QOS CATEGORIES ACTIVENESS-AWARE ADAPTIVE EDCA ALGORITHM FOR DENSE IOT NETWORKS

Mohammed A. Salem¹, Ibrahim F. Tarrad², Mohamed I. Youssef² and Sherine M. Abd El-Kader³

¹Department of Electrical Engineering, Higher Technological Institute, 10th of Ramadan City, Egypt ²Department of Electrical Engineering, Al-Azhar University, Cairo, Egypt ³Department of Computer Engineering, Electronics Research Institute, Giza, Egypt

ABSTRACT

IEEE 802.11 networks have a great role to play in supporting and deploying of the Internet of Things (IoT). The realization of IoT depends on the ability of the network to handle a massive number of stations and transmissions and to support Quality of Service (QoS). IEEE 802.11 networks enable the QoS by applying the Enhanced Distributed Channel Access (EDCA) with static parameters regardless of existing network capacity or which Access Category (AC) of QoS is already active. Our objective in this paper is to improve the efficiency of the uplink access in 802.11 networks; therefore we proposed an algorithm called QoS Categories Activeness-Aware Adaptive EDCA Algorithm (QCAAAE) which adapts Contention Window (CW) size, and Arbitration Inter-Frame Space Number (AIFSN) values depending on the number of associated Stations (STAs) and considering the presence of each AC. For different traffic scenarios, the simulation results confirm the outperformance of the proposed algorithm in terms of throughput (increased on average 23%) and retransmission attempts rate (decreased on average 47%) considering acceptable delay for sensitive delay services.

Keywords

IoT, IEEE 802.11, EDCA, CW, AIFSN, MAC, QoS

1. INTRODUCTION

The Internet of Things (IoT) is a heterogeneous concept that combines many different technologies, application domains, equipment facilities, and different services, etc. In IoT, a huge number of sensors and devices are expected to be connected through Machine-to-Machine (M2M) communications which are anticipated to support many industries with different utilizations such as smart grids and cities, telemedicine applications, vehicular telematics, surveillance systems, and manufacturing [1]-[2]. According to Ericsson, the expected number of IoT Stations (STAs) is expected to be 23.3 billion worldwide in 2023. The digitalization of equipment, vehicles and different processes lead to an exponentially increasing in the number of connected STAs [3]. The density of the network could be about 1~10 devices/m².

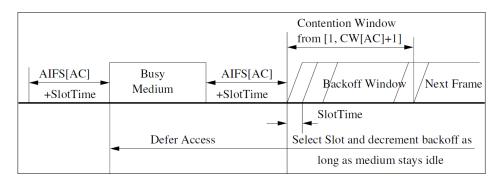


Figure 1. IEEE 802.11 EDCA Channel Access.

IEEE 802.11 networks have a great role to play in supporting and deploying of the IoT. The realization of IoT depends on the ability of the network to handle a massive number of stations and transmissions [4], and to support different QoS requirements for different types of IoT STAs and services. To support different QoS requirements, a prioritization mechanism called Enhanced Distributed Channel Access (EDCA) was introduced by IEEE 802.11 [5]. This mechanism provides four Access Categories (ACs): Voice (VO), Video (VI), Best Effort (BE), and Background (BK). The differentiation between ACs is provided by configuring different EDCA parameters [6], i.e. different Arbitration Inter-Frame Space Number (AIFSN) values and different Contention Window (CW) sizes for each AC; lower AIFSN and CW assigned for higher priority AC. As shown in Figure 1, once STA sensed the channel idle for a certain time slots equal to AIFSN, it generates a random back-off time within range from zero to the minimum contention window (CWmin), therefore starts to decrement the back-off time until it reaches to zero, at that time the STA starts to send its frame [7]. In case of the channel becomes busy during the decrement, the back-off time stops and wait till the channel becomes idle for AIFSN time slots again to continue the decrement. In case of unsuccessful transmission, the STA multiply the CW size by two; this multiplication continues until the CW size equals maximum contention window (CWmax). After any successful transmission, the STA resets the CW size to CWmin. Values of AIFSN and CW for each AC are illustrated in Table 1 [5]. Nevertheless, EDCA mechanism has many flaws due to static settings of AIFSN values and CW sizes regardless of existing network capacity condition or which AC of QoS is already existed. The increasing number of STAs led to a dramatically decreasing of network throughput, increasing collisions, higher delay due to increasing retransmissions [8].

AC	AIFSN	CWmin	CWmax
VO	2	3	7
VI	2	7	15
BE	3	15	1023
BK	7	15	1023

Table 1. IEEE 802.11 EDCA Parameters.

The literature contains many works for overcoming the abovementioned flaws and to upgrade the performance of IEEE 802.11 networks. AIFSN values and CW size are very influential factors in determination of network throughput, mean average delay and packet retransmission attempts. Increasing of CW size led to lower collisions and retransmissions, but increases the network delay and vice versa; it's all about making a compromise between throughput and delay [9].

