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ABSTRACT 
 
The recent public adaptation of cryptocurrencies sparked a great interest in alternative uses of the 

blockchain technology. Private or permissioned blockchain-based systems are a promising technology, 

initiating novel applications in several important fields, such as financing, commerce, and administration. 

One of the largest challenges in its application is the necessity of capacity planning. In public blockchains 
– such as the ones powering cryptocurrencies – the network is self-scaling and self-organizing, made up of 

individual nodes working for profit. In private blockchain, where capacity is provided by a few selected 

parties, these abilities are not inherently present as there is no financial or other motivation for clients to 

participate. This necessitates the introduction of efficient capacity planning and performance predictions 

to operate such a network efficiently. In this paper, we deal with methods for providing performance 

predictions of private blockchains. 
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1. INTRODUCTION 
 

Blockchain technology provides data storage in an unmodifiable, undeniable way. These facts led 

to the proliferation of cryptocurrencies and the rise of interest in alternative uses of the 
technology. 

 

A key factor in achieving these desirable properties is the presence of a self-organizing network 
of clients. In a public Blockchain, the most common application of the technology, these clients 

work toward a common goal, motivated by their direct economic interest. Each client can read 

and write to the chain and their changes are validated by each participant until a consensus is 
reached. This is the working model behind cryptocurrencies, such as Bitcoin [1], but it is not the 

only use of the technology. 

 

A subclass of Blockchains are private or permissioned blockchains (PBCs, sometimes also 
referred to as distributed ledgers [2]), where operations on the chain are limited to a certain subset 

of clients. This allows for much wider application of the technology while bringing in new 

challenges and problems to solve, especially regarding performance and efficiency. After a brief 
literature review, these problems will be more precisely stated and formalized in Section 3 

(Problem Statement).  

 

http://airccse.org/journal/ijc2020.html
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The rest of the paper is organized as follows. Section 4 deals with possible approaches, that are 
discussed and formally introduced. Section 5 is dedicated to the validation of these approaches by 

applying them in a practical case and drawing conclusions from the observations. Finally, Section 

6 wraps up the discussion by providing a short overview of the work done and introducing 

possible future directions. 
 

2. LITERATURE REVIEW 
 

In this section, we summarize the main influential works in the field of blockchain technology. 
As the research on private blockchain technologies is a relatively recent field, the number of 

significant papers is relatively few. 

 

After the initial use, blockchain technology has found many other applications than 
cryptocurrencies. However, the original whitepaper by the author with the pseudonym Satoshi 

Nakamoto (which describes the workings of Bitcoin) [1] is still considered the most important 

publication in the field. This paper introduces the basic concept of a Blockchain and also 
provides a use for the technology in cryptocurrencies. 

 

While adequate for the use in Bitcoin, the original concept of Blockchain, using a Proof-of-Work 
[3] scheme for appending new blocks, has some performance issues which cannot be easily 

solved without sacrificing security. This was recognized relatively early and several studies 

addressed this topic. One of the most cited ones is titled as On the Security and Performance of 

Proof of Work Blockchains by A Gervais et al [4]. In this work, the authors introduced a 
framework for analyzing the performance and security implications of different consensus 

protocols in different implementations. 

 
With the increasing adaptation of the technology, the performance issues became more apparent, 

even in the case of public blockchains. This led to a search for other alternatives with even more 

emphasis on performance analysis. One notable work is The Quest for Scalable Blockchain 
Fabric: Proof-of-Work vs. BFT Replication by Marko Vukolic [5], which deals with the 

performance and scalability issues of these style of systems. 

 

While the focus of the literature is on the performance and scalability problems of large, public 
blockchains, a relatively few publications deal explicitly with the specifics of private 

blockchains. There are individual performance comparisons of popular private blockchain 

platforms, such as Ethereum [6] and Hyperledger Fabric [7], described in the paper Performance 
analysis of private blockchain platforms in varying workloads by S Pongnumkul, et al [8]. There 

are also initiatives at unifying the performance and security evaluation of private blockchains, 

such as the BLOCK BENCH solution, described in the paper [9] by Tien Tuan Anh Dins et al. 

