
International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

DOI: 10.5121/ijcnc.2019.11507 113

CONTAINERIZED SERVICES ORCHESTRATION FOR

EDGE COMPUTING IN SOFTWARE-DEFINED WIDE

AREA NETWORKS

Felipe Rodriguez Yaguache and Kimmo Ahola

5G Networks & Beyond, Technical Research Centre of Finland (VTT), Espoo, Finland

ABSTRACT

As SD-WAN disrupts legacy WAN technologies and becomes the preferred WAN technology adopted by

corporations, and Kubernetes becomes the de-facto container orchestration tool, the opportunities for

deploying edge-computing containerized applications running over SD-WAN are vast. Service

orchestration in SD-WAN has not been provided with enough attention, resulting in the lack of research

focused on service discovery in these scenarios. In this article, an in-house service discovery solution that

works alongside Kubernetes’ master node for allowing improved traffic handling and better user

experience when running micro-services is developed. The service discovery solution was conceived

following a design science research approach. Our research includes the implementation of a proof-of-

concept SD-WAN topology alongside a Kubernetes cluster that allows us to deploy custom services and

delimit the necessary characteristics of our in-house solution. Also, the implementation's performance is

tested based on the required times for updating the discovery solution according to service updates.

Finally, some conclusions and modifications are pointed out based on the results, while also discussing

possible enhancements.

KEYWORDS

SD-WAN, Edge computing, Virtualization, Kubernetes, Containers, Services

1. INTRODUCTION

Virtualization is the cornerstone of the Internet and the cloud-based services, it has evolved from

a cost-saving solution to the technology capable of providing the required agility and flexibility

needed for service delivery in data centers as well as the infrastructure supporting business-

essential applications. The main goal of virtualization is the optimization of IT assets, helping in

achieving a superior system utilization, cost reduction, and ease of deployment and management

by allowing multiple operating system images to run in parallel using only one piece of hardware.

Container-based virtualization and Virtual Machines (VMs) are perhaps the most common types

of virtualization, although there are many differences among them, they both have the necessity

to communicate within an IP network. Before the execution of a container or VM, they need to be

assigned IP and MAC addresses. When these virtualized entities are assigned IP addresses, the

traditional Ethernet and IP networks are stretched to exist inside the physical hosts located in data

centers, not only between them. Virtualization alongside cloud-computing supposes a challenge

in the application of traffic engineering for maximizing the utilization of the available

conventional networks [1].

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 114

Traditional communication networks are distributed systems with multiple routing algorithms

running over many different devices such as routers and switches. Every single one of these

devices possesses its own configuration and state and must be configured separately, which

makes networks difficult and expensive to maintain and migrate. Software-Defined Networking

(SDN) tackles this issue through the separation of the control plane from the data plane. This is

achieved by moving the control logic of the network to a centralized controller, transforming the

switches into mere forwarding devices that follow the rules set by the controller. By centralizing

the control logic, configuration and maintenance ease, with new features being able to be

deployed much faster as well. A centralized control has information regarding the whole network,

being able to optimize the available network resources. SDN is therefore widely spread among

data centers, especially in order to cope with the virtualization and cloud-computing related issue

[1].

Edge computing has arisen as a new approach that alongside SDN could be able to offer a

solution to network optimization in cloud environments. This new perspective is nothing more

than reducing the number of processes running in the centralized cloud and moving them to

locally available edge servers. However, as data processing power is moving towards the edge of

a network in the form of containers instead of remaining in a cloud or data center, migration is

also occurring for services or applications. This trend requires the usage of processing power

from devices that are not capable of being constantly connected to the network, this is the case of

laptops, smartphones, wireless sensors, etc. The more this approach is adopted, the more

businesses think their Wide Area Networks (WANs) are not prepared to carry such a burden,

especially when taking into account traditional corporate WANs. Such networks are built by

backhauling routed services and Internet traffic throughout the main office, which can cause

performance issues when combined with edge computing. It is obvious that traditional

approaches lack the agility and flexibility to achieve the required performance and availability

needed by edge computing [2].

Edge computing’s adoption arises awareness regarding a substantial change in traffic patterns.

The changes in traffic patterns are directly related to the increase in the number of host devices

connected in every branch, the major drivers for this increase come from: the number of

connected devices per employee, number of end-point devices (for example IoT equipment, WiFi

access points, etc.) and extra applications that comprise a collection of services provided to

customers (guest WiFi, artificial reality, etc.), which are known as "micro-services". The

complexity of dealing with multiple hosts raises demand for new management tools, in other

words, orchestration. Orchestration automates the management and/or organization of systems or

services while reducing errors introduced by personnel involvement in tasks such as provisioning

or scaling. Container orchestration is expected to be present in almost all the service deployments

in the near future through its massive adoption by companies and startups. Its merge with the SD-

WAN technology is still to happen, making SD-WAN adopters unable to obtain the most out of

their investments [16].

1.1. Methodology

In this work, we propose a simple service discovery system that will improve bandwidth usage

when accessing containerized services over a SD-WAN environment. This work was performed

in three main steps that include: the selection of use cases and design of the SD-WAN topology, a

testbed implementation for the observation of data flow that will allow us to identify the required

behavior of our service discovery, and results analysis focusing on a user experience approach.

The first step takes into account the limited amount of research aiming at the merge of edge

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 115

computing, SD-WAN and container orchestration. A literature survey required to fully

understand the functioning and requirements of SD-WAN networks is carried out covering

existing solutions and projects as well as the role of an orchestrator in such implementation. The

same step is applied for Kubernetes, in order to fully understand the usage of its API solution and

all its constituent parts. The envisioned use cases cover scenarios applicable on an enterprise level

and the topology is conceived to simulate the Internet (i.e. a distributed network). The second

step comprises the simulation of the aforementioned network topology in order to provide the

experiment with a real-life WAN environment. This allows the deployment of in-house

containerized services and testing of bandwidth usage and request redirection when performing

container orchestration. In the final step, the implementation is compared against commercial

solutions and validated based on discovery and convergence times, the whole system will be

examined looking for problems and limitations that shall be discussed so improvements can be

proposed.