In traditional EDCA, IEEE sets the CW size to a static lower value for sensitive delay services, which mean a dramatic degradation of the performance in case of dense networks due to higher rates of collision and retransmission packets; this led to higher rates of delay [10]. In [11], the authors consider three possible traffic loads, their proposed scheme make an enhancement in terms of global throughput (overall network throughput) and retransmissions but degradation in terms of voice and video throughput. In [12], E. Coronado et al. introduce a dynamic AIFSN algorithm that adapts the AIFSN value depending on the network capacity to enhance the QoS. Many research attempts have been investigated to adapt the AIFSN such as [13], [14]. In [15], the authors provide an adaptive CW algorithm led to an improvement in the network performance, but not offered compatibility to legacy non-EDCA STAs. In [16], I. Syed et al. proposed an algorithm with providing an analytical model to adapt CW based on estimation of number of STAs for each AC considering the channel status, their proposed algorithm shows an enhancement in terms of global throughput and retransmission, but the calculations of CW show large CWmin value in relative to the number of stations. Of course with this large CW size; the terms of throughput and retransmission are expected to be improved, but the term of delay can be more improved. Many research efforts have been studied to adapt the CW size such as [17] -[19].

However, the previous proposals provided improvements, but without considering very high dense network condition and without considering the absence of any AC; which mean wasted resources that we can exploit it to improve the performance of the other ACs in terms of throughput, retransmission rate and delay for sensitive delay services.

For the abovementioned reasons, we proposed the QoS Categories Activeness-Aware Adaptive EDCA Algorithm (QCAAAE) algorithm for IEEE 802.11 Medium Access Control (MAC) to make EDCA parameters -especially CW size and AIFSN values- dynamically tuning, depending on the number of associated STAs in each AC, and considering the presence of each type of ACs. For different traffic scenarios, the simulation results confirm the outperformance of the QCAAAE algorithm in terms of throughput and retransmission rate considering acceptable delay for sensitive delay services. The remainder of this paper is structured as follows: Section 2 presents the QCAAAE algorithm in detail. Simulation parameters and performance evaluation of our work are detailed in Section 3. Finally, the conclusion is presented in Section 4.

2. PROPOSED ALGORITHM

AIFSN values and CW size are very influential factors in determination of network throughput, delay and packet retransmissions. Therefore, we proposed an adaptive algorithm to adjust AIFSN values and CW size considering the number of associated STAs in each AC, and the current presence of each AC to improve the efficiency of the uplink access in 802.11 networks (transmission from STAs to the Access Point (AP)). As shown in section III, the proposed algorithm enhances the performance of the network in terms of packet retransmissions, throughput considering acceptable delay for sensitive delay services. Our algorithm consists of 4 phases:

- A) Determination of active ACs and number of associated STAs per each AC (NAC)
- B) Tuning of AIFSN values considering the absence of any AC.
- C) Adaptation of CW size according to number of associated STAS per each AC.
- D) Advertizing the new values of AIFSN and CW.

2.1. Determination of Active ACs and N_{AC}

Before STAs can transmit data through AP, they must be associated with AP to join the cell and take an Association Identifier (AID). During association process, every STA send an association request frame which contains QoS capability information as shown in Figure 2. Each STA sets AC flags (B0, B1, B2, and B3) to 1 to inform the AP of the required type(s) of QoS AC for sending and receiving data [5].

We calculated N_{AC} for each category as follows: for every received association request frame, AP checks the flags of each required AC. In case of any AC flag found 1, the corresponding N_{AC} increments. In contrast, for every disassociation request, the corresponding N_{AC} decrements. Accordingly, any N_{AC} has a value greater than 0 indicates that the corresponding AC is active. This mechanism is illustrated in Algorithm 1 and 2.

B0	B1	B2	B3	B4	B5	B6	B7
AC_VO Flag	AC_VI Flag	AC_BK Flag	AC_BE Flag	Q-Ack		x SP ngth	More Data Ack

Figure 2. QoS Capability Information Field for non-AP STA.

2.2. Tuning of AIFSN

As we mentioned before, the static allocation of AIFSN for different ACs is considered a waste of resources; especially in case of the absence of any AC. Therefore, lower priority ACs can improve its performance in terms of throughput, and delay by seizing opportunistically the resources of absent higher priority ACs. According to [20], most of the traffic in IoT networks is related to best effort category which has a priority lower than voice and video categories. Accordingly, in the case of absence of voice or video access categories, the BE access category has a real chance to improve its performance. Therefore, in our proposal, we take care of this issue and adapt AIFSN values with considering the absence ACs according to Table 2. For example, if voice and video ACs are inactive, then best effort AC will seize the minimum value of AIFSN which equal 2 to decrease its media access delay.

AC Activ	AIFSN Values				
VO	VI	BE	VO	VI	BE
Inactive	Inactive	Active	-	-	2
Inactive	Active	Inactive	-	2	-
Inactive	Active	Active	-	2	3
Active	Inactive	Inactive	2	-	-
Active	Inactive	Active	2	-	3
Active	Active	Inactive	2	3	-
Active	Active	Active	2	3	4

Table 2.	Proposed	AIFSN	values.
1 abic 2.	rioposcu	1 MI DI V	varues.

