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ABSTRACT 
 

As SD-WAN disrupts legacy WAN technologies and becomes the preferred WAN technology adopted by 

corporations, and Kubernetes becomes the de-facto container orchestration tool, the opportunities for 

deploying edge-computing containerized applications running over SD-WAN are vast. Service 

orchestration in SD-WAN has not been provided with enough attention, resulting in the lack of research 

focused on service discovery in these scenarios. In this article, an in-house service discovery solution that 

works alongside Kubernetes’ master node for allowing improved traffic handling and better user 

experience when running micro-services is developed. The service discovery solution was conceived 

following a design science research approach. Our research includes the implementation of a proof-of-

concept SD-WAN topology alongside a Kubernetes cluster that allows us to deploy custom services and 

delimit the necessary characteristics of our in-house solution. Also, the implementation's performance is 

tested based on the required times for updating the discovery solution according to service updates. 

Finally, some conclusions and modifications are pointed out based on the results, while also discussing 

possible enhancements. 
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1. INTRODUCTION 
 

Virtualization is the cornerstone of the Internet and the cloud-based services, it has evolved from 

a cost-saving solution to the technology capable of providing the required agility and flexibility 

needed for service delivery in data centers as well as the infrastructure supporting business-

essential applications. The main goal of virtualization is the optimization of IT assets, helping in 

achieving a superior system utilization, cost reduction, and ease of deployment and management 

by allowing multiple operating system images to run in parallel using only one piece of hardware. 

Container-based virtualization and Virtual Machines (VMs) are perhaps the most common types 

of virtualization, although there are many differences among them, they both have the necessity 

to communicate within an IP network. Before the execution of a container or VM, they need to be 

assigned IP and MAC addresses. When these virtualized entities are assigned IP addresses, the 

traditional Ethernet and IP networks are stretched to exist inside the physical hosts located in data 

centers, not only between them. Virtualization alongside cloud-computing supposes a challenge 

in the application of traffic engineering for maximizing the utilization of the available 

conventional networks [1]. 
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Traditional communication networks are distributed systems with multiple routing algorithms 

running over many different devices such as routers and switches. Every single one of these 

devices possesses its own configuration and state and must be configured separately, which 

makes networks difficult and expensive to maintain and migrate. Software-Defined Networking 

(SDN) tackles this issue through the separation of the control plane from the data plane. This is 

achieved by moving the control logic of the network to a centralized controller, transforming the 

switches into mere forwarding devices that follow the rules set by the controller. By centralizing 

the control logic, configuration and maintenance ease, with new features being able to be 

deployed much faster as well. A centralized control has information regarding the whole network, 

being able to optimize the available network resources. SDN is therefore widely spread among 

data centers, especially in order to cope with the virtualization and cloud-computing related issue 

[1].  

 
Edge computing has arisen as a new approach that alongside SDN could be able to offer a 

solution to network optimization in cloud environments. This new perspective is nothing more 

than reducing the number of processes running in the centralized cloud and moving them to 

locally available edge servers. However, as data processing power is moving towards the edge of 

a network in the form of containers instead of remaining in a cloud or data center, migration is 

also occurring for services or applications. This trend requires the usage of processing power 

from devices that are not capable of being constantly connected to the network, this is the case of 

laptops, smartphones, wireless sensors, etc. The more this approach is adopted, the more 

businesses think their Wide Area Networks (WANs) are not prepared to carry such a burden, 

especially when taking into account traditional corporate WANs. Such networks are built by 

backhauling routed services and Internet traffic throughout the main office, which can cause 

performance issues when combined with edge computing. It is obvious that traditional 

approaches lack the agility and flexibility to achieve the required performance and availability 

needed by edge computing [2]. 

 

Edge computing’s adoption arises awareness regarding a substantial change in traffic patterns. 

The changes in traffic patterns are directly related to the increase in the number of host devices 

connected in every branch, the major drivers for this increase come from: the number of 

connected devices per employee, number of end-point devices (for example IoT equipment, WiFi 

access points, etc.) and extra applications that comprise a collection of services provided to 

customers (guest WiFi, artificial reality, etc.), which are known as "micro-services". The 

complexity of dealing with multiple hosts raises demand for new management tools, in other 

words, orchestration. Orchestration automates the management and/or organization of systems or 

services while reducing errors introduced by personnel involvement in tasks such as provisioning 

or scaling. Container orchestration is expected to be present in almost all the service deployments 

in the near future through its massive adoption by companies and startups. Its merge with the SD-

WAN technology is still to happen, making SD-WAN adopters unable to obtain the most out of 

their investments [16]. 

 

1.1. Methodology 
 

In this work, we propose a simple service discovery system that will improve bandwidth usage 

when accessing containerized services over a SD-WAN environment. This work was performed 

in three main steps that include: the selection of use cases and design of the SD-WAN topology, a 

testbed implementation for the observation of data flow that will allow us to identify the required 

behavior of our service discovery, and results analysis focusing on a user experience approach. 