1.2. Related work

A few works have somehow dive into service discovery orchestration in SDN networks. In [10]

Jarraya et al. analyzed the importance of computing and storage orchestration alongside

networking resources as a quite important part in SDN, while also taking into account the lack of

research that aims at easing the creation and deployment of network services. In [11] Kreutz et al.

identify computing infrastructure and networking challenges, presenting a series of constraints

that must be overcome in order to improve efficiency by means of network orchestration. The

aforementioned works focus on cloud computing resource orchestration on a data center

environment having and underlying SDN network. In [12], Taleb et al. discuss the role of service

orchestration in the success of Multi-access Edge Computing environment, but this mainly

focuses on the orchestration of networking resources and containerized services orchestration is

not explored. This paper has been adapted from [17], which was delivered for the 8th

International Conference on Cloud Computing: Services and Architecture (CLOUD 2019). The

present document focuses on the discovery of deployed containerized services, indirectly

achieving a slight improvement in the usage of network resources performing orchestration

between a container orchestrator and the in-house service discovery.

1.3. Structure

This paper is organized as follows: In section 2 we define our use case and the network topology

that will be simulated. In section 3, a summary of the implementation is presented as well as of

every constituent part of the system. Finally, in section 4 we perform a brief comparison between

the constituent parts of Kubernetes and the developed solution, define the parameters for carrying

out measurements, the results and their corresponding discussion are also presented.

2. USE CASE

With SD-WAN being the natural extension of SDN and Kubernetes becoming the de-facto

container orchestrator, the possible use cases for an Edge Computing case are high in number. In

the proposed use case, a Kubernetes master node will be deployed in a company’s Central Office

(CO) alongside the suggested orchestrator that will be aware of the changes happening in the

Kubernetes cluster and will react accordingly. The development of this orchestrator will enable

the possibility of deploying container workloads on remote branch locations and, at the same

time, facilitating access towards its services by properly discovering the nodes containing them.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 116

In Figure 1, the proposed topology including the high-level required 5G network for allowing the

implementation of local breakout is depicted.

The advent of internet-connected endpoint devices that are commonly not associated with internet

and possess a unique identity is known as Internet of Things (IoT). Edge computing and SD-

WAN enable the deployment of workloads that can be of an almost infinite variety, all of them

focusing on the processing of IoT generated data. The use cases this work will focus comprises

(but is not limited to) the following: smart web pages, authentication applications and the already

mentioned IoT data processing. Each of these use cases has different requirements and setups.

The smart web page can possess three main components, a front-end, a web application, and the

logic, each of these three components can be deployed in different Kubernetes workers while the

Kubernetes master performs load balancing. Network requirements will be low latency and

dynamic route adaptation in case a Kubernetes worker is replaced or moved. The authentication

application can be deployed into one remote branch, then all authentication queries coming from

closer branches will be redirected towards it instead of going to the CO, this will require the

discovery of the closest node running the authentication application.

Figure 1. Use case topology

Finally, for IoT data processing use case, data generated by sensors located in a remote branch

can be stored in the corresponding Kubernetes worker, while the data processing unit can be

deployed in a different worker node. The massive amount of traffic generated by sending and

receiving raw data as well as processed data should not be directed through Kubernetes master

node in the central office unless it is strictly necessary. The need of dynamic, external service

discovery is evident. Although SD-WAN is just starting to be adopted, the integration with

Kubernetes will ease the deployment of applications and provide an improvement in the user

experience. Due to the lack of commercial solutions that provide Kubernetes service discovery in

a SD-WAN environment at the moment of writing this document, the proposed paradigm can be

further developed as a viable business idea.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 117

3. IMPLEMENTATION

The testbed for the orchestrator proof-of-concept was implemented as three interconnected virtual

machines running on a Linux server located at VTT Espoo premises and having Ubuntu 18.04

LTS as host operating system. Each of the aforementioned virtual entities plays a different role:

SD-WAN network simulation, Kubernetes master node and Kubernetes worker node. This

chapter will give a complete in-depth description of every entity forming the testbed, taking into

account the complexity of the final system.

First, we have the SD-WAN network simulation virtual machine. This entity contains the

OpenFlow speaking SDN controller as well as all the Mininet simulated gateways and hosts,

providing an underlying physical network. Gateways are connected through a set of Open

vSwitch virtual switches that emulate the Internet; the protocol used for the communication

between these gateways is BGP, which was implemented by using Quagga [3]. Each of the

gateways represents a corporation’s branch office, which is perfectly capable of hosting a

Kubernetes master or worker node and the services deployed on them. The SDN controller runs

on ONOS [4], for this thesis the version of ONOS used is 14. ONOS controller is deployed by

using Docker alongside ATOMIX for supporting the creation of extra ONOS instances,

effectively forming a cluster. [5]. ONOS is a controller written in Java and offers high modularity

in the form of a wide variety of applications that can be activated depending on the developer’s

needs [4].

The SDN controller runs on the virtual machine and the gateways communicate with it through

the main BGP speaker that is located at the main office. An ATOMIX cluster consisting of three

nodes is used for relieving the ONOS instances from cluster management, service discovery and

data storage functions. The created ATOMIX cluster is configured through a JSON configuration

file describing each constituent node. This configuration file includes information regarding each

node’s discovery and communication methods, management partition configuration and storage

and replication partition configuration. In this work, the discovery protocol specified is Raft,

ONOS entities are not listed during the discovery configuration due to the connection between

ATOMIX and ONOS being of a client-server type. Raft was also used in ONOS’s former releases

for cluster formation; however, it requires strict cluster membership information in order to

successfully form a cluster. With the adoption of ATOMIX as a separate cluster using Raft, all

the ONOS nodes can easily discover peers by using dynamic discovery mechanisms, supporting

the failure of all by one node [5].