2.3. Adaptation of CW Size

In traditional EDCA, IEEE sets the CWmin and CWmax size to a static low value for each AC, which means a dramatic degradation of the performance in case of dense networks due to higher rates of collision and retransmission packets; this led to higher rates of delay. EDCA sets the initial CW size is to CWmin. After each unsuccessful transmission, the CW size is multiplied by 2 until it reaches to CWmax and saturated at this value. After each successful transmission, EDCA resets the CW size to CWmin.

In our proposed Algorithm and for each AC, we adapt the values of CWmin and CWmax according to the number of STAs in each AC. The new CWmin and CWmax values are given by equations (1) and (2).

$$CWmin[AC] = 2^{ceil(\log_2(\frac{N_{AC}}{2}))} - 1$$
⁽¹⁾

$$CWmax[AC] = \min(2^{ceil(\log_2(2N_{AC}))} - 1, PHY_CWmax)$$
(2)

Where PHY_CWmax is the maximum size of CW restricted by the physical layer.

	Algorithm 1: Calculation of N_{AC}	Alg	gorithm 2: Update of AIFSN and CW
	Initialization:		Setting of AIFSN[AC]:
	$N_{VO} = 0; N_{VI} = 0; N_{BE} = 0;$	1:	if $N_{VO} > 0$, $N_{VI} > 0$ then
	Check re/assoc. request frame:	2:	AIFSN[VO] = 2, $AIFSN[VI] = 3$,
1:	if $AC_VO_flag = 1$ then		AIFSN[BE] = 4
2:	$N_{VO} = N_{VO} + 1$	3:	else if $N_{VO} > 0$, $N_{VI} = 0$ then
3:	end if	4:	AIFSN[VO] = 2, $AIFSN[BE] = 3$
4:	if $AC_VI_flag = 1$ then	5:	else if $N_{VO} = 0$, $N_{VI} > 0$ then
5:	$N_{VI} = N_{VI} + 1$	6:	AIFSN[VI] = 2, $AIFSN[BE] = 3$
6:	end if	7:	else
7:	if $AC_BE_flag = 1$ then	8:	AIFSN[BE] = 2
8:	$N_{BE} = N_{BE} + 1$	9:	end if
9:	end if		Settings of CW and Updating of EDCA:
	Check disassoc. request frame:	1:	$CWmin[VO] = 2^{(ceil(log_2(N_{VO}/2)))} - 1$
1:	if $AC_VO_flag = 1$ then	2:	$CWmin[VI] = 2^{(ceil(log_2(N_{VI}/2)))} - 1$
2:	$N_{VO} = N_{VO} - 1$	3:	$CWmin[BE] = 2^{(ceil(log_2(N_{BE}/2)))} - 1$
3:	end if	4:	$CWmax[VO] = min [2^{(ceil(log_2(2*N_{VO}))) - 1, 1023]}$
4:	if $AC_VI_flag = 1$ then	5:	$CWmax[VI] = min [2^{(ceil(log_2(2*N_{VI}))) - 1, 1023]}$
5:	$N_{VI} = N_{VI} - 1$	6:	$CWmax[BE] = min [2^{(ceil(log_2(2*N_{BE}))) - 1, 1023]$
6:	end if	7:	Update EDCA Parameters Field and send it in the
7:	if $AC_BE_flag = 1$ then		next scheduled Beacon Frame
8:	$N_{BE} = N_{BE} - 1$		
9:	end if		

2.4. Advertising the New AIFSN and CW Values

The AP broadcasts out periodically a beacon frame in the network, which contains all information about the network. Therefore, all STAs associated and connected to the network can be matched with the basic service set (BSS) parameters. Beacon frame contains a field for EDCA parameters setting.

In our proposed algorithm; after tuning of AIFSN value and calculation of CW size for each AC, the AP updates the EDCA parameters setting field and advertise all associated and connected STAs through the next scheduled beacon frame. Our proposed algorithm is illustrated in Algorithm 1, 2.

3. PERFORMANCE EVALUATION

In this section, we presented an evaluation of the performance of the proposed algorithm and compared it with the traditional EDCA. We evaluated our algorithm in Riverbed modeler (version 17.5) [21], and through simulation of a set of different 40 traffic scenarios. The simulation parameters are listed in Table 3. As we mentioned before, most of traffic in IoT networks is related to best effort category; so we created different scenarios as the following: 32, 64, 128, 256, and 512 BE stations, each scenario of these are repeated with 5, 15, 30 VO stations, 5, 15, 30 VI stations, and repeated with 15 VO & 15 VI stations; in all scenarios, each station always have load to send. The following metrics are used to figure out the performance of the proposed algorithm: Normalized throughput (the ratio between the throughput and the total loads submitted to the network), Mean Average Delay and Retransmission Attempts.