The first step takes into account the limited amount of research aiming at the merge of edge 
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computing, SD-WAN and container orchestration. A literature survey required to fully 

understand the functioning and requirements of SD-WAN networks is carried out covering 

existing solutions and projects as well as the role of an orchestrator in such implementation. The 

same step is applied for Kubernetes, in order to fully understand the usage of its API solution and 

all its constituent parts. The envisioned use cases cover scenarios applicable on an enterprise level 

and the topology is conceived to simulate the Internet (i.e. a distributed network). The second 

step comprises the simulation of the aforementioned network topology in order to provide the 

experiment with a real-life WAN environment. This allows the deployment of in-house 

containerized services and testing of bandwidth usage and request redirection when performing 

container orchestration. In the final step, the implementation is compared against commercial 

solutions and validated based on discovery and convergence times, the whole system will be 

examined looking for problems and limitations that shall be discussed so improvements can be 

proposed. 

 

1.2. Related work 
 

A few works have somehow dive into service discovery orchestration in SDN networks. In [10] 

Jarraya et al. analyzed the importance of computing and storage orchestration alongside 

networking resources as a quite important part in SDN, while also taking into account the lack of 

research that aims at easing the creation and deployment of network services. In [11] Kreutz et al. 

identify computing infrastructure and networking challenges, presenting a series of constraints 

that must be overcome in order to improve efficiency by means of network orchestration. The 

aforementioned works focus on cloud computing resource orchestration on a data center 

environment having and underlying SDN network. In [12], Taleb et al. discuss the role of service 

orchestration in the success of Multi-access Edge Computing environment, but this mainly 

focuses on the orchestration of networking resources and containerized services orchestration is 

not explored. This paper has been adapted from [17], which was delivered for the 8th 

International Conference on Cloud Computing: Services and Architecture (CLOUD 2019). The 

present document focuses on the discovery of deployed containerized services, indirectly 

achieving a slight improvement in the usage of network resources performing orchestration 

between a container orchestrator and the in-house service discovery. 

 

1.3. Structure 
 

This paper is organized as follows: In section 2 we define our use case and the network topology 

that will be simulated. In section 3, a summary of the implementation is presented as well as of 

every constituent part of the system. Finally, in section 4 we perform a brief comparison between 

the constituent parts of Kubernetes and the developed solution, define the parameters for carrying 

out measurements, the results and their corresponding discussion are also presented. 

 

2. USE CASE 
 

With SD-WAN being the natural extension of SDN and Kubernetes becoming the de-facto 

container orchestrator, the possible use cases for an Edge Computing case are high in number. In 

the proposed use case, a Kubernetes master node will be deployed in a company’s Central Office 

(CO) alongside the suggested orchestrator that will be aware of the changes happening in the 

Kubernetes cluster and will react accordingly. The development of this orchestrator will enable 

the possibility of deploying container workloads on remote branch locations and, at the same 

time, facilitating access towards its services by properly discovering the nodes containing them. 
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In Figure 1, the proposed topology including the high-level required 5G network for allowing the 

implementation of local breakout is depicted.  

 
The advent of internet-connected endpoint devices that are commonly not associated with internet 

and possess a unique identity is known as Internet of Things (IoT). Edge computing and SD-

WAN enable the deployment of workloads that can be of an almost infinite variety, all of them 

focusing on the processing of IoT generated data. The use cases this work will focus comprises 

(but is not limited to) the following: smart web pages, authentication applications and the already 

mentioned IoT data processing. Each of these use cases has different requirements and setups. 

The smart web page can possess three main components, a front-end, a web application, and the 

logic, each of these three components can be deployed in different Kubernetes workers while the 

Kubernetes master performs load balancing. Network requirements will be low latency and 

dynamic route adaptation in case a Kubernetes worker is replaced or moved. The authentication 

application can be deployed into one remote branch, then all authentication queries coming from 

closer branches will be redirected towards it instead of going to the CO, this will require the 

discovery of the closest node running the authentication application.  

 

 

Figure 1. Use case topology 

Finally, for IoT data processing use case, data generated by sensors located in a remote branch 

can be stored in the corresponding Kubernetes worker, while the data processing unit can be 

deployed in a different worker node. The massive amount of traffic generated by sending and 

receiving raw data as well as processed data should not be directed through Kubernetes master 

node in the central office unless it is strictly necessary. The need of dynamic, external service 

discovery is evident. Although SD-WAN is just starting to be adopted, the integration with 

Kubernetes will ease the deployment of applications and provide an improvement in the user 

experience. Due to the lack of commercial solutions that provide Kubernetes service discovery in 

a SD-WAN environment at the moment of writing this document, the proposed paradigm can be 

further developed as a viable business idea. 
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3. IMPLEMENTATION 
 

The testbed for the orchestrator proof-of-concept was implemented as three interconnected virtual 

machines running on a Linux server located at VTT Espoo premises and having Ubuntu 18.04 

LTS as host operating system. Each of the aforementioned virtual entities plays a different role: 

SD-WAN network simulation, Kubernetes master node and Kubernetes worker node. This 

chapter will give a complete in-depth description of every entity forming the testbed, taking into 

account the complexity of the final system.  

