeneity in “homogeneous” warehouse-

scale computers: A performance opportunity", IEEE Computer Architecture Letters. 10(2), pp. 29-32.

[16]. Nah, Fiona Fui-Hoon (2004), "A study on tolerable waiting time: how long are web users willing to

wait?", Behaviour & Information Technology. 23(3), pp. 153-163.

[17]. Salah, Khaled (2013), "A queuing model to achieve proper elasticity for cloud cluster jobs",
International Journal of Cloud Computing. 1, pp. 53-64.

[18]. Salah, Khaled, Elbadawi, Khalid, and Boutaba, Raouf (2016), "An analytical model for estimating

cloud resources of elastic services", Journal of Network and Systems Management. 24(2), pp. 285-

308.

[19]. Slothouber, Louis P (1996), A model of web server performance, Proceedings of the 5th International

World wide web Conference.

[20]. Urgaonkar, Bhuvan, et al. (2008), "Agile dynamic provisioning of multi-tier internet applications",

ACM Transactions on Autonomous and Adaptive Systems (TAAS). 3(1), p. 1.

[21]. Vaquero, Luis M, et al. (2008), "A break in the clouds: towards a cloud definition", ACM SIGCOMM

Computer Communication Review. 39(1), pp. 50-55.

[22]. Vecchiola, Christian, Pandey, Suraj, and Buyya, Rajkumar (2009), High-performance cloud

computing: A view of scientific applications, Pervasive Systems, Algorithms, and Networks (ISPAN),

2009 10th International Symposium on, IEEE, pp. 4-16.

[23]. Vilaplana, Jordi, et al. (2014), "A queuing theory model for cloud computing", The Journal of

Supercomputing. 69(1), pp. 492-507.

[24]. Villela, Daniel, Pradhan, Prashant, and Rubenstein, Dan (2007), "Provisioning servers in the

application tier for e-commerce systems", ACM Transactions on Internet Technology (TOIT). 7(1), p.

7.

[25]. Xiong, Kaiqi and Perros, Harry (2009), Service performance and analysis in cloud computing,

Services-I, 2009 World Conference on, IEEE, pp. 693-700.

[26]. Yang, Bo, Tan, Feng, and Dai, Yuan-Shun (2013), "Performance evaluation of cloud service

considering fault recovery", The Journal of Supercomputing. 65(1), pp. 426-444.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.1, January 2019

80

[27]. Zhang, Qi, Cherkasova, Ludmila, and Smirni, Evgenia (2007), A regression-based analytic model for

dynamic resource provisioning of multi-tier applications, Autonomic Computing, 2007. ICAC'07.

Fourth International Conference on, IEEE, pp. 27-27.

[28]. Qu, Chenhao (2016), "Auto-scaling and Deployment of Web Applications in Distributed Computing

Clouds".

[29]. Sahni, Jyoti and Vidyarthi, Deo Prakash (2016), "Heterogeneity-aware adaptive auto-scaling heuristic

for improved QoS and resource usage in cloud environments", Computing, pp. 1-31.

[30]. Sowjanya, T Sai, et al. (2011), "The queueing theory in cloud computing to reduce the waiting time".

AUTHORS

Chien Nguyen Khac, received his master degree in Computer Science from the University of Natural

Sciences in HCM City in 2008. He is currently a lecturer at the University of the People's Police, and is

doing a PhD candidate in Computer Engineering at the PTIT, Hanoi. His research interests: Auto-

Scaling in cloud computing. Email: nkchienster@gmail.com.

Khiet Bui Thanh, is a PhD candidate at Computer Science, Faculty of Computer Science and
Engineering, Ho Chi Minh City University of Technology. Research Interests: Cloud computing.

Email: khietbt@tdmu.edu.vn

Hung HoDac, Born in 1991 in Binh Duong. Graduated from the Graduate School of Information

Systems at the Ho Chi Minh City Post and Telecommunications Institute of Technology. Currently

working at Faculty of Engineering and Technology, Thu Dau Mot University, Binh Duong.

Research: Game, Cloud Computing. Email: hunghd@tdmu.edu.vn

Son Nguyen Hong, received his B.Sc. in Computer Engineering from the University of Technology in

HCM city, his M.Sc. and PhD

inCommunicationEngineeringfromthePostandTelecommunicationInstituteofTechnologyHanoi.Hiscurr
entresearchinterestsincludecommunicationengineering,networksecurity,computer engineering and

cloud computing. Email: ngson@ptithcm.edu.vn

Vu Pham Tran, Currently Deputy Dean of Computer Science and Technique, Ho Chi Minh City

University of Technology. Research: Intelligent Transport Systems (ITS), Big Data Analytics, Peer -to-

Peer Computing Email: ptvu@hcmut.edu.vn

Hung Tran Cong,He received the master of engineering degree in telecommunications engineering

course from postgraduate department Hanoi University of technology in Vietnam, 1998. He received

Ph.D at Hanoi University of technology in Vietnam, 2004. His main research areas are B – ISDN

performance parameters and measuring methods, QoS in high speed networks, MPLS. He is,
currently, Associate Professor PhD. of Faculty of Information Technology II, Posts and Telecoms

Institute of Technology in Ho Chi Minh, Vietnam. Email: conghung@ptithcm.edu.vn

	Abstract
	Keywords
	Heterogeneous Infrastructure as a Service, Cloud Computing, Open Jackson Network