 
Another possible source of inspiration comes from related fields, such as network security. Ad-

hoc networks built from untrusting parties face very similar problems as blockchains do. 

Proposed solutions in this field, such as the work of A. A. Pirzada et al on Establishing Trust in 
Pure Ad-hoc Networks [10] or the work of P. Chatterjee on Trust Based Clustering and Secure 

Routing Scheme for Mobile Ad Hoc Networks [11], provide some valuable insight to these 

challenges. 
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3. PROBLEM STATEMENT 
 
PBCs share some of the well-known challenges associated with distributed systems, especially 

blockchain-based solutions, but also have some unique problems. In this section, we list these 

specific problems. 

 

3.1. The Unique Case of PBCs 

 

Typically, in PBCs the number of nodes is lower by several orders of magnitude than in case of 
public chains. This can be attributed to different use-cases and the restrictions on participants. To 

put it simply; there is no motivation for an outside party to use a private chain which they cannot 

write. On the other hand, an organization which can write data in the chain, usually lack the 

necessary computational resources to run the chain effectively, while maintaining data integrity. 
Consequently, the standard performance governing methods - such as block difficulty target in 

Proof-of-Work schemes [3] - which rely on the statistical behavior of a large number of nodes 

may prove to be unsatisfactory in this case. The approach described in this paper aims to provide 
more fine-grained control over performance for smaller PBCs, enabling their faster adaptation. 

 

 
 

Figure 1.  Uses of performance prediction in real world scenarios 

 

By incorporating performance prediction both in design time and in runtime (as seen in Figure 1), 

further improvements can be achieved. The accurate modeling of client performance aids the 
capacity planning process of a new PBC, and continuous runtime measurements and predictions 

could help with giving more precise QoS guarantees. 

 

3.2. Formal Description 
 

To accurately state the problem, one must first describe the inner workings of the chain and its 

environment in a formal way. Only then can the problem of performance predictions for private 
blockchains be addressed. 

 

A blockchain, as its name implies is made up from different data blocks, chained together by 

cryptographic links. Each block contains a certain amount of data (which is specific to that 
implementation), which is usually a fixed number. 
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In the most popular scheme, a node appends a new block to the chain when a cryptographic 
riddle, the so-called Proof-of-Work [3] is solved. On average, solving the Proof-of-Work takes 

the same amount of computational power regardless the content of the block, thus this cost can be 

considered a constant denoted by h  for hardness (expressed in computational capacity units). In 
practice the cryptographic riddle usually entails the execution of several hash functions, 

ultimately leading to the discovery of an acceptable block. This approach was first introduced as 

part of the HashCash algorithm [12], which aimed to prohibit DDOS attacks but gained 
popularity with its implementation in Blockchain technologies. 

 

The “total solving capacity of the chain”, denoted as u  (capacity/sec) is the total available 

computational power available, which can be tasked to solve proof-of-work tasks. Because u  is 

dependent on the number of nodes in the system at any given time, it can be considered as a 

function of time, denoted by 
u k( ) , where k  represents the observed time step. 

 

To determine the capacity of the chain (the block creation rate denoted 
r
b ), it is enough to know 

the hardness h  and the available computational power 
u k( )  at any given time. As previously 

discussed, hardness is either constant or it is defined by a predetermined algorithm known to all 

nodes. This means that the task can be reduced to the prediction of available computational 

power in a given time. 
 

For constructing a formal model, let each node j  belong to a class l . This class denotes the 

node’s typical computational characteristics (i.e. dedicated server, or a mobile device). The 

process describing the offered capacity by the node j  of class l  has memory and its time 

dependence is denoted by
X
j

l( )
k( )

. 

 

4. PROPOSED CLIENT PERFORMANCE PREDICTION SOLUTION 
 

As was shown in Section 3.2., a key factor to increase the efficiency and performance of PBCs is 
to have an accurate prediction of their performance in case of relatively small (as opposed to 

public chains) number of nodes. 