 

First, we have the SD-WAN network simulation virtual machine. This entity contains the 

OpenFlow speaking SDN controller as well as all the Mininet simulated gateways and hosts, 

providing an underlying physical network. Gateways are connected through a set of Open 

vSwitch virtual switches that emulate the Internet; the protocol used for the communication 

between these gateways is BGP, which was implemented by using Quagga [3]. Each of the 

gateways represents a corporation’s branch office, which is perfectly capable of hosting a 

Kubernetes master or worker node and the services deployed on them. The SDN controller runs 

on ONOS [4], for this thesis the version of ONOS used is 14. ONOS controller is deployed by 

using Docker alongside ATOMIX for supporting the creation of extra ONOS instances, 

effectively forming a cluster. [5]. ONOS is a controller written in Java and offers high modularity 

in the form of a wide variety of applications that can be activated depending on the developer’s 

needs [4]. 

 
The SDN controller runs on the virtual machine and the gateways communicate with it through 

the main BGP speaker that is located at the main office. An ATOMIX cluster consisting of three 

nodes is used for relieving the ONOS instances from cluster management, service discovery and 

data storage functions. The created ATOMIX cluster is configured through a JSON configuration 

file describing each constituent node. This configuration file includes information regarding each 

node’s discovery and communication methods, management partition configuration and storage 

and replication partition configuration. In this work, the discovery protocol specified is Raft, 

ONOS entities are not listed during the discovery configuration due to the connection between 

ATOMIX and ONOS being of a client-server type. Raft was also used in ONOS’s former releases 

for cluster formation; however, it requires strict cluster membership information in order to 

successfully form a cluster. With the adoption of ATOMIX as a separate cluster using Raft, all 

the ONOS nodes can easily discover peers by using dynamic discovery mechanisms, supporting 

the failure of all by one node [5]. 

 
Next, we have the Kubernetes master node virtual machine. The master node is connected to one 

of the gateways through a Linux bridge created for this solely purpose; the virtual interface 

located on the SD-WAN virtual machine is loaded to Mininet, therefore simulating a direct 

connection. To successfully deploy the master node, kubeadm, kubelet and kubectl alongside 

Docker must be installed in the virtual machine. The master node is not a single entity, it is the 

result of a combination of a group of pods, each of them having a specific function. Each of the 

pods that conform the master will have one or more containers that are created using Docker, 

among them, the Container Network Interface (cni). The cni will provide an IP address to every 

single one of the created pods and is also in charge of the whole networking for the pod network, 

including the internal DNS service. Once the master node is ready, the gateway to which it is 

attached will serve as a gateway for both, a host machine and the master node. Host machines 

connect remotely to the master and create pods, deployments or expose services, although this is 

not straightforward. The security certificates must be copied to the host machine first, among the 

copied files there is the configuration archive containing the master’s IP address and port number, 
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allowing kubectl command to know the right destination of its queries. Due to security reasons, 

the master node will not be scheduled any pod and only a limited, selected number of hosts are 

able to access the cluster to deploy or delete services. 

 
Finally, there is the Kubernetes worker node virtual machine. In the same way as the master node, 

the worker node is attached to a gateway through a Linux bridge and the corresponding virtual 

interface in the SD-WAN virtual machine is also loaded to Mininet. Configuration required for 

this node is quite minimalist in comparison with what is required for the master node, although 

kubeadm, kubelet, kubectl and Docker must also be installed. At least in the beginning, the 

worker node will not run as many pods as the master node, as most of the required services are 

handled by the master node. Through the use of labels, pods can be scheduled to the worker node, 

which allows a better resource usage, taking into account that Docker containers are not created 

in the master node but in the worker node. Worker node’s pods are also assigned an IP address 

inside the specified pod-cidr-range by the cni. In this work, the separation of the conforming 

entities into different virtual machines, was done with solely purpose of increasing the isolation 

between running software, specially conflicts between Kubernetes and Docker. Considering a 

dockerized version of ONOS is used, any issue affecting the performance of Docker would hinder 

any effort carried out while building the proof-of-concept testbed. 

3.1. Domain name system (DNS) 
 

Kubernetes schedules a DNS pod and service in the master node to individual containers by 

resolving a DNS name to its corresponding IP address, therefore directing their requests to the 

proper node. When a service is created in the cluster, it is assigned a DNS name, which will be 

used by a client pod during its queries in both, the client’s pod namespace as well as the cluster’s 

default domain. As an example of the DNS principles in Kubernetes, we can imagine a service 

called “Hello-world” scheduled in the namespace “kuber-system”, a query coming from a pod 

also located in “kuber-system” must only ask for Hello-world. On the other hand, a pod running 

in namespace “test-system” must look up for the service with a query for hello-world.kuber-

system [6]. 
 

This scenario represents the behavior of the internal DNS, this means that only entities belonging 

to the Kubernetes cluster will be able to take advantage of it. In the proposed smart branch 

scenario, most of the requests will come from hosts located outside the cluster, they cannot make 

use of this internal DNS service. For connecting to services from outside the cluster, Kubernetes 

offers three solutions: accessing services through a public IP, accessing services through the 

Proxy Verb, and accessing the services from a node or pod in the cluster. The first option requires 

the use of the NodePort or a load balancer service type, the service will be exposed either on the 

internet or limited to a corporate network. Its limitations rely on the fact that a request to the 

service will be performed using the syntax <master/worker node ip>:NodePort, making it 

necessary for the end user to know the node’s IP address. A query sent to the master node will 

produce another request heading from the master node towards the worker, creating an 

unnecessary overhead [7]. Next, we have the Proxy Verb. This solution works exclusively for 

HTTP/HTTPS services and may cause issues with some web services; it also performs some 

authentication and authorization at apiserver level before granting access to the service. The last 

option is to access a service using a pod or node. It must be taken into account that although some 

nodes or pods might be accessed in this way, this is a nonstandard method, and the environment 

varies depending on the host, some tools might or might not be installed. Neither of the 

aforementioned methods is viable from the end user’s perspective, being either too complex of 

posing a security risk for the company when exposing IP addresses of nodes containing vital 

services [7]. 
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To overcome the aforementioned IP sharing issue, an external DNS service, written in python, 

was conceived. Every gateway in the SD-WAN virtual machine will run its DNS server, the 

service is bound to the interface heading towards the host subnetwork and listening on port 53. 

