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ABSTRACT  
 
Monitoring of the performance of wireless network is of vital importance for both users and the service 

provider which should be accurate, simple and fast enough to reflect the network performance in a timely 

manner. The aim of this paper is to develop an approach which can infer the performance of wireless ad 

hoc networks based on Quality of service (QoS) parameters assessment. The developed method considers 

the QoS requirements of multimedia applications transmitted over these kind of networks. This approach is 

based on the ideas of combination of both active and passive measurement methods. This approach uses an 

in-service measurement method in which the QoS parameters of the actual application (user) are estimated 

by means of dedicated monitoring packets (probes). Afterwards, these parameters are combined to produce 

and assess the application’s overall QoS using the fuzzy logic assessment and based on the measured QoS 

parameters estimated using the probe traffic. The active scheme is used to generate monitoring probe 

packets which are inserted between blocks of target application packets at regular intervals. While the 
passive monitoring is utilized to act as a traffic meter which performs as a counter of user packets (and 

bytes) that belong to the application (user) traffic flow that is subjected to monitoring. After simulating the 

developed technique, it offered a good estimation for the delay, throughput, packet losses and the overall 

QoS when using different probe rates. 
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1. INTRODUCTION 
 

As communication networks have become a very essential part of our life and due to the recent 

growth of real and non-real time multimedia applications as well as the high demand for the 
quality of these applications, many efforts were made towards improving their performance. 

These are in order to achieve customer satisfaction which lead to strong loyalty and therefore to 

more profit for the service providers [1]. Multimedia applications QoS can be guaranteed by 
expanding the bandwidth, but this is not always possible, costly and cannot remedy the root 

problem. Consequently, managing and controlling the available network resources are the points 

to deal with to solve these kinds of problems. These can be achieved only by measuring and 
monitoring the network/application QoS. One of the main motivations behind deployment of the 

QoS is the increasing multimedia application requirements with limited resources and limited 

QoS support in IP networks [2]. Therefore, QoS assessment is an essential element for satisfying 

different services requirements for number of applications that are sharing the same infrastructure 
[3]. In addition, these measurements are important for the network managers to diagnose network 

problems and failures, optimize the network performance, and ensure that the offered services 

meet service providers and end-users satisfactions. 
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QoS provision is a technique that generally consists of: a measure of network/application QoS 
state and a way to observe it and a heuristic that uses the information to deliver a QoS objective. 

Hence, to provide or guarantee QoS, it should be monitored firstly [4] [5]. For networks and 

especially in wireless ad hoc, QoS provision is not an easy issue. Therefore, many approaches 

have been proposed to deal with this issue [6]. These approaches include call admission protocols 
that first assess whether a flow should be admitted into the network based on its QoS status [7], 

[8], routing protocols that attempt to control the flow of traffic through sections in the network 

that can best afford it with acceptable QoS [9], [10], queuing schemes implemented at nodes [11], 
medium access schemes which give access priorities to some applications to and reserve the 

Radio Frequency (RF) media [12], [13]. All of these schemes must perform QoS assessment 

before and after applying the proposed approach to evaluate and then enhance the 
application/network performance. 

 

Different multimedia applications have different QoS requirements [14]. The specific parameters 

which define QoS vary depending on the application and user requirements [15] [16] [17]. It is 
very important to determine the correct set of accurate QoS parameters for the particular media 

being transported; otherwise QoS guarantees cannot be obtained [18]. QoS of transmitted 

application through a network is characterized, in a very general way, by four key network 
parameters (metrics): one-way delay [19], one-way jitter (delay variation) [20], packet loss ratio 

[21], and bandwidth. Together, these parameters determine the QoS the traffic requires [1] [22]. 

 
Monitoring and measurement schemes usually fall into two categories: passive and active 

methods. The former are those based on (transparently) collecting and analyzing the traffic 

observed at a certain point of the network and the latter, which is based on injecting synthetic 

traffic flow into a network. Passive measurement is a traditional technique used to obtain 
measurements of QoS parameters related to a certain network element [23], [24]. This method is 

based on monitoring the performance of packet streams through a network by tracking the traffic 

passing by a measurement point without creating or perturbing it. So the packet's statistics can be 
gathered without adding any new traffic. This can be done by collecting traffic flow data, from 

routers, switches or end-point hosts. Another method, for traffic collecting, is implemented by 

adding a stand-alone server at the location of interest (e.g., core or edge) of the network, which 

acts as a traffic meter or a monitoring device by storing information about the crossing traffic. 
Therefore, this type of measurement methods acts as an observer inside a network and usually 

will not interfere with other traffics. The levels of details and accuracy of the information 

gathered at the measurement points depend upon how much metrics are being processed and the 
volume of traffic passing through the monitoring device.  