Next, we have the Kubernetes master node virtual machine. The master node is connected to one

of the gateways through a Linux bridge created for this solely purpose; the virtual interface

located on the SD-WAN virtual machine is loaded to Mininet, therefore simulating a direct

connection. To successfully deploy the master node, kubeadm, kubelet and kubectl alongside

Docker must be installed in the virtual machine. The master node is not a single entity, it is the

result of a combination of a group of pods, each of them having a specific function. Each of the

pods that conform the master will have one or more containers that are created using Docker,

among them, the Container Network Interface (cni). The cni will provide an IP address to every

single one of the created pods and is also in charge of the whole networking for the pod network,

including the internal DNS service. Once the master node is ready, the gateway to which it is

attached will serve as a gateway for both, a host machine and the master node. Host machines

connect remotely to the master and create pods, deployments or expose services, although this is

not straightforward. The security certificates must be copied to the host machine first, among the

copied files there is the configuration archive containing the master’s IP address and port number,

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 118

allowing kubectl command to know the right destination of its queries. Due to security reasons,

the master node will not be scheduled any pod and only a limited, selected number of hosts are

able to access the cluster to deploy or delete services.

Finally, there is the Kubernetes worker node virtual machine. In the same way as the master node,

the worker node is attached to a gateway through a Linux bridge and the corresponding virtual

interface in the SD-WAN virtual machine is also loaded to Mininet. Configuration required for

this node is quite minimalist in comparison with what is required for the master node, although

kubeadm, kubelet, kubectl and Docker must also be installed. At least in the beginning, the

worker node will not run as many pods as the master node, as most of the required services are

handled by the master node. Through the use of labels, pods can be scheduled to the worker node,

which allows a better resource usage, taking into account that Docker containers are not created

in the master node but in the worker node. Worker node’s pods are also assigned an IP address

inside the specified pod-cidr-range by the cni. In this work, the separation of the conforming

entities into different virtual machines, was done with solely purpose of increasing the isolation

between running software, specially conflicts between Kubernetes and Docker. Considering a

dockerized version of ONOS is used, any issue affecting the performance of Docker would hinder

any effort carried out while building the proof-of-concept testbed.

3.1. Domain name system (DNS)

Kubernetes schedules a DNS pod and service in the master node to individual containers by

resolving a DNS name to its corresponding IP address, therefore directing their requests to the

proper node. When a service is created in the cluster, it is assigned a DNS name, which will be

used by a client pod during its queries in both, the client’s pod namespace as well as the cluster’s

default domain. As an example of the DNS principles in Kubernetes, we can imagine a service

called “Hello-world” scheduled in the namespace “kuber-system”, a query coming from a pod

also located in “kuber-system” must only ask for Hello-world. On the other hand, a pod running

in namespace “test-system” must look up for the service with a query for hello-world.kuber-

system [6].

This scenario represents the behavior of the internal DNS, this means that only entities belonging

to the Kubernetes cluster will be able to take advantage of it. In the proposed smart branch

scenario, most of the requests will come from hosts located outside the cluster, they cannot make

use of this internal DNS service. For connecting to services from outside the cluster, Kubernetes

offers three solutions: accessing services through a public IP, accessing services through the

Proxy Verb, and accessing the services from a node or pod in the cluster. The first option requires

the use of the NodePort or a load balancer service type, the service will be exposed either on the

internet or limited to a corporate network. Its limitations rely on the fact that a request to the

service will be performed using the syntax <master/worker node ip>:NodePort, making it

necessary for the end user to know the node’s IP address. A query sent to the master node will

produce another request heading from the master node towards the worker, creating an

unnecessary overhead [7]. Next, we have the Proxy Verb. This solution works exclusively for

HTTP/HTTPS services and may cause issues with some web services; it also performs some

authentication and authorization at apiserver level before granting access to the service. The last

option is to access a service using a pod or node. It must be taken into account that although some

nodes or pods might be accessed in this way, this is a nonstandard method, and the environment

varies depending on the host, some tools might or might not be installed. Neither of the

aforementioned methods is viable from the end user’s perspective, being either too complex of

posing a security risk for the company when exposing IP addresses of nodes containing vital

services [7].

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 119

To overcome the aforementioned IP sharing issue, an external DNS service, written in python,

was conceived. Every gateway in the SD-WAN virtual machine will run its DNS server, the

service is bound to the interface heading towards the host subnetwork and listening on port 53.

The server will load the zones from a .txt file containing the zone entries regarding all the

available Kubernetes worker nodes, the DNS names for worker nodes have been formed by

adding the node’s name and a predetermined suffix. Hosts will access the available services

located at the closest node under the entry “vtt.kubernetes.services”. The remote non-local

available services will have entries that correspond to their respective worker node name

followed by the suffix “.kubernetes.services”. As an example, let us assume a cluster with two

worker nodes worker1 and worker2. As an example, hosts located closer to worker1will posses a

zone file as shown in Figure 2.

Figure 2. Custom DNS entries for hosts close to worker1.