Parameter	Value	Parameter	Value
Physical Layer	IEEE 802.11n	Data Rate	65 Mb/s
Spatial Streams	1	Guard Interval	400 ns
Slot Time	9 µs	VO Payload Size	50 Bytes
AP Beacon Interval	102.4 ms	VI Payload Size	8738.13 Bytes
Physical CWmax	1023	BE Payload Size	100 Bytes

Table 3. Simulation Parameters

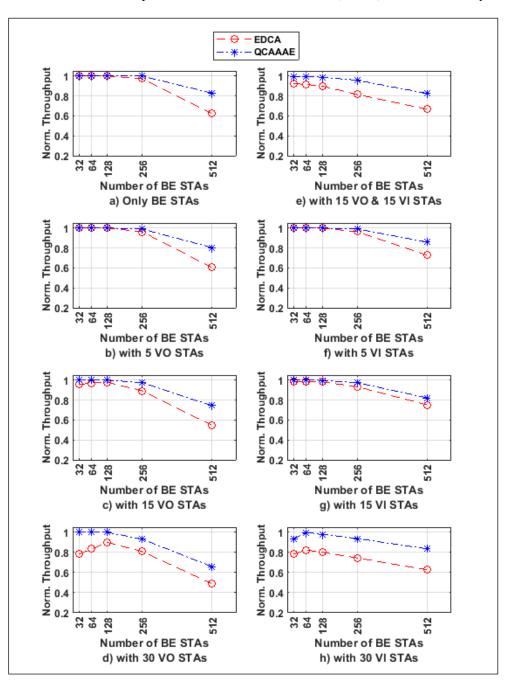


Figure 3. Global Normalized Throughput.

As shown in Figure 3, there is no doubt that the QCAAAE algorithm provides significantly more global normalized throughput than the traditional EDCA especially in high density scenarios. We also observed in Figure 4, that the global mean average delay in the proposed algorithm outperforms the traditional EDCA and higher in scenarios which contains many VI stations due to the higher bitrates of video stations; but on the other hand, the normalized throughput shows great enhancement on the QCAAAE algorithm.

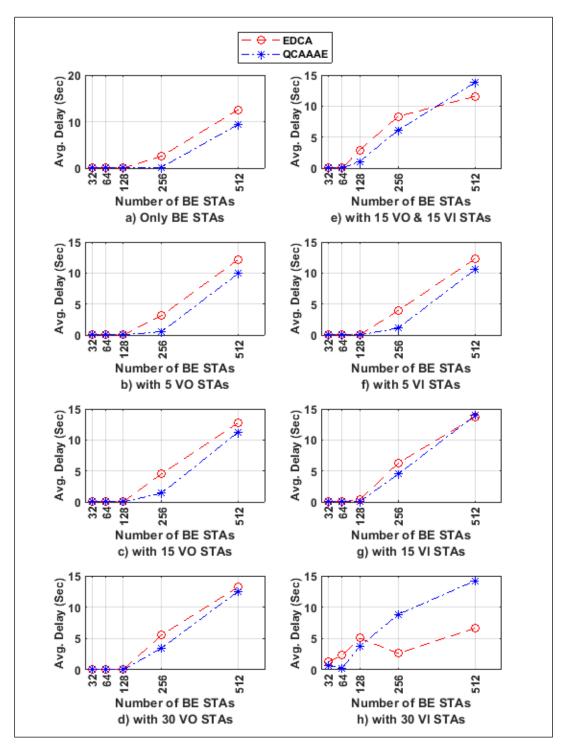


Figure 4. Global Mean Average Delay.

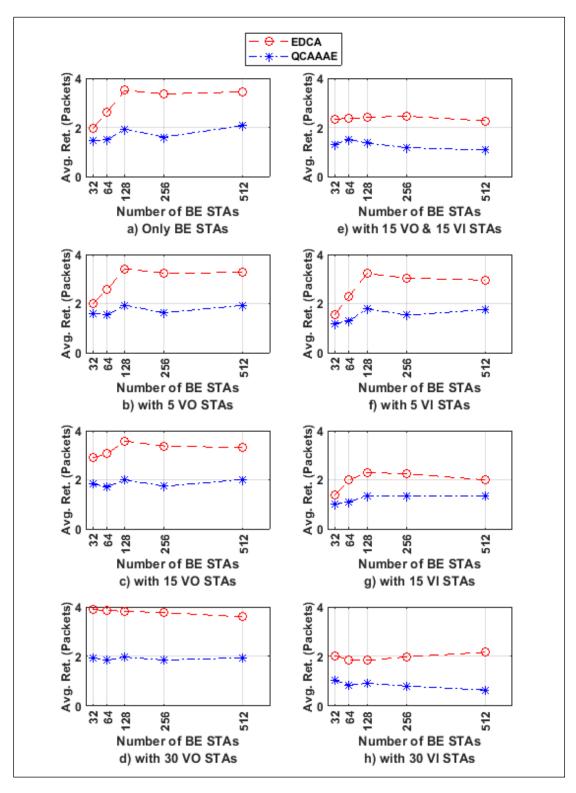


Figure 5. Global Retransmission Attempts.

We also observed in Figure 5, that the global retransmission attempts in the QCAAAE algorithm are always outperform the traditional EDCA in all scenarios because of the lower number of collision by the proposed algorithm. In Figure 6, it's shown that the proposed algorithm enhanced the normalized throughput of best effort AC greater than the traditional EDCA in all different traffic scenarios.