 

Another way of measuring the network performance is the active measurement. This method is 
becoming increasingly important due to its simplicity, ability to attain end-to-end measurements, 

and freedom from the need of getting into the core of network. In this method, QoS and the 

performance of a network are measured by injecting of some artificial probing packet streams 

into the network and monitoring them from a source to a destination. Active measurements can 
determine the QoS experienced by the probe flow for a particular path and then measure the QoS 

as it is seen by applications. The purpose of these probing packets is to provide some insight into 

the way the user traffic is treated within the network. The QoS and performance of the probe-
packet stream are monitored to infer the performance of the user's packets and the network 

directly. There are several tools which are based on active methods like, the Internet Control 

Message Protocol (ICMP) Echo Reply/Request messages (ping) which is defined in RFC 729 
[25], traceroute [26], Surveyor [27]. The basic components of an end-to-end active probing 

structure consists of two entities: probe sender and probe receiver. In each probing experiment, 

the sender generates and transmits a probe stream, which traverses some route in the network and 

terminates at the receiver (the sink). Together with the probe sequence numbers available from 
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the payloads, the packet arrival and departure timestamps define the raw outcome of the 
experiment [28]. They are recorded by the sender monitor and the receiver monitor, respectively. 

By selecting particular properties at the sender (like packet size, departure time, bit rate, etc.), it is 

potential to compute metrics by analyzing the probe flow characteristics (e.g. arrival time) at the 

destination so, one can determine end-to-end metrics (from the source to the destination) [29]. 
 

Active measurements have several advantages. Among these is the flexibility to create probe 

flow with specific features to match measurement needs. These features include the packet sizes, 
types, and inter-departure times. Moreover, active measurements include reduction in the 

quantity of resulted measurements compared with the passive measurements. However, the main 

disadvantage of active measurements is their invasive nature [28]. The probe packets used for the 
measurements will perturb the network and the user traffic QoS metrics. Passive measurements 

overcome the disadvantages of active measurements with regard to the overheads and delay by 

monitoring (probe) streams. In addition, it can provide more precise performance evaluation of 

user traffic than active measurements. That is because in passive monitoring, the actual user 
traffic packets themselves are measured rather than depending on results of probe packets. 

 

To overcome some of the disadvantages of both active and passive approaches, several studies 
were carried out. These studies were based on combination of active and passive methods. One of 

these methods is the Change-of-measure based active/passive monitoring (CoMPACT) [30] [31]. 

This is a light active measurement method transformed by using passively monitored data to 
correct the probe results to be closer to the actual user performance. This method was only 

applied to estimate the actual user delay. Another technique has been proposed which combines 

passive and active ways [32] [33] from a probe report. In this technique, a router sends active 

probe packets at regular intervals. The passive monitoring method is used to count the number of 
user packets passing through the router. This approach has been used to estimate the QoS 

parameters only (i.e. delay, packet loss... etc.) over wired networks. 

 
The aim of this paper is to evaluate both active and passive monitoring methods to infer the 

performance of wireless ad hoc networks by considering the QoS requirements of multimedia 

applications. In addition, this study tries to overcome the disadvantages of both techniques and 

introduces a new approach to assess network performance by combining the advantages of both 
of them. This approach uses an in-service measurement method in which the QoS of the actual 

application (user) is estimated by means of dedicated monitoring packets (probes) [37]. 

Afterwards, these parameters are combined to produce and assess the application’s overall QoS 
using the fuzzy logic assessment and based on the measured QoS parameters estimated using the 

probe traffic. Therefore, the contribution of this work is represented by adding the process of the 

overall QoS assessment to the system utilized in [33]. 
 

This paper is organized as follows: Section 2 describes the monitoring approach description and 

the experimental simulation set up and settings. Section 3 presents the experimental results. 

Section 4 provides a conclusion of the paper. 
 

2. QOS PARAMETERS MEASUREMENT APPROACH 
 

The aim of this work is to propose a monitoring system that can measure QoS parameters (delay, 
delay variation (jitter), packet loss and throughput) and the overall QoS based combining both 

active and passive monitoring methods. In this paper, active approach is used to produce probe 

packets to be injected among user application traffic at regular intervals at predetermined period 

of times. Using the injected packets, delay and the jitter of the user application are inferred. On 
the other hand, the passive approach is employed as a traffic monitor to count the application user 

packets (or bytes) subject to monitoring. This combination is applied also to estimate the packet 



International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020 

18 

loss ratio and the throughput of the user application traffic. This means that packet loss ratio and 
throughput are passively measured depending on the active probes position in the monitoring 

block. Probing packets are periodically injected by the sending end-node every M number of user 

packets. M is the number of user application traffic packets between two successive probe 

packets. 
 