By making use of this service, whatever host is connected to the corporate network, close to

worker1 will be able to access the services located in the node by making a request to

<vtt.kubernetes.services>:<NodePort>, and services in worker2 by using

<worker2.kubernetes.services>:<NodePort> saving efforts of sharing the IP address of any node

in the cluster or limiting access for only certain types of traffic. When a host located behind one

of the gateways sends a query for certain services, the request will not go to the master node, but

instead will go directly to the worker node running the service, as it can be appreciated in Figure

3, where the dashed lines represent a normal request, going through the master node. The

continuous lines represent a direct request, enabled by the orchestrator, performed towards the

worker node. This approach avoids the overhead of sending a request to the master and it sends

another request to the worker node on behalf of the host. A python based DNS server was

preferred at this stage due to the simplicity of using a .txt file for loading zones, being able to

format the zones at will, and the easiness of making changes and binding the server to any IP

address or interface without the need to install, stop or restart a service. However, solutions like

bind 9 would definitely be a preferred option on a production environment.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 120

Figure 3. Requests sent by a host.

3.2. Reverse proxy service

Traditionally, when putting an application server on a network, attackers may exploit the

underlying vulnerabilities of the available services. Although this is not the case when using

containerized services, security is still something we all must be concerned about. In production

environments a security measure is to deny internet access inside a corporate branch and instead

use a proxy server. A proxy service is the one attending requests from a web browser and it can

be used to bypass security restrictions, on the other hand, a reverse proxy service is used by a web

server and has the advantage of enabling load-balancing. Containerized Nginx is the open source

solution web server used in this work due to its user-friendly configuration and the ability of

handling a great number of connections with a significantly less overhead than its counterparts.

The idea behind this implementation is reducing to the minimum the amount of requirements

needed for running the worker nodes, installing Nginx on them would have for sure undermined

this principle as every worker joining the cluster would need to have Nginx installed before being

able to serve its purpose.

On the other hand, a normal Kubernetes Nginx service running in the cluster would have been

limited to internal requests due to the lack of an “external-ip” not being granted to bare metal

Kubernetes load-balancers, and which only work with Kubernetes implementations running on

IaaS such as GCP, AWS, or Azure. MetalLB [8] is the load balancer-implementation selected for

supporting the reverse proxy service and enables a layer 2 load-balancing through the creation of

a controller and speaker deployments on every node it is running. Nginx entities are deployed one

per worker node on top of MetalLB, receiving the worker’s node IP address as their external-ip,

enabling a reverse proxy behavior for requests coming from outside hosts towards port 80 and

creating a corresponding Nginx pod. The need for the NodePort on the end user’s side has been

avoided. Instead of this, the “location” command in Nginx is being used to redirect users to the

right HTTP service based on service’s name. As an example, let us consider the Nginx

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 121

configuration file for a worker node called worker1 that is running a service called “hello-world”

and a worker node called worker2 running a service called “my-app”. From the view of worker1,

a host close to worker1 will use the entry <vtt.kubernetes.services> for accessing services located

in worker1, and an entry in the form <worker2.kubernetes.services> for all the other remote

nodes, in this case a node called worker2. For avoiding the usage of NodePort corresponding to

“hello-world” service, this Nginx configuration file will enable the adding of “/hello-world/” to

the requested URL for accessing this service, via the location command. For a host whose closest

node is worker1, the request’s URL is now in the form “vtt.kubernetes.services/hello-world/”

when accessing this service located in worker1, for accessing the service “my-app” in worker2,

the request’s URL would be “worker2.kubernetes.services/my-app/”. Figure 4 shows the example

Nginx configuration file for worker1.

Figure 4. Nginx configuration file for worker1.

By adding a comparison including the URL of the request to contain the string

“.kubernetes.services” the access from remote hosts to the service is guaranteed. Hosts might not

know what services are available or the names of the remote worker nodes, therefore, a request

heading towards “vtt.kubernetes.services/help/” will deploy a html list of available services in the

closest node as well as in the remote nodes and their corresponding URI. As it has been

mentioned before, pods and services are not static, they are prone to being deleted or changed.

Because of this, the Nginx configuration files located in every worker node must be updated

dynamically as services are being added or deleted, and the Nginx service in its corresponding

pod must be reloaded when these changes occur in its worker node.

3.3. Master node service discovery

As explained in the previous sections, the zone files used in the external DNS service as well as

the Nginx configuration files cannot be static. A master node service discovery is therefore

necessary for the continuous update of all zone files in the gateways running the external DNS

service, as well as for the service location updates in the Nginx pod running in every worker

node. The service discovery works based on the principle that deployment and services’

containers are not created at the master node, but at worker nodes. Kubernetes does not provide a

default way of associating a certain service with the scheduled worker node, therefore, knowing

the pods running on a determined worker node alongside the list of all available services in the

cluster provides a way to start a service-node matching. Before performing the matching, the

pods output must be filtered in order to avoid cluster management related pods to be counted as

services, pods such as calico, Nginx or the MetalLB’s controller and speaker must not be

included. The discovery starts when all the available worker nodes and their corresponding IP

addresses are obtained as an array using the Kubernetes API. The node array structure

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 122

corresponds to a node’s name followed by its IP address; therefore, worker’s node names will

always be located in an even index within the array, with their respective IP addresses located at

the subsequent, odd position. Next, for every node in existence, we obtain the running pods and

all the available services in the whole cluster.

During the first iteration and for every single node, the current amount of running pods is saved

within an associative array, the next step is to create the zones files, creating and copying the

Nginx configuration to the corresponding pod as well as reloading the Nginx service and sending

the zones file to the respective routers. For copying files into the Nginx pods, kubectl tool is used,

thus avoiding the creation of extra communication channels between the master and the worker

nodes. The service discovery supports dynamically adding new worker nodes to the cluster, those

new members will be automatically detected and after deploying a new MetalLB controller and

speaker entity in the node alongside the Nginx service, the worker node will be ready for being

scheduled pods.