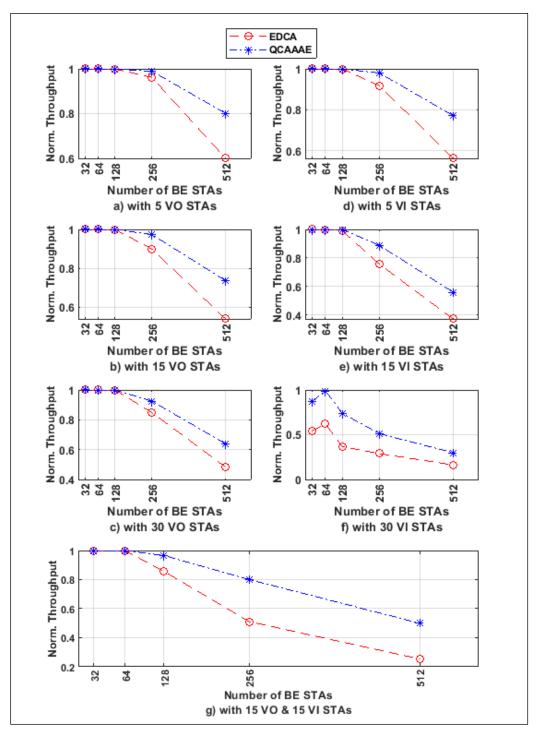


Figure 6. Best Effort AC Normalized Throughput.

According to [22], the preferred range of delay for voice applications is less than 150 ms, and the delay below 30 ms is not noticeable by the user. Figure 7 and Figure 8 shown the normalized throughput and mean average delay of voice AC, the mean delay of voice AC in the QCAAAE algorithm is higher than the traditional EDCA but still in the acceptable range while the normalized throughput of voice AC in the proposed algorithm shown magnificent improvement than EDCA. For Example, in the scenario of 30 voice stations & 512 best effort stations, the delay of voice AC rose from 3.8 ms to 7.5 ms; on the other hand, the normalized throughput improved significantly from 56.9% to 98.2%.

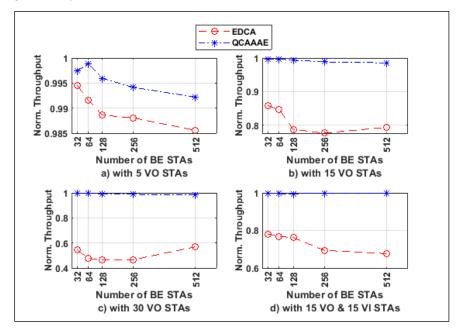


Figure 7. Voice AC Normalized Throughput.

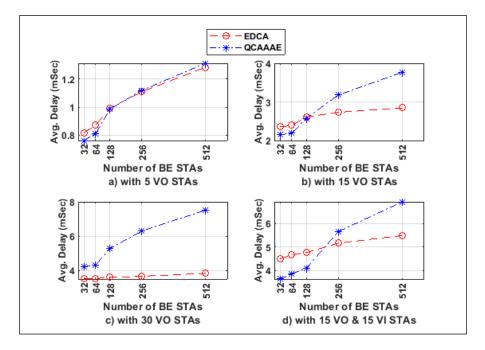


Figure 8. Voice AC Mean Average Delay.

According to [22], the preferred range of delay for video applications is less than 150 ms, Figure 9 and Figure 10 shown the normalized throughput and mean average delay for video AC, we observed that in some scenarios; the mean average delay in the proposed algorithm slightly rose within acceptable QoS requirements range; on the other hand, the normalized throughput of the proposed algorithm shown great improvements. For Example, in the scenario of 30 video stations with 512 best effort stations, the delay of video AC rose from 47.3 ms to 53.3 ms; on the other hand, the normalized throughput improved significantly from 75.1% to 97.9%.

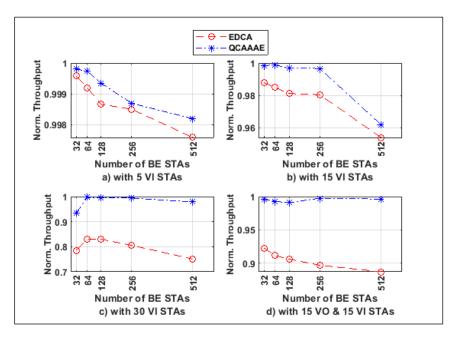


Figure 9. Video AC Normalized Throughput.

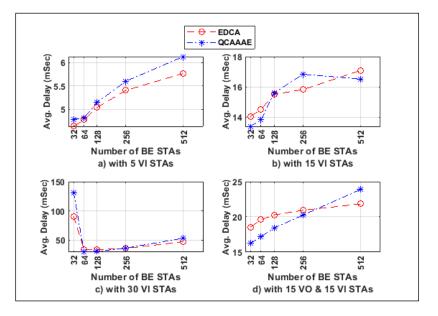


Figure 10. Video AC Mean Average Delay.

For better resolution reading, all previous simulation results are illustrated from Table 4 to Table 7.

 Table 4. Global Normalized Throughput, Global Mean Average Delay, and Global Retransmission Attempts.