 
We have examined several solutions to the problem stated above: (i) the first approach was to use 

a purely statistical approach described in [13], (ii) after that, we laid out the basic principles of 

the method discussed in [14]. It was shown that by using predictions a more accurate estimate can 

be given on the available computational resources, thus system performance itself can be more 
predictable in a statistical sense. 

 

4.1. Using Linear Predictors 
 

The key concept behind the solution is to provide dynamically changing predictions based on the 

observed measures, instead of static predictions based on historical trends. The first step in doing 
that is to provide an algorithm, which predicts the performance available in the next time-step 

based on the previous values. 
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Due to the time dependence and memory of the process defining the provided computational 

power by node j  , one can use e.g. a linear predictor to predict the future value of 
X
j

l( )
k( )

 

based on its past values 
 

X
j

l( )
k -1( ),X j

l( )
k - 2( ),...,X j

l( )
k -V( )

 
(1) 

 

in the form of 

 
(2) 

 

With the predictor implemented, the offered computational capacity of a node can be modeled as 

a time series in the following way: 
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which entails that  

E e
l , j( )2( ) ≪ E X

j

l( )2( )
 

(5) 
 

due to the fact, that the predictor minimized the mean square error. With the capacity predicted 

for each node, the total available capacity can be easily calculated by summarizing the values: 
 

Y k( ) = X
j

i( )
k( )

j=1

n
j

1( )
+...+n

j

M( )

å
i=1

L

å
 

(6) 

There are several algorithms to find the optimal weight vector, in our case the most easily 

implementable one is the Robbins-Monroe type of stochastic approximations [15]. The steps of 
the algorithm are summarized as follows: 

 

1. An initial weight 
w
u

l , j( )
0( ) is chosen for a node j  of class l . These initial values could 

either be based on historical measurements of the class or chosen as a vector taking all 

previous values with equal weights. 

2. In each k  time step (when new data is available) the weights are updated using the Robbins-
Monroe formula: 

w
u

l , j( )
k +1( ) = w

u
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j
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3. Finally, a prediction is made using the linear predictor. 
 

In typical real-world scenarios, individual node level measurements and performance predictions 

are usually inefficient or unfeasible. In those cases, the algorithm can be used with a larger 

granularity, predicting on client class level. This, of course, comes at the cost of accuracy but can 
be done with minimal modifications to the algorithm. One can use this method by omitting class 

notations l  and replacing each client j with their respective class. 

 

5. VALIDATION 
 

To validate the approach, we built an environment which simulates the real-world 

implementation of a typical private blockchain. The simulation has aimed at providing client 
performance predictions, thus factors like network traffic, node failures were simplified. The next 

step in our work would be a real-world implementation of a PBC, using our algorithm, which 

would provide more detailed data and feedback based on the measurements. 
 

5.1. Simulation Setup 
 
In the setup, we measure client performance by running a synthetic benchmark on several 

different clients at different times. The performance was measured by how many SHA-256 Hash 

[16] operations the client can execute in a one-second time interval. The results of these 
benchmarks were then saved as a time-series, which can be found in the appendix. 

 

With the data gathering complete over several measurement sessions of simulated clients, the 

results were cleaned, merged and run through the simulation framework. During the simulation, 
previously collected time-series were replayed, as if they were happening in real-time, which 

were used to feed data to the predictor. Based on the incoming data, our algorithm made a 

prediction, which could be immediately validated against the actual data measured earlier. To 
evaluate the measurement, we used two different metrics: 

 

 As the basis for comparison between the approaches, we used the Root Mean Square 

Error (RMSE) of the predicted and actual values. 

 Client performance prediction is evaluated with the analysis of the error distribution. 

o A lower expected value indicates a more precise prediction. 
o A low variance of the error distribution also signals good prediction. 

 

5.2. Numerical Results 
 

The results presented in this section were achieved using data from 20 client performance 

measurements where the clients belonged to 2 different classes. Each client was measured for a 
duration of 100-time steps, thus the total data points come to 2000. The unit of measurement is 

the previously discussed SHA256 Hash operation/seconds. Table 1 shows the main 

characteristics of the measured data. 
 

Table 1.  Main characteristics of the measured data. 