During the subsequent iterations, the number of the obtained pods per worker node is compared

against the values previously saved in the associative array, if there is a change in one of the

values, then the discovery service can identify if a service might have been added, moved or

deleted. After this, it deletes the current worker node’s zones file and Nginx configuration to

create new files with updated information. The Nginx service corresponding to the worker node

where a change occurred is reloaded and the zone files are sent to the respective routers, these

actions only occur in the nodes where a service was added or deleted leaving the unchanged

nodes working continuously without any disruption. The service discovery was conceived in a

way that no extra efforts such as copying master’s certificates or installing extra software is

necessary for a given worker node when joining the cluster, only the compulsory kubeadm,

kubectl, kubelet and Docker are required. Being written in Bash script language, portability is

assured as no modifications are required for running it in any Unix-like operating system. It is

worth noting that due to actions being taken only in the worker nodes where a change has

occurred, sending the DNS zones files will happen only once per change, a detail that helps in

reducing the bandwidth use due to the lack of continuous advertisement. Another reason behind

this behavior is the fact that the content of a zone file are mere URLs and their corresponding IP

addresses, which are not prone to change, and if they do, this does not happen quite often. In

Figure 5, a high-level version of the discovery algorithm used for the master service discovery is

shown.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 123

Figure 5. Service discovery algorithm.

3.4. Service update system

The updated zones file generated at the master node must be sent to the gateways that are running

the external DNS service. For this purpose, a Mosquitto [9] broker working in bridge mode was

set up on the master node listening on port 1883. Mosquitto was selected due to it being a

lightweight publish/subscribe transport protocol, its capability of coping with unreliable

networks, and most important, its reduced bandwidth consumption. A MQTT publisher was

implemented using the paho-mqtt python library, and set up on the CO. This publisher reads the

whole zones file, transforms it into an array of bytes and publishes it under a determined topic.

On the other hand, the border gateways running the external DNS service have a MQTT

subscriber running, they subscribe to the determined topic and save the received array of bytes as

an .txt file. After the file is saved, the subscriber will reload the DNS service running in the

worker node. By default, MQTT does not provide encryption, however, security can be enforced

by using a username/password scheme or certificate authentication using the TLS protocol, with

the latter being the most practical and secure option. The usage of the TLS protocol in MQTT

requires the creation of the respective key pairs and certificates for both the broker and the

clients.

The aforementioned constituent parts of the orchestrator are distributed on the underlying

network as shown in Figure 6.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 124

Figure 6. Testing network topology and the services running.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 125

4. COMPARISON AND TESTING

Three major components of the proof-of-concept are the external DNS running on every gateway

in the network, the Proxy service that is deployed in all the Kubernetes worker nodes and the

service discovery that runs on the Kubernetes master node. These entities have their

corresponding counterparts called kube-dns and kube-proxy. Although kube-dns and kube-proxy

perform tasks only inside the Kubernetes cluster, their behavior is similar to those used in the

proof-of-concept and therefore, can be used to perform a validation. This section will include a

deep analysis on the behavior of the internal kube-dns and kube-proxy as well as a behavioral

comparison with the external solutions conceived for this work.

4.1. DNS comparison

The Kubernetes internal DNS service helps resolving IP addresses by performing a map of the

name of a certain service to its IP address, therefore easing the finding of services by other pods.

Just like a real DNS service, the domain names used in Kubernetes must be unique. In most of the

cases, Kubernetes automatically starts the internal DNS service to offer a lightweight service

discovery feature. Enabling DNS based service discovery in a Kubernetes cluster facilitates for

applications to find and work with each other, even when a service has been changed, moved or

deleted. When an internal DNS service runs in a cluster, it does it in the following way: a service

named coreDNS is started and one pod per node is created, the DNS service listens for service

associated events through the Kubernetes API in order to keep its record updated, these events

happen every time a service or a pod associated to it is created, changed or deleted. Kubelet sets

the resolve.conf name server option to the coreDNS IP address with the corresponding search

option that will allow the use of short hostnames. CoreDNS support the creation of two types of

DNS records, A and SVC. The normal A records for services are formed in the following way:

<service.namespace.svc.cluster.local>. In the same way, an entry for a pod will include its IP

address like: <1.2.3.4.namespace.pod.cluster.local>. The SVC records created look like the

following: <_port-name._protocol.svc.cluster.local>. This will lead to the creation of a

consistent DNS-based discovery service that will enable the communication between applications

and pods in the cluster.

The external DNS service implemented for the proof-of-concept also supports the dynamic

update of the records via MQTT. In the same way, the external DNS must be present in every

single worker node for efficiently allowing a complete update. However, the main focus of the

external DNS heavily differs from the internal Kubernetes DNS. While the internal DNS provides

translation for services or pods, the external service provides translation at node level, this means

that each of the entries in the zones files corresponds to a Kubernetes node, neither to service nor

a pod. Modifying the structure of the DNS entries is quite simple thanks to them being in a .txt

format, thus improving automation. Currently, the external DNS service does not provide support

for SVC entries due to their compatibility not being universal and therefore, not present in all

networks. A quite complete solution for the implementation of a DNS server is bind 9. However,

the use of it implies its installation as well as extra configuration on the gateways, which might

not be useful in a developing environment. It also requires the gateways hardware to be able to

support the deployment of daemons heavier than, in this case, Python. For a production

environment, the use of bind 9 like solutions is encouraged.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 126

4.2. Proxy comparison

Kubernetes internal Proxy service follows a concept quite close to a reverse proxy. Its main task

is to watch for the client requests heading towards a certain IP address and port, forwarding them

to the corresponding service or application inside the cluster. From a certain point of view, the

only difference between the internal proxy and a normal proxy server is the fact that Kubernetes’

internal proxy will perform forwarding towards a service and its corresponding pod, not to a host.