The server will load the zones from a .txt file containing the zone entries regarding all the 

available Kubernetes worker nodes, the DNS names for worker nodes have been formed by 

adding the node’s name and a predetermined suffix. Hosts will access the available services 

located at the closest node under the entry “vtt.kubernetes.services”. The remote non-local 

available services will have entries that correspond to their respective worker node name 

followed by the suffix “.kubernetes.services”. As an example, let us assume a cluster with two 

worker nodes worker1 and worker2. As an example, hosts located closer to worker1will posses a 

zone file as shown in Figure 2. 

 

 

Figure 2. Custom DNS entries for hosts close to worker1. 

By making use of this service, whatever host is connected to the corporate network, close to 

worker1 will be able to access the services located in the node by making a request to 

<vtt.kubernetes.services>:<NodePort>, and services in worker2 by using 

<worker2.kubernetes.services>:<NodePort> saving efforts of sharing the IP address of any node 

in the cluster or limiting access for only certain types of traffic. When a host located behind one 

of the gateways sends a query for certain services, the request will not go to the master node, but 

instead will go directly to the worker node running the service, as it can be appreciated in Figure 

3, where the dashed lines represent a normal request, going through the master node. The 

continuous lines represent a direct request, enabled by the orchestrator, performed towards the 

worker node. This approach avoids the overhead of sending a request to the master and it sends 

another request to the worker node on behalf of the host. A python based DNS server was 

preferred at this stage due to the simplicity of using a .txt file for loading zones, being able to 

format the zones at will, and the easiness of making changes and binding the server to any IP 

address or interface without the need to install, stop or restart a service. However, solutions like 

bind 9 would definitely be a preferred option on a production environment. 
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Figure 3. Requests sent by a host. 

3.2. Reverse proxy service 
 

Traditionally, when putting an application server on a network, attackers may exploit the 

underlying vulnerabilities of the available services. Although this is not the case when using 

containerized services, security is still something we all must be concerned about. In production 

environments a security measure is to deny internet access inside a corporate branch and instead 

use a proxy server. A proxy service is the one attending requests from a web browser and it can 

be used to bypass security restrictions, on the other hand, a reverse proxy service is used by a web 

server and has the advantage of enabling load-balancing. Containerized Nginx is the open source 

solution web server used in this work due to its user-friendly configuration and the ability of 

handling a great number of connections with a significantly less overhead than its counterparts. 

The idea behind this implementation is reducing to the minimum the amount of requirements 

needed for running the worker nodes, installing Nginx on them would have for sure undermined 

this principle as every worker joining the cluster would need to have Nginx installed before being 

able to serve its purpose. 
 

On the other hand, a normal Kubernetes Nginx service running in the cluster would have been 

limited to internal requests due to the lack of an “external-ip” not being granted to bare metal 

Kubernetes load-balancers, and which only work with Kubernetes implementations running on 

IaaS such as GCP, AWS, or Azure. MetalLB [8] is the load balancer-implementation selected for 

supporting the reverse proxy service and enables a layer 2 load-balancing through the creation of 

a controller and speaker deployments on every node it is running. Nginx entities are deployed one 

per worker node on top of MetalLB, receiving the worker’s node IP address as their external-ip, 

enabling a reverse proxy behavior for requests coming from outside hosts towards port 80 and 

creating a corresponding Nginx pod. The need for the NodePort on the end user’s side has been 

avoided. Instead of this, the “location” command in Nginx is being used to redirect users to the 

right HTTP service based on service’s name. As an example, let us consider the Nginx 
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configuration file for a worker node called worker1 that is running a service called “hello-world” 

and a worker node called worker2 running a service called “my-app”. From the view of worker1, 

a host close to worker1 will use the entry <vtt.kubernetes.services> for accessing services located 

in worker1, and an entry in the form <worker2.kubernetes.services> for all the other remote 

nodes, in this case a node called worker2. For avoiding the usage of NodePort corresponding to 

“hello-world” service, this Nginx configuration file will enable the adding of “/hello-world/” to 

the requested URL for accessing this service, via the location command. For a host whose closest 

node is worker1, the request’s URL is now in the form “vtt.kubernetes.services/hello-world/” 

when accessing this service located in worker1, for accessing the service “my-app” in worker2, 

the request’s URL would be “worker2.kubernetes.services/my-app/”. Figure 4 shows the example 

Nginx configuration file for worker1. 

 

Figure 4. Nginx configuration file for worker1. 