Traffic Scenario	Global Normalized Throughput (%)		Global Mean Average Delay (Sec)		Global Retransmission Attempts (Packets)	
	EDCA	QCAAAE	EDCA	QCAAAE	EDCA	QCAAA E
32 BE	100	100	0.004373	0.003554	1.9481	1.4823
64 BE	100	100	0.010194	0.006961	2.624	1.4855
128 BE	99.9987	100	0.02324	0.01602	3.5064	1.9327
256 BE	97.1780	99.7640	2.5717	0.1955	3.3609	1.6046
512 BE	62.2995	82.8831	12.564	9.383	3.4458	2.0738
32 BE, 5VO	99.9264	99.9652	0.004414	0.003864	2.0016	1.6072
64 BE, , 5VO	99.9389	99.9917	0.009957	0.007387	2.5805	1.5405
128 BE, 5VO	99.9557	99.9814	0.02334	0.01723	3.4126	1.9364
256 BE, 5VO	96.2243	98.9450	3.1337	0.5545	3.2467	1.6254
512 BE, 5VO	60.4104	80.3608	12.181	9.916	3.2647	1.9268
32 BE, 15VO	95.5170	99.9122	0.005674	0.004693	2.8902	1.8223
64 BE, 15VO	97.0947	99.9436	0.010833	0.008061	3.06	1.7235
128 BE, 15VO	97.7789	99.9256	0.02753	0.018422	3.5746	1.9984
256 BE, 15VO	89.2250	97.4479	4.5482	1.3966	3.377	1.7362
512 BE, 15VO	54.6561	74.3438	12.74	11.272	3.3077	2.008
32 BE, 30VO	78.1176	99.9192	0.00702	0.006232	3.8911	1.9515
64 BE, 30VO	83.3218	99.8939	0.012476	0.009432	3.8551	1.8507
128 BE, 30VO	89.8954	99.8231	0.04462	0.023212	3.8208	1.9732
256 BE, 30VO	80.8572	93.1582	5.5768	3.4711	3.7705	1.857
512 BE, 30VO	48.8139	65.8300	13.212	12.546	3.5972	1.9447
32 BE, 5VI	99.9616	99.9825	0.005029	0.004668	1.5439	1.1946
64 BE, , 5VI	99.9327	99.9776	0.010082	0.007717	2.2856	1.2897
128 BE, 5VI	99.9000	99.9519	0.0245	0.0179	3.2264	1.7911
256 BE, 5VI	96.2525	99.0359	3.9405	1.114	3.0408	1.5258
512 BE, 5VI	72.8739	85.8205	12.316	10.543	2.9559	1.755
32 BE, 15VI	98.8176	99.8510	0.013118	0.012073	1.3783	1.0096
64 BE, 15VI	98.5779	99.8827	0.017015	0.014095	1.9924	1.0916
128 BE, 15VI	98.2259	99.7167	0.3653	0.04552	2.298	1.3601
256 BE, 15VI	93.3207	97.3799	6.251	4.4876	2.2412	1.3429
512 BE, 15VI	75.1134	82.1623	13.721	13.949	1.9946	1.3341
32 BE, 30VI	78.1253	93.3843	1.268	0.6852	2.0291	1.0513
64 BE, 30VI	82.2663	99.6768	2.3	0.3025	1.8764	0.8419
128 BE, 30VI	80.0811	97.9876	5.067	3.7437	1.8454	0.9224
256 BE, 30VI	74.4371	93.7031	2.631	8.831	1.9856	0.8047
512 BE, 30VI	62.6733	83.4981	6.662	14.215	2.169	0.6478
32 BE, 15VO, 15 VI	92.2836	99.6146	0.016591	0.013143	2.3462	1.3157
64 BE, 15VO, 15 VI	91.4803	99.3157	0.03079	0.018855	2.3562	1.5041
128 BE, 15VO, 15 VI	89.8299	98.7993	2.908	1.0435	2.413	1.3619
256 BE, 15VO, 15 VI	81.3700	95.6391	8.338	6.1207	2.4556	1.1729
512 BE, 15VO, 15 VI	66.5864	82.4599	11.562	13.82	2.2666	1.0743

Traffic Scenario	Best Effort Normalized Throughput (%)			
	EDCA	QCAAAE		
32 BE	100	100		
64 BE	100	100		
128 BE	99.9987	100		
256 BE	97.1780	99.7640		
512 BE	62.2995	82.8831		
32 BE, 5VO	100	100		
64 BE, , 5VO	100	100		
128 BE, 5VO	99.9982	99.9965		
256 BE, 5VO	96.1742	98.9359		
512 BE, 5VO	60.0397	80.1775		
32 BE, 15VO	100	100		
64 BE, 15VO	100	100		
128 BE, 15VO	99.9895	99.9927		
256 BE, 15VO	89.8973	97.3654		
512 BE, 15VO	53.9329	73.6375		
32 BE, 30VO	100	100		
64 BE, 30VO	100	99.9968		
128 BE, 30VO	99.9525	99.9761		
256 BE, 30VO	84.8490	92.4968		
512 BE, 30VO	48.3401	63.9446		
32 BE, 5VI	100	100		
64 BE, , 5VI	100	100		
128 BE, 5VI	99.9860	99.9949		
256 BE, 5VI	91.7813	98.0002		
512 BE, 5VI	56.1669	77.1209		
32 BE, 15VI	100	99.9975		
64 BE, 15VI	99.9924	99.9885		
128 BE, 15VI	99.0983	99.9563		
256 BE, 15VI	75.7296	88.8628		
512 BE, 15VI	37.3173	56.0246		
32 BE, 30VI	54.2993	86.9301		
64 BE, 30VI	62.0384	98.8532		
128 BE, 30VI	36.7471	74.0623		
256 BE, 30VI	28.9552	51.2297		
512 BE, 30VI	16.2281	29.8907		
32 BE, 15VO, 15 VI	99.9872	99.9910		
64 BE, 15VO, 15 VI	99.9706	99.9835		
128 BE, 15VO, 15 VI	85.7625	96.6277		
256 BE, 15VO, 15 VI	51.1051	80.0190		
512 BE, 15VO, 15 VI	25.3506	49.9526		

Table 5. Best Effort Normalized Throughput.