A very important characteristic of Kubernetes services’ is that at the moment of their creation, the

system will automatically assign a “Virtual IP address” to this new service. This IP address is

known as virtual because there is no interface nor MAC associated with it. Therefore, the network

does not know how to route the packets going towards it. In other words, the internal proxy

service will forward requests performed by other applications or pods towards the backend pods

that are managed by the required services while translating the virtual IP addresses of the services

into IP addresses of the corresponding pods, thus making it not necessary for the entity making

the request to actually know what pod is behind a determined service. To know how to route

traffic from the assigned virtual IP to the corresponding pod, the proxy service interacts with

Netfilter and iptables, a pair of Linux configuration tools that help in the creation of forwarding

rules for the virtual IPs.

Kubernetes is a quite complex system, although some networking tasks such as load balancing or

specifying some packet rules are directly performed at user space level. The internal proxy will

often have to switch between the user space and kernel space in order to be able to interact with

iptables and performing the load balancing, thus behaving as a reverse proxy. The process of

forwarding the traffic between the virtual IPs and the corresponding pods is performed in four

steps. First, the kube-proxy is permanently watching for the modification, creation or deletion of

services and their respective pods. Next, if a new service is created, kube proxy will open a

random port on the node to forward any incoming connection on the port towards the

corresponding pod. The pod that will be used is chosen based on the Session Affinity option

under the Spec parameter in the service configuration. After this, kube-proxy will install the

iptables rules that will redirect traffic going to the virtual IPs and the service port towards the

proxy port that was opened in the last step. Finally, the incoming traffic in the proxy port is

forwarded towards the existing pods using a round-robin schema.

In the same way as the internal Kubernetes proxy, the proof-of-concept’s reverse proxy

implementation runs on every available worker node in the cluster and is automatically updated

as new services are modified, created or deleted. However, to avoid the re-sending of requests

between nodes, the external proxy service serves only locally available services, based on the

work of the master node service discovery that helps with the association of services and nodes.

Although it seems that the functionalities of the internal and external proxy servers are

overlapping each other, in reality, the external proxy service works based on the NodePort

created after exposing a service outside the cluster, and it needs the internal proxy service for

achieving its purpose. In the scenario where communication is performed only inside the cluster,

a external proxy service will not be necessary, but when most, if not all of the requests come from

outside the cluster, then an external proxy service comes in handy. Any service can be accessed

either from inside or outside the cluster using the NodePort, however, Kubernetes opens a

NodePort on all existing worker nodes every time a service is exposed, therefore a request for

certain service heading towards a node where the backend pod is not located, will cause kube-

proxy to route it towards the right node. With the external proxy service running, the internal

Kubernetes proxy will only receive requests that can be processed locally, in other words,

requests asking for services whose backend pods are located in the node. It is possible to

implement a reverse proxy using Python, but the proof-of-concept’s implementation uses the

widely known Nginx running on top of a load balancer to achieve the desired behavior.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 127

4.3. Service discovery comparison

As explained previously, Kubernetes performs a service discovery based on its internal DNS

service and proxy service. Although not completely efficient due to the multiple request

redirections occurring between the worker nodes, it gets things working in a fairly reliable way.

When it comes to the implementation of external in-house applications such as the DNS and

proxy service developed in this work, Kubernetes does not provide a way to associate existing

services with its backend pods and the corresponding worker node to enable direct requests. The

master service discovery developed for the proof-of-concept provides a method for associating

the existing services with their backend pods, by assuming the service belongs to the node where

its corresponding pod was scheduled. This has proven to be quite effective with the condition that

pods have a name that is related to the service they are providing.

4.4. Testing

The testing topology as well as all running services and their respective location, can be observed

in Figure 6. Under the precedent testing considerations, it must be taken into account that

Mininet’s virtualization is done only at a network level, and each host process sees the same set

of processes and directories. Thus, it hinders the functions of the DNS service and the MQTT-

based update system. The issue arises due to the lack of directory isolation. The update system

will send the corresponding zone files to the gateways, and they will vary according to the

gateway’s location. This means that gateway 1 shall receive a different zones file than gateway 2

due to it being located closer to a worker node. However, this does not happen in Mininet, where

the files received would be overwritten causing the DNS service to upload the wrong zones. In

the same way, the resolve.conf file that contains the DNS server’s addresses must be unique per

host; otherwise, all of them will be pointing at the same DNS server causing the network to be

flooded with wrong requests.

A similar situation occurs with the custom DNS server. It has to be bound to the gateway’s

interface that is going towards the host network; therefore, a different custom DNS service file is

needed per gateway. These issues were overcome by creating the needed files in the directory

/etc/netns/<host-name> containing the resolv.conf and the custom DNS files. The principle

behind this is that ip-netns creates the namespaces as a logical copy of the network stack, but it

inherits the whole network namespace from its parent. In the case of network namespace aware

applications, a global network configuration is first looked for in the above-mentioned directory

and after this in /etc/, so by creating the files in /etc/netns/<host-name> they are being loaded as

global network configuration. Taking into account that this work is based on the dynamic

discovery of updated, newly created and deleted services, the measurements carried out will be

the time required for creating the zones files and the Nginx configuration files, as well as the time

until the changes have been applied to both, the DNS server and the Nginx service.

It must be taken into account that reloading the required services in the orchestrator are carried

out almost simultaneously; thus, the time for a service to be available for the end-user, as shown

in Figure 7, is the time required to reload the DNS and Nginx (~5 seconds). We can infer that at

the moment of creating a service, the number of worker nodes available does not influence the

overall time. One reason for this might be the fact that Docker containers backing those services

are created only in the scheduled worker nodes, therefore eliminating any possible queuing time.

Of course, times regarding the download of images required to run certain services are not taken

into account. On the other hand, in Figure 8 we can note a slight difference in the files creation

function when two worker nodes are present. The reason behind this behavior might be the fact

that Kubernetes master node also must delete the corresponding API object for every deleted

service.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 128

Figure 7. Time required for the orchestrator to perform the necessary tasks in order to fully discover a

newly created service.