By adding a comparison including the URL of the request to contain the string 

“.kubernetes.services” the access from remote hosts to the service is guaranteed. Hosts might not 

know what services are available or the names of the remote worker nodes, therefore, a request 

heading towards “vtt.kubernetes.services/help/” will deploy a html list of available services in the 

closest node as well as in the remote nodes and their corresponding URI. As it has been 

mentioned before, pods and services are not static, they are prone to being deleted or changed. 

Because of this, the Nginx configuration files located in every worker node must be updated 

dynamically as services are being added or deleted, and the Nginx service in its corresponding 

pod must be reloaded when these changes occur in its worker node. 

 

3.3. Master node service discovery 
 

As explained in the previous sections, the zone files used in the external DNS service as well as 

the Nginx configuration files cannot be static. A master node service discovery is therefore 

necessary for the continuous update of all zone files in the gateways running the external DNS 

service, as well as for the service location updates in the Nginx pod running in every worker 

node. The service discovery works based on the principle that deployment and services’ 

containers are not created at the master node, but at worker nodes. Kubernetes does not provide a 

default way of associating a certain service with the scheduled worker node, therefore, knowing 

the pods running on a determined worker node alongside the list of all available services in the 

cluster provides a way to start a service-node matching. Before performing the matching, the 

pods output must be filtered in order to avoid cluster management related pods to be counted as 

services, pods such as calico, Nginx or the MetalLB’s controller and speaker must not be 

included. The discovery starts when all the available worker nodes and their corresponding IP 

addresses are obtained as an array using the Kubernetes API. The node array structure 



International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019 

                                                                                                                                                                      122   

corresponds to a node’s name followed by its IP address; therefore, worker’s node names will 

always be located in an even index within the array, with their respective IP addresses located at 

the subsequent, odd position. Next, for every node in existence, we obtain the running pods and 

all the available services in the whole cluster. 

 

During the first iteration and for every single node, the current amount of running pods is saved 

within an associative array, the next step is to create the zones files, creating and copying the 

Nginx configuration to the corresponding pod as well as reloading the Nginx service and sending 

the zones file to the respective routers. For copying files into the Nginx pods, kubectl tool is used, 

thus avoiding the creation of extra communication channels between the master and the worker 

nodes. The service discovery supports dynamically adding new worker nodes to the cluster, those 

new members will be automatically detected and after deploying a new MetalLB controller and 

speaker entity in the node alongside the Nginx service, the worker node will be ready for being 

scheduled pods. 

 
During the subsequent iterations, the number of the obtained pods per worker node is compared 

against the values previously saved in the associative array, if there is a change in one of the 

values, then the discovery service can identify if a service might have been added, moved or 

deleted. After this, it deletes the current worker node’s zones file and Nginx configuration to 

create new files with updated information. The Nginx service corresponding to the worker node 

where a change occurred is reloaded and the zone files are sent to the respective routers, these 

actions only occur in the nodes where a service was added or deleted leaving the unchanged 

nodes working continuously without any disruption. The service discovery was conceived in a 

way that no extra efforts such as copying master’s certificates or installing extra software is 

necessary for a given worker node when joining the cluster, only the compulsory kubeadm, 

kubectl, kubelet and Docker are required. Being written in Bash script language, portability is 

assured as no modifications are required for running it in any Unix-like operating system. It is 

worth noting that due to actions being taken only in the worker nodes where a change has 

occurred, sending the DNS zones files will happen only once per change, a detail that helps in 

reducing the bandwidth use due to the lack of continuous advertisement. Another reason behind 

this behavior is the fact that the content of a zone file are mere URLs and their corresponding IP 

addresses, which are not prone to change, and if they do, this does not happen quite often. In 

Figure 5, a high-level version of the discovery algorithm used for the master service discovery is 

shown. 
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Figure 5. Service discovery algorithm. 

3.4. Service update system 
 

The updated zones file generated at the master node must be sent to the gateways that are running 

the external DNS service. For this purpose, a Mosquitto [9] broker working in bridge mode was 

set up on the master node listening on port 1883. Mosquitto was selected due to it being a 

lightweight publish/subscribe transport protocol, its capability of coping with unreliable 

networks, and most important, its reduced bandwidth consumption. A MQTT publisher was 

implemented using the paho-mqtt python library, and set up on the CO. This publisher reads the 

whole zones file, transforms it into an array of bytes and publishes it under a determined topic. 

On the other hand, the border gateways running the external DNS service have a MQTT 

subscriber running, they subscribe to the determined topic and save the received array of bytes as 

an .txt file. After the file is saved, the subscriber will reload the DNS service running in the 

worker node. By default, MQTT does not provide encryption, however, security can be enforced 

by using a username/password scheme or certificate authentication using the TLS protocol, with 

the latter being the most practical and secure option. The usage of the TLS protocol in MQTT 

requires the creation of the respective key pairs and certificates for both the broker and the 

clients. 

 

The aforementioned constituent parts of the orchestrator are distributed on the underlying 

network as shown in Figure 6. 
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Figure 6. Testing network topology and the services running. 
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4. COMPARISON AND TESTING 
 

Three major components of the proof-of-concept are the external DNS running on every gateway 

in the network, the Proxy service that is deployed in all the Kubernetes worker nodes and the 

service discovery that runs on the Kubernetes master node. These entities have their 

corresponding counterparts called kube-dns and kube-proxy. Although kube-dns and kube-proxy 

perform tasks only inside the Kubernetes cluster, their behavior is similar to those used in the 

proof-of-concept and therefore, can be used to perform a validation. This section will include a 

deep analysis on the behavior of the internal kube-dns and kube-proxy as well as a behavioral 

comparison with the external solutions conceived for this work. 