	Voice	Normalized	Voice Mea	an Average	
Traffic Scenario	Throughput	z (%)	Delay (ms)		
	EDCA	QCAAAE	EDCA	QCAAAE	
32 BE, 5VO	99.4531	99.7418	0.8162	0.7624	
64 BE, , 5VO	99.1533	99.8844	0.8709	0.8116	
128 BE, 5VO	98.8608	99.5942	0.993	0.9854	
256 BE, 5VO	98.8033	99.4134	1.109	1.1188	
512 BE, 5VO	98.5563	99.2203	1.2827	1.3116	
32 BE, 15VO	85.9082	99.7241	2.3509	2.1505	
64 BE, 15VO	84.6403	99.7020	2.3918	2.188	
128 BE, 15VO	78.8264	99.3511	2.611	2.5773	
256 BE, 15VO	77.6975	98.8617	2.729	3.179	
512 BE, 15VO	79.4560	98.5665	2.8454	3.7644	
32 BE, 30VO	54.6663	99.8325	3.4989	4.215	
64 BE, 30VO	47.5739	99.6735	3.527	4.32	
128 BE, 30VO	46.7827	99.1672	3.5958	5.277	
256 BE, 30VO	46.6339	98.8282	3.664	6.296	
512 BE, 30VO	56.9379	98.1580	3.8259	7.516	
32 BE, 15VO, 15 VI	77.9914	99.7446	4.491	3.63	
64 BE, 15VO, 15 VI	76.8547	99.5970	4.667	3.865	
128 BE, 15VO, 15 VI	76.1537	99.5110	4.757	4.0867	
256 BE, 15VO, 15 VI	69.3884	99.8852	5.165	5.657	
512 BE, 15VO, 15 VI	67.6655	99.8266	5.488	6.93	

 Table 6. Voice Normalized Throughput and Mean Average Delay.

Table 7. Video Normalized Throughput and Mean Average Delay.

	Video	Normalized	Video Mea	an Average	
Traffic Scenario	Throughput	(%)	Delay (ms)		
	EDCA	QCAAAE	EDCA	QCAAAE	
32 BE, 5VI	99.9577	99.9808	4.631	4.78	
64 BE, , 5VI	99.9192	99.9731	4.773	4.815	
128 BE, 5VI	99.8654	99.9346	5.036	5.146	
256 BE, 5VI	99.8500	99.8692	5.402	5.598	
512 BE, 5VI	99.7577	99.8192	5.764	6.126	
32 BE, 15VI	98.7780	99.8461	14.037	13.393	
64 BE, 15VI	98.4831	99.8756	14.515	13.823	
128 BE, 15VI	98.1089	99.6846	15.513	15.605	
256 BE, 15VI	98.0385	99.6640	15.82	16.835	
512 BE, 15VI	95.3864	96.1820	17.09	16.516	
32 BE, 30VI	78.5246	93.4925	90.94	1.984	
64 BE, 30VI	82.9444	99.7044	10.814	0.6335	
128 BE, 30VI	82.9866	99.5917	20.038	9.741	
256 BE, 30VI	80.5360	99.3986	6.803	19.259	
512 BE, 30VI	75.1293	97.8750	17.111	29.497	
32 BE, 15VO, 15 VI	92.2489	99.5999	18.554	16.237	
64 BE, 15VO, 15 VI	91.1398	99.2665	19.604	17.171	
128 BE, 15VO, 15 VI	90.5893	99.0793	20.283	18.44	
256 BE, 15VO, 15 VI	89.6742	99.7618	20.941	20.249	
512 BE, 15VO, 15 VI	88.6876	99.6245	21.843	23.89	

4. CONCLUSION

Motivated by deploying of the QoS-empowered IoT Networks in this paper, we produced an algorithm called QoS Categories Activeness-Aware Adaptive EDCA algorithm (QCAAAE), which dynamically adapts AIFSN value and CW size according to the active QoS access categories and according to the number of associated stations per each access category to consider high dense networks and exploit wasted resources of the inactive access categories.

For different traffic scenarios and using Riverbed modeler, the obtained simulation results show that the QCAAAE algorithm improves the performance of the network more than the traditional EDCA for all QoS ACs in terms of normalized throughput (increased on average 23%), retransmission attempts (decreased on average 47%) and mean average delay with considering of acceptable delay for sensitive delay applications and services. In some traffic scenarios which contain a large number of stations, the mean delay of voice and video services slightly increased but still in the recommended acceptable range; on the other hand, the throughput of voice and video services greatly increased as shown in the simulation results.