Figure 8. The time required for the orchestrator to perform the necessary tasks in order to eliminate a

recently deleted service.

From Figures 7 and 8 it can be inferred that the time of reloading the external Nginx and DNS

services does not vary regarding whether a service is being discovered or deleted. This comes

from the fact that Nginx and DNS reloading only occurs after the service has been discovered, a

task that does not take a considerable amount of time. On the other hand, service deletion takes a

much higher time due to pods being granted a grace time to not only delete the process but also

the API object. The time required for deleting a back-end pod will always be higher than the

required time for creating it, even if the process running inside the pod is lightweight. One

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 129

solution to this is to use the flag --wait=false when deleting the pod, though it is highly

recommended to grant this grace time to ensure a proper deletion. When a service is deleted and

its back-end pods stay in the terminating phase for a determined period time, no concern exists as

the service will not be available anymore, and even if the Nginx service has not been updated yet,

requests being forwarded towards the deleted service will not be successful.

Convergence times can be altered to modify the amount of traffic generated by the service

discovery as well as its effectiveness when discovering new services. However, the alteration of

delays will impact the efficiency of the service discovery and must be analyzed according to the

situation. As an example, if services are added on a regular basis one after the other with just a

couple of seconds of difference, then a small delay will be required in the master service

discovery. Similarly, some delays can be added before publishing the created files in the MQTT

publisher code or before saving the received files in the subscriber code. One possibility for

dropping the times associated with the restart of the services, at least for Nginx, is to use the

daemon-based Nginx installation in Linux, instead of the Docker-based version. This would

reduce the amount of time spent to obtain the name of the Nginx pod, copying the files and

restarting the service to only restarting the daemon. Nevertheless, the time spent at reloading

Nginx and DNS does not really impact the user experience as it takes no more than 3 seconds.

5. CONCLUSION

Containerization is nowadays the most common way of deploying a service, widely used

applications all run on containerized environments. As is expected, containerization offers many

advantages to corporate-wide applications, from those running basic web services to the more

complex, edge-computing related applications. Knowing that containerized applications are prone

to suffer modifications, the current work aims at providing a method that can be used for easily

discovering and accessing containerized services deployed in a Kubernetes environment.

However, the proof-of-concept cannot yet be efficiently implemented in a real-life scenario as an

increased degree of automation as well as some performance improvements must be carried out.

This proof-of-concept can properly run in a testing environment. Although no commercial

options are available to correctly perform a comparison, quite useful features are present

regarding the service discovery and the utilization of a proxy server to access the deployed

services. Some improvements are needed in the performance of the service to pod association in

the master service discovery application. Until now the deployed pod must have the same name

as the deployed service in order to identify it.

5.1. Future research

Future work will focus on effectively improving the delivery of the required configuration files,

so the right gateways will receive the right information. Taking into account that hosts must be

served by the closest available worker node, future work will focus on efficiently measuring the

geographical distance between worker nodes as well as a telemetry system for real-time

measurement using data plane programmability.

5.1.1 Node distance computing function

A way to dynamically obtain and update the distance between the gateway and the available

worker nodes is a quite important feature that would allow the MQTT subscribers located in the

gateways to select the closest node available so they can receive updates regarding this specific

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 130

worker node as the local node. A common belief states that latency is an acceptably accurate tool

for this purpose, which of course is not a valid assumption. IP addresses cannot be characterized

by geographical reasons as a determined region might or might not be assigned a certain IP

addresses block to it. With this in mind, an IP address assigned to Finland may easily be

announced by a device at any other country, thus not guaranteeing that an entire network has been

assigned to a single geographical location.

TS Eugene et al have proposed in [13] a method that can be used for the implementation of this

feature and some coordinates-based approaches for network distance estimation are discussed.

The idea behind the coordinates-based distance measurement is that hosts maintain a determined

set of numbers, also known as coordinates, that are used for characterizing their locations in the

network and allow a distance prediction based on the result of a distance function run over the

host’s coordinates. This approach works particularly well on a peer-to-peer architecture, when a

host discovers another host’s identity, their coordinates would be exchanged and then the distance

will be computed instantly. The mentioned work points out that coordinates have proven to be

quite efficient at summarizing large amounts of distance information. A concern regarding the

proposed approach is related to the assumption of stability in the network, such as consistent

propagation delays. If this does not hold due to the constant changes in network topology,

distance estimations will be affected.

5.1.2 Load balancing and telemetry

Data plane programmability can be considered as the natural evolution of SDN, as it enables

much flexible networking when compared with a normal control plane based programmable

network. Programming Protocol-independent Packet Processors, also known as P4, is the de-facto

language for data-plane programmability. It allows several features extension of SDN networks

as well as a dynamic configuration of actions that go far beyond those allowed by the OpenFlow

specifications. However, data plane programmability is not a silver bullet and although it allows

to easily add new protocols, or remove unused protocols in a network chip, its effectiveness can

only be appreciated at networks carrying huge amounts of traffic. The proof-of-concept system

takes advantage of ONOS’s P4 support by implementing some novel features that will improve

the experience and manageability of the system and creating a custom P4-based Load balancer

and Telemetry system. By diving into these topics, it is assumed that a real-life implementation of

the proof-of-concept is meant to possess a high traffic rate.

In [14], Miao Rui et al, demonstrated that it is possible to implement a fully functional P4-based

load balancer that can support millions of simultaneous connections while providing per-

connection consistency. The same principle can be applied for developing an in-house layer 4

load balancer instead of the currently used MetalLB, bringing higher performance, lower delay

and the relief of the MetalLB related pods in all the running worker nodes while decreasing the

chances of user experience degradation based on broken connections. An in-house in-band

network telemetry system is also possible to implement by using P4 as it has been demonstrated

in [15] by Changhoon et al. In-band network telemetry allows data packets to query for switch

internal state statistics such as link utilization and queue size. Thanks to each P4 switch having a

control channel that allows the insertion, deletion, and modification of matching tables, it is

possible to send probe packets that contain the switch ID and the specific time spent in a

determined switch.