 

4.1. DNS comparison 
 

The Kubernetes internal DNS service helps resolving IP addresses by performing a map of the 

name of a certain service to its IP address, therefore easing the finding of services by other pods. 

Just like a real DNS service, the domain names used in Kubernetes must be unique. In most of the 

cases, Kubernetes automatically starts the internal DNS service to offer a lightweight service 

discovery feature. Enabling DNS based service discovery in a Kubernetes cluster facilitates for 

applications to find and work with each other, even when a service has been changed, moved or 

deleted. When an internal DNS service runs in a cluster, it does it in the following way: a service 

named coreDNS is started and one pod per node is created, the DNS service listens for service 

associated events through the Kubernetes API in order to keep its record updated, these events 

happen every time a service or a pod associated to it is created, changed or deleted. Kubelet sets 

the resolve.conf name server option to the coreDNS IP address with the corresponding search 

option that will allow the use of short hostnames. CoreDNS support the creation of two types of 

DNS records, A and SVC. The normal A records for services are formed in the following way: 

<service.namespace.svc.cluster.local>. In the same way, an entry for a pod will include its IP 

address like: <1.2.3.4.namespace.pod.cluster.local>. The SVC records created look like the 

following: <\_port-name.\_protocol.svc.cluster.local>. This will lead to the creation of a 

consistent DNS-based discovery service that will enable the communication between applications 

and pods in the cluster. 

 

The external DNS service implemented for the proof-of-concept also supports the dynamic 

update of the records via MQTT. In the same way, the external DNS must be present in every 

single worker node for efficiently allowing a complete update. However, the main focus of the 

external DNS heavily differs from the internal Kubernetes DNS. While the internal DNS provides 

translation for services or pods, the external service provides translation at node level, this means 

that each of the entries in the zones files corresponds to a Kubernetes node, neither to service nor 

a pod. Modifying the structure of the DNS entries is quite simple thanks to them being in a .txt 

format, thus improving automation. Currently, the external DNS service does not provide support 

for SVC entries due to their compatibility not being universal and therefore, not present in all 

networks. A quite complete solution for the implementation of a DNS server is bind 9. However, 

the use of it implies its installation as well as extra configuration on the gateways, which might 

not be useful in a developing environment. It also requires the gateways hardware to be able to 

support the deployment of daemons heavier than, in this case, Python. For a production 

environment, the use of bind 9 like solutions is encouraged. 
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4.2. Proxy comparison 
 

Kubernetes internal Proxy service follows a concept quite close to a reverse proxy. Its main task 

is to watch for the client requests heading towards a certain IP address and port, forwarding them 

to the corresponding service or application inside the cluster. From a certain point of view, the 

only difference between the internal proxy and a normal proxy server is the fact that Kubernetes’ 

internal proxy will perform forwarding towards a service and its corresponding pod, not to a host. 

A very important characteristic of Kubernetes services’ is that at the moment of their creation, the 

system will automatically assign a “Virtual IP address” to this new service. This IP address is 

known as virtual because there is no interface nor MAC associated with it. Therefore, the network 

does not know how to route the packets going towards it. In other words, the internal proxy 

service will forward requests performed by other applications or pods towards the backend pods 

that are managed by the required services while translating the virtual IP addresses of the services 

into IP addresses of the corresponding pods, thus making it not necessary for the entity making 

the request to actually know what pod is behind a determined service. To know how to route 

traffic from the assigned virtual IP to the corresponding pod, the proxy service interacts with 

Netfilter and iptables, a pair of Linux configuration tools that help in the creation of forwarding 

rules for the virtual IPs.  
 

Kubernetes is a quite complex system, although some networking tasks such as load balancing or 

specifying some packet rules are directly performed at user space level. The internal proxy will 

often have to switch between the user space and kernel space in order to be able to interact with 

iptables and performing the load balancing, thus behaving as a reverse proxy. The process of 

forwarding the traffic between the virtual IPs and the corresponding pods is performed in four 

steps. First, the kube-proxy is permanently watching for the modification, creation or deletion of 

services and their respective pods. Next, if a new service is created, kube proxy will open a 

random port on the node to forward any incoming connection on the port towards the 

corresponding pod. The pod that will be used is chosen based on the Session Affinity option 

under the Spec parameter in the service configuration. After this, kube-proxy will install the 

iptables rules that will redirect traffic going to the virtual IPs and the service port towards the 

proxy port that was opened in the last step. Finally, the incoming traffic in the proxy port is 

forwarded towards the existing pods using a round-robin schema. 
 

In the same way as the internal Kubernetes proxy, the proof-of-concept’s reverse proxy 

implementation runs on every available worker node in the cluster and is automatically updated 

as new services are modified, created or deleted. However, to avoid the re-sending of requests 

between nodes, the external proxy service serves only locally available services, based on the 

work of the master node service discovery that helps with the association of services and nodes. 