REFERENCES

- A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "Internet of Things: A Survey on Enabling Technologies, Protocols and Applications," IEEE Commun. Surv. Tuts., vol. 17, pp. 2347-2376, 4th Quart. 2015.
- [2] M. Condoluci, G. Araniti, T. Mahmoodi, and M. Dohler, "Enabling the IoT machine age with 5G: Machine-type multicast services for innovative real-time applications," IEEE Access, vol. 4, pp. 5555-5569, Sep. 2016.
- [3] Ericsson Mobility Report, Ericsson, June 2018. Available: https://www.ericsson.com/assets/local/mobility-report/documents/2018/ericsson-mobility-report-june-2018.pdf .
- [4] L. Davoli, L. Belli, A. Cilfone, and G. Ferrari, "From Micro to Macro IoT: Challenges and Solutions in the Integration of IEEE 802.15.4/802.11 and Sub-GHz Technologies," IEEE Internet Things J., vol. 5, pp. 784-793, April 2018.
- [5] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, Dec. 2016.
- [6] T. M. Salem, S. Abdel-Mageid, S. M. Abd El-kader, and M. Zaki, "A quality of service distributed optimizer for Cognitive Radio Sensor Networks," Pervasive and Mobile Computing, Elsevier ,vol. 22, pp. 71–89, Sep. 2015.
- [7] M. Malli, Q. Ni, T. Turletti, and C. Barakat, "Adaptive Fair Channel Allocation for QoS Enhancement in IEEE 802.11 Wireless LANs," in Proc. ICC'04, France, 2004.
- [8] B. M. El-Basioni, A. I. Moustafa, S. M. Abd El-kader, and H. A. Konber, "Designing a Channel Access Mechanism for Wireless Sensor Network," Wireless Commun. and Mob. Computing, vol. 2017, 2017.
- [9] X. Sun, and Y. Gao, "Distributed throughput optimization for heterogeneous IEEE 802.11 DCF networks," Wireless Networks, vol 24, pp. 1205–1215, May 2018.

- [10] B. M. El-Basioni, A. I. Moustafa, S. M. Abd El-kader, and H. A. Konber, "Timing Structure Mechanism of Wireless Sensor Network MAC layer for monitoring applications," International Journal of Distributed Systems and Technologies, vol. 7, pp. 1-20, July 2017.
- [11] R. He and X. Fang, "A Fair MAC Algorithm with Dynamic Priority for 802.11e WLANs," International Conference on Communication Software and Networks, China, 2009.
- [12] E. Coronado, J. Villalon, and A. Garrido, "Dynamic AIFSN tuning for improving the QoS over IEEE 802.11 WLANs," in Proc. IWCMC'15, pp. 73–78, Croatia, 2015.
- [13] M. Narbutt, and M. Davis, "Experimental tuning of the AIFSN parameter to prioritize voice over data transmission in 802.11E WLAN networks," in Proc. ICSPC'07, pp. 784-787, UAE, 2007.
- [14] R. Hirata, T. Nishio, M. Morikura, K. Yamamoto, and T. Sughihara, "Cross-Layer Performance Evaluation of Random AIFSN Scheme in Densely Deployed WLANs," in Proc. ICSPCS'14, Australia, 2014.
- [15] T. Nilsson and J. Farooq, "A Novel MAC Scheme for Solving the QoS Parameter Adjustment Problem in IEEE 802.11e EDCA," in Proc. WoWMoM'08, USA, 2008.
- [16] I. Syed, S. Shin, B. Roh, and M. Adnan, "Performance improvement of QoS-enabled WLANs using adaptive contention window backoff algorithm," IEEE Syst. J., vol. 12, pp. 3260-3270, Dec. 2018.
- [17] Y. Morino, T. Hiraguri, H. Yoshino, K. Nishimori, and T. Matsuda, "A Novel Collision Avoidance Scheme Using Optimized Contention Window in Dense Wireless LAN Environments," IEICE Tran. On Commun, vol. E99.B, pp. 2426-2434, 2016.
- [18] S. Bhandari, and P. Kaur, "A novel scheme for optimizing contention window adjustment in IEEE 802.11e wireless networks," in Proc. ICTBIG'16, India, 2016.
- [19] B. Abhimanyu, and N. Jyoti, "Improve QoS performance with Energy Efficiency for IEEE 802.11 WLAN by the Algorithm named Contention Window Adaptation," in Proc. ICCUBEA'17, India, 2017.
- [20] R. Koutsiamanis, G. Papadopoulos, X. Fafoutis, J. Del Fiore, P. Thubert, and N. Montavont, "From Best Effort to Deterministic Packet Delivery for Wireless Industrial IoT Networks," IEEE Tran. on Industrial Informatics, Vol. 14, PP. 4468-4480, Oct. 2018.
- [21] Riverbed Technologies Inc. The Riverbed Modeler full edition 17.5A. Available: http://www.riverbed.com .
- [22] R. A. Cacheda, D. C. Garcia, A. Cuevas, F. J. G. Castano, J. H. Sánchez, G. Koltsidas, V. Mancuso, J. I. M. Novella, and S. Oh, A. Pantò, "QoS requirements for multimedia services," in Resource Management in Satellite Networks, Springer, pp. 67-94, 2007.