 

Data points Min Max Average Standard Deviation 

2000 40016 23639 37750,93 1736,71 
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The prediction results are compared to a baseline, non-predictive approach described in our 
previous paper [13]. The baseline is based on a simple statistical method, which operates only on 

the assumed distribution of the client without prediction. 

 

As previously described in Section 3.2, in most cases individual client level prediction is 
unfeasible. For a more realistic scenario, the prediction algorithm also works on client class level, 

albeit with worse accuracy. In our measurements, we tested both approaches, the results of client 

level prediction can be seen in Table 2, while Figure 2 and Figure 3 describes the error 
distributions of the different methods respectively. 

 

Table 2.  Results of client level prediction. 

 

Metric Baseline  Proposed Method 

Root Mean Square Error 1850 792 

Standard Deviation of the Error 

Distribution 

1300 1136 

 

 
 

Figure 2.  The baseline distribution of prediction errors in client level measurements 

 

 
 

Figure 3.  The distribution of prediction errors in case of client level  

measurements with the proposed method 
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In the case of client level prediction, the improvement provided by the proposed method is 
visible. However, in real-world scenarios, the additional costs narrow the applications of this 

approach. In the case of client level predictions, the actual measurements could outweigh the 

computational power of the clients themselves, thus group-level predictions become more 

desirable. Table 3, Figures 4 and 5 shows how group level prediction compares to the client level. 
 

Table 3.  Results of group-level prediction. 

 
Metric Baseline  Proposed Method 

Root Mean Square Error 27032 4424 

Standard Deviation of the Error 

Distribution 

7755 3484 

 

 
 

Figure 4.  The baseline distribution of prediction errors in group level measurements 

 

 
 

Figure 5.  The distribution of prediction errors in case of group level measurements with the proposed 

method 
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With group level predictions the performance overhead is significantly lower, while advantages 
over the baseline are still maintained. 

 

5.3. Performance Comparison 
 

The main advantage of this approach can be easily seen with the following example case. 

Imagine that we want to use the clients from our measurement to run a PBC, with a maximized 
target hash-rate which is achieved in 80% (QoS metric) of the time. In other words, the question 

is what is the maximum capacity that we can say is achieved in 80% of the time. 

 

Using the more realistic group-level approach, without prediction this value would be 681 452,2 
hash/second, while with our method it would turn out to be 734 882,4 hash/second, which is a 

9.3% improvement. 

 

5.4. Conclusions 
 

Based on the data observed, our solution to use a linear predictor based on the Robbins-Monroe 
algorithm proved to be advantageous in both client-level and group level predictions. Both the 

absolute value of prediction errors and the variance in the error distribution has decreased. 

As the real-world applicability of client level prediction is limited, the main focus should be on 
group level predictions. In this case, the improvement (compared to the baseline) is even more 

considerable, while still having significantly lower performance overhead when compared to 

individual client level prediction approach. 
 

6. OVERVIEW AND FUTURE WORK 
 

The research reported here deals with the open problems of private and permissioned blockchains 

(PBCs) and our goal was to find a solution to overcome some of these problems related to 
capacity planning and performance predictions. We formalized the problem and outlined the 

basic concepts of our solution by using a linear prediction of the available computational 

capacity. We investigated the performance of this solution in a simulated environment. The 
measurements are based on real measured data and we drew some conclusions regarding the 

observed outcome. 

 

The measurements demonstrated that our proposed solution is more accurate in both approaches. 
In this way, better capacity planning and more efficient implementations for PBCs can be 

achieved. This may lead to better efficiency for PBCs, or larger systems with the same QoS, 

decreasing costs and environmental impact at the same time. We hope our work paves the way 
for the faster adaptation of the technology, ultimately leading to a better future, where trusted 

data is more accessible.  

 

In the future, we intend to continue the refinement our method, one possible next step of our 
research is to improve the prediction accuracy even further, for example by using more advanced 

prediction methods, such as neural networks. Another welcome improvement would be on the 

side of validation, by using a real-world PBC instead of a simulated one, we could gain further 
insight to the workings of these systems, and hopefully come up with even better solutions. 
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