Although it seems that the functionalities of the internal and external proxy servers are 

overlapping each other, in reality, the external proxy service works based on the NodePort 

created after exposing a service outside the cluster, and it needs the internal proxy service for 

achieving its purpose. In the scenario where communication is performed only inside the cluster, 

a external proxy service will not be necessary, but when most, if not all of the requests come from 

outside the cluster, then an external proxy service comes in handy. Any service can be accessed 

either from inside or outside the cluster using the NodePort, however, Kubernetes opens a 

NodePort on all existing worker nodes every time a service is exposed, therefore a request for 

certain service heading towards a node where the backend pod is not located, will cause kube-

proxy to route it towards the right node. With the external proxy service running, the internal 

Kubernetes proxy will only receive requests that can be processed locally, in other words, 

requests asking for services whose backend pods are located in the node. It is possible to 

implement a reverse proxy using Python, but the proof-of-concept’s implementation uses the 

widely known Nginx running on top of a load balancer to achieve the desired behavior. 
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4.3. Service discovery comparison 
 

As explained previously, Kubernetes performs a service discovery based on its internal DNS 

service and proxy service. Although not completely efficient due to the multiple request 

redirections occurring between the worker nodes, it gets things working in a fairly reliable way. 

When it comes to the implementation of external in-house applications such as the DNS and 

proxy service developed in this work, Kubernetes does not provide a way to associate existing 

services with its backend pods and the corresponding worker node to enable direct requests. The 

master service discovery developed for the proof-of-concept provides a method for associating 

the existing services with their backend pods, by assuming the service belongs to the node where 

its corresponding pod was scheduled. This has proven to be quite effective with the condition that 

pods have a name that is related to the service they are providing. 
 

4.4. Testing 
 

The testing topology as well as all running services and their respective location, can be observed 

in Figure 6. Under the precedent testing considerations, it must be taken into account that 

Mininet’s virtualization is done only at a network level, and each host process sees the same set 

of processes and directories. Thus, it hinders the functions of the DNS service and the MQTT-

based update system. The issue arises due to the lack of directory isolation. The update system 

will send the corresponding zone files to the gateways, and they will vary according to the 

gateway’s location. This means that gateway 1 shall receive a different zones file than gateway 2 

due to it being located closer to a worker node. However, this does not happen in Mininet, where 

the files received would be overwritten causing the DNS service to upload the wrong zones. In 

the same way, the resolve.conf file that contains the DNS server’s addresses must be unique per 

host; otherwise, all of them will be pointing at the same DNS server causing the network to be 

flooded with wrong requests. 
 

A similar situation occurs with the custom DNS server. It has to be bound to the gateway’s 

interface that is going towards the host network; therefore, a different custom DNS service file is 

needed per gateway. These issues were overcome by creating the needed files in the directory 

/etc/netns/<host-name> containing the resolv.conf and the custom DNS files. The principle 

behind this is that ip-netns creates the namespaces as a logical copy of the network stack, but it 

inherits the whole network namespace from its parent. In the case of network namespace aware 

applications, a global network configuration is first looked for in the above-mentioned directory 

and after this in /etc/, so by creating the files in /etc/netns/<host-name> they are being loaded as 

global network configuration. Taking into account that this work is based on the dynamic 

discovery of updated, newly created and deleted services, the measurements carried out will be 

the time required for creating the zones files and the Nginx configuration files, as well as the time 

until the changes have been applied to both, the DNS server and the Nginx service.  
 

It must be taken into account that reloading the required services in the orchestrator are carried 

out almost simultaneously; thus, the time for a service to be available for the end-user, as shown 

in Figure 7, is the time required to reload the DNS and Nginx (~5 seconds). We can infer that at 

the moment of creating a service, the number of worker nodes available does not influence the 

overall time. One reason for this might be the fact that Docker containers backing those services 

are created only in the scheduled worker nodes, therefore eliminating any possible queuing time. 

Of course, times regarding the download of images required to run certain services are not taken 

into account. On the other hand, in Figure 8 we can note a slight difference in the files creation 

function when two worker nodes are present. The reason behind this behavior might be the fact 

that Kubernetes master node also must delete the corresponding API object for every deleted 

service. 
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Figure 7. Time required for the orchestrator to perform the necessary tasks in order to fully discover a 

newly created service. 

 

Figure 8. The time required for the orchestrator to perform the necessary tasks in order to eliminate a 

recently deleted service. 

From Figures 7 and 8 it can be inferred that the time of reloading the external Nginx and DNS 

services does not vary regarding whether a service is being discovered or deleted. This comes 

from the fact that Nginx and DNS reloading only occurs after the service has been discovered, a 

task that does not take a considerable amount of time. On the other hand, service deletion takes a 

much higher time due to pods being granted a grace time to not only delete the process but also 

the API object. The time required for deleting a back-end pod will always be higher than the 

required time for creating it, even if the process running inside the pod is lightweight. One 
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solution to this is to use the flag --wait=false when deleting the pod, though it is highly 

recommended to grant this grace time to ensure a proper deletion. When a service is deleted and 

its back-end pods stay in the terminating phase for a determined period time, no concern exists as 

the service will not be available anymore, and even if the Nginx service has not been updated yet, 

requests being forwarded towards the deleted service will not be successful. 