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 131

REFERENCES

[1] Padhy, R., Patra, M., Satapathy, S. Virtualization Techniques & Technologies: State-of-The-Art.

Journal of Global Research in Computer Science, 2018, vol. 2, nro.12. ISSN: 2229-371X. Available

https://www.researchgate.net/publication/264884756_VIRTUALIZATION_TECHNIQUES_TECHN

OLOGIES_STATE-OF-THE-ART.

[2] Horrel, J., Karimullah, A. SD-WAN Set to Transform WAN in Australia. IDC Custom Solutions,

Framingham, 2017.

[3] Jakma, P. Quagga Routing Software Suite. Quagga Routing Suite. Visited: 15.02.2019. Available at:

https://www.quagga.net/

[4] Open Network Operating System (ONOS). ONOS features. Open Networking Foundation & The

Linux Foundation, San Francisco, 2019. Visited 15.02.2019. Available at:

https://onosproject.org/features/

[5] Open Networking Foundation. Atomix. Open Networking Foundation. Visited 15.02.2019. Available

at: https://atomix.io/docs/latest/user-manual/introduction/what-is-atomix/

[6] Kubernetes. DNS for services and pods. The Linux Foundation, San Francisco, 2019. Visited

15.02.2019. Available at: https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/

[7] Kubernetes. Access services running on clusters. The Linux Foundation, San Francisco, 2019. Visited

15.02.2019. Available at: https://kubernetes.io/docs/tasks/administer-cluster/access-cluster-services/

[8] MetalLB Metal Load-Balancer (MetalLB). Google. Visited 15.02.2019. Available at:

https://metallb.universe.tf/

[9] Stanford-Clark, A., Nipper, A. Message Queuing Telemetry Transport (MQTT). Organization for the

Advancement of Structured Information Standards (OASIS). Visited 15.02.2019. Available at:

http://mqtt.org

[10] Jarraya, Y., Madi, T., Debbabi, M., 2014. A Survey and a Layered Taxonomy of Software Defined

Networking. IEEE Communications Surveys & Tutorials 16,1955–1980. URL:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6805151, doi:

10.1109/COMST.2014.2320094.

[11] Kreutz, D., Ramos, F.M.V. , Esteves Verissimo, P., Esteve Rothenberg, C., Azodolmolky, S., Uhlig,

S., 2015. Software-Defined Networking: A Comprehensive Survey. Proceedings of the IEEE 103,14–

76. URL: http://ieeexplore.ieee.org/document/6994333/, doi:10.1109/JPROC.2014.2371999.

[12] Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S., & Sabella, D. (2017). On Multi-Access Edge

Computing:A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration. IEEE

Communications Surveys and Tutorials, 19(3), 1657-1681. [7931566].

https://doi.org/10.1109/COMST.2017.2705720

[13] Eugene, TS., Zhang, Hui. Predicting Internet Network Distance with Coordinates-Based Approaches.

Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications

Societies, 2002, DOI: 10.1109/INFCOM.2002.1019258, ISSN: 0743-166X. Available at:

https://www.cs.rice.edu/~eugeneng/papers/INFOCOM02.pdf

[14] Miao, Rui., Hongyi, Zeng., Changhoon, Kim., Jeongkeun, Lee., Minlan, Yu. SilkRoad: Making

Stateful Layer-4 Load Balancing Fast andCheap Using Switching ASICs. Association for Computing

Machinery’s Special Interest Group on Data Communications (SIGCOMM), 2017, DOI:

International Journal of Computer Networks & Communications (IJCNC) Vol.11, No.5, September 2019

 132

10.1145/3098822.3098824, ISBN: 78-1-4503-4653-5/17/08. Available at:

https://eastzone.bitbucket.io/paper/sigcomm17-silkroad.pdf

[15] Changhoon, Kim., Sivaraman, Anirudh., Katta, Naga., Bas, Antonin., Wobker, Lawrence J. In-band

Network Telemetry via Programmable Dataplanes. 2015, Visited 12.05.2019. Available at:

https://pdfs.semanticscholar.org/a3f1/9dc8520e2f42673be7cbd8d80cd96e3ec0c1.pdf?_ga=2.7652546

8.802012735.1559031914-713298922.1559031914

[16] Ranganathan, R. A highly available and scalable microservice architecture for access management.

Aalto University, 2018. Available at:

https://aaltodoc.aalto.fi/bitstream/handle/123456789/34401/master_Ranganathan_Rajagopalan_2018.

pdf?sequence=1&isAllowed=y

[17] Rodriguez Yaguache F., Ahola K. Enabling Edge Computing Using Container Orchestration and

Software Defined Wide Area Networks. 9th International Conference on Computer Science,

Engineering and Applications (CCSEA 2019), 353-372. ISBN: 978-1-925953-05-3. Available at:

http://aircconline.com/csit/papers/vol9/csit90930.pdf

AUTHORS

Felipe Andres Rodriguez Yaguache is currently finishing his master studies in

Communication Engineering at Aalto University (Finland), and is working at the

Technical Research Centre of Finland (VTT) as a Master Thesis Worker. His interests

include edge computing, SDN, networking and data plane programmability.

Kimmo Ahola currently works as a Senior Scientist at VTT Technical Research

Centre of Finland. His research interests include Computer Communications

(Networks), Software Defined Networking, Edge Computing, Network Functions

Virtualisation, Computer Security and Reliability and Operating Systems.