 
Convergence times can be altered to modify the amount of traffic generated by the service 

discovery as well as its effectiveness when discovering new services. However, the alteration of 

delays will impact the efficiency of the service discovery and must be analyzed according to the 

situation. As an example, if services are added on a regular basis one after the other with just a 

couple of seconds of difference, then a small delay will be required in the master service 

discovery. Similarly, some delays can be added before publishing the created files in the MQTT 

publisher code or before saving the received files in the subscriber code. One possibility for 

dropping the times associated with the restart of the services, at least for Nginx, is to use the 

daemon-based Nginx installation in Linux, instead of the Docker-based version. This would 

reduce the amount of time spent to obtain the name of the Nginx pod, copying the files and 

restarting the service to only restarting the daemon. Nevertheless, the time spent at reloading 

Nginx and DNS does not really impact the user experience as it takes no more than 3 seconds. 

 

5. CONCLUSION 
 

Containerization is nowadays the most common way of deploying a service, widely used 

applications all run on containerized environments. As is expected, containerization offers many 

advantages to corporate-wide applications, from those running basic web services to the more 

complex, edge-computing related applications. Knowing that containerized applications are prone 

to suffer modifications, the current work aims at providing a method that can be used for easily 

discovering and accessing containerized services deployed in a Kubernetes environment. 

However, the proof-of-concept cannot yet be efficiently implemented in a real-life scenario as an 

increased degree of automation as well as some performance improvements must be carried out. 

This proof-of-concept can properly run in a testing environment. Although no commercial 

options are available to correctly perform a comparison, quite useful features are present 

regarding the service discovery and the utilization of a proxy server to access the deployed 

services. Some improvements are needed in the performance of the service to pod association in 

the master service discovery application. Until now the deployed pod must have the same name 

as the deployed service in order to identify it. 

 

5.1. Future research 
 

Future work will focus on effectively improving the delivery of the required configuration files, 

so the right gateways will receive the right information. Taking into account that hosts must be 

served by the closest available worker node, future work will focus on efficiently measuring the 

geographical distance between worker nodes as well as a telemetry system for real-time 

measurement using data plane programmability. 

 

5.1.1 Node distance computing function 
 

A way to dynamically obtain and update the distance between the gateway and the available 

worker nodes is a quite important feature that would allow the MQTT subscribers located in the 

gateways to select the closest node available so they can receive updates regarding this specific 
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worker node as the local node. A common belief states that latency is an acceptably accurate tool 

for this purpose, which of course is not a valid assumption. IP addresses cannot be characterized 

by geographical reasons as a determined region might or might not be assigned a certain IP 

addresses block to it. With this in mind, an IP address assigned to Finland may easily be 

announced by a device at any other country, thus not guaranteeing that an entire network has been 

assigned to a single geographical location. 
 

TS Eugene et al have proposed in [13] a method that can be used for the implementation of this 

feature and some coordinates-based approaches for network distance estimation are discussed. 

The idea behind the coordinates-based distance measurement is that hosts maintain a determined 

set of numbers, also known as coordinates, that are used for characterizing their locations in the 

network and allow a distance prediction based on the result of a distance function run over the 

host’s coordinates. This approach works particularly well on a peer-to-peer architecture, when a 

host discovers another host’s identity, their coordinates would be exchanged and then the distance 

will be computed instantly. The mentioned work points out that coordinates have proven to be 

quite efficient at summarizing large amounts of distance information. A concern regarding the 

proposed approach is related to the assumption of stability in the network, such as consistent 

propagation delays. If this does not hold due to the constant changes in network topology, 

distance estimations will be affected. 
 

5.1.2 Load balancing and telemetry 
 

Data plane programmability can be considered as the natural evolution of SDN, as it enables 

much flexible networking when compared with a normal control plane based programmable 

network. Programming Protocol-independent Packet Processors, also known as P4, is the de-facto 

language for data-plane programmability. It allows several features extension of SDN networks 

as well as a dynamic configuration of actions that go far beyond those allowed by the OpenFlow 

specifications. However, data plane programmability is not a silver bullet and although it allows 

to easily add new protocols, or remove unused protocols in a network chip, its effectiveness can 

only be appreciated at networks carrying huge amounts of traffic. The proof-of-concept system 

takes advantage of ONOS’s P4 support by implementing some novel features that will improve 

the experience and manageability of the system and creating a custom P4-based Load balancer 

and Telemetry system. By diving into these topics, it is assumed that a real-life implementation of 

the proof-of-concept is meant to possess a high traffic rate. 
 

In [14], Miao Rui et al, demonstrated that it is possible to implement a fully functional P4-based 

load balancer that can support millions of simultaneous connections while providing per-

connection consistency. The same principle can be applied for developing an in-house layer 4 

load balancer instead of the currently used MetalLB, bringing higher performance, lower delay 

and the relief of the MetalLB related pods in all the running worker nodes while decreasing the 

chances of user experience degradation based on broken connections. An in-house in-band 

network telemetry system is also possible to implement by using P4 as it has been demonstrated 

in [15] by Changhoon et al. In-band network telemetry allows data packets to query for switch 

internal state statistics such as link utilization and queue size. Thanks to each P4 switch having a 

control channel that allows the insertion, deletion, and modification of matching tables, it is 

possible to send probe packets that contain the switch ID and the specific time spent in a 

determined switch. 
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