Here, it is proposed that the sending node is used generate both: the user application traffic and 

the probing packets. These packets are injected within the user traffic regularly to gather useful 
QoS information. For every monitoring packet generated, the sending node inserts the number of 

user packets sent so far and the timestamp at which this monitoring packet. At the receiving end-

node, the receiver needs to set a counter for the number of the received user packets. In addition, 
it should: detect the monitoring packets, place a timestamp in every monitoring packet which 

shows the current time at the receiving end, and insert the current value of the counter that keeps 

track of the cumulative number of the received user packets.  

 
Based on this process, every probing packet should have, a sequence number, sending and 

receiving timestamps and the number (cumulative) of sent and received user traffic packets of 

every block. Consequently, the difference between the sent and the received packets in the same 
monitoring block is the number of lost packets in that block. Lost monitoring packets are detected 

by the missing sequence number. If a probing packet is lost, the monitoring block will be 

extended up to the next probing packet that succeeds to arrive at the receiving node. In addition, a 
sample of the packet delay between the sending and the receiving nodes is calculated by the 

difference between the sending and the receiving timestamps of the probing packets. Jitter is 

calculated from the delay results by calculating the difference between successive delays of every 

probing packet. After measuring these parameters (delay, jitter and packet loss ratio) they are fed 
to the fuzzy system to assess the user application QoS using the same procedures discussed in 

[35] [36].  

 
Based on the proposed approach, it is expected to obtain the following measures: samples of the 

packet delay and jitter between the sending and receiving nodes, if the packet size is known, it is 

possible to estimate and monitor the throughput of the user application between monitoring 

packets, the packet loss ratio of the user application between the sending and receiving nodes for 
each monitoring block, the length of the loss free periods and loss periods expressed in terms of 

the number of consecutive monitoring blocks that does not contain lost packets and the number of 

monitoring blocks that contain lost packets, respectively. In addition, samples of the estimated 
QoS values of the user application based on the estimated QoS parameters resulted from the 

probe measurements of each monitoring block, and the length of the Good, Average and Poor 

QoS periods expressed in terms of the number of consecutive monitoring blocks that contains 
Good, Average and Poor QoS values. 

 

For illustration of the effectiveness and efficiency of the proposed approach, Network Simulator 

(NS-2) Software was used to simulate the adopted network topologies. Wireless ad-hoc network 
was employed where the nodes arranged in random positions and the arrangement was made in 

such a way that it satisfied the single hop condition with an area of (250m x 250m). The traffic 

characteristics are illustrated in Table 1 with 500 second simulation time. As an example of 
multimedia applications videoconferencing was used. The network used in the simulation had six 

pairs of fixed source/destination [34] [35]. One of the pairs is used for videoconferencing 

application transmission and the others were used for the cross-traffic. The probing packets were 
constant bit rate (CBR) packets transmitted using the UDP protocol with a packet size of 64 

bytes. The rate at which monitoring packets were sent is important. Too few packets result in 

inefficient and inaccurate results and too many results in the network traffic of being disturbed. 
Therefore, in order to examine the effect of probe rate on the QoS assessment, several probing 
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rates were used ranging from low to high probe rates. Probe packets were transmitted periodically 
with monitoring block sizes (M) between the probe packets. M was selected to be 375, 186, 93, 

47, 31 and 25 packets (i.e. ratio between probe and traffic packets is 1/375, 1/186, 1/93, 1/47, 

1/31 and 1/25). All simulation runs were repeated several times by using several seed values for 

the random number generator of the NS-2 simulator. The resulted values of the different runs of 
the same simulation have been averaged to get the actual values. In addition, each simulation was 

run twice for each seed; once with probe switched on and once with probes switched off. This 

allowed for testing the effect of the probe presence on the user and network behavior. Over the 
simulation time and in order to examine the probe measurement results with different network 

conditions, the network was subjected to three different situations: light load (0-170 sec), medium 

load (171-330 sec) and fully loaded (331-500 sec). 
 

Table 1: Network traffic characteristics. 

 

Traffic type Packet Size [byte] Generation Rate [Kbps] 

Videoconferencing 512 384 

Background traffic1 400 300 

Background traffic2 370 360 

Background traffic3 420 330 

Background traffic4 350 300 

Background traffic5 600 450 

 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 
 
In order to demonstrate the effectiveness of the proposed monitoring, various probing rates of the 

monitoring packets (i.e. the length of monitoring block) were tested. The network performance 

was evaluated in terms of one-way delay and jitter, packet loss ratio, throughput and finally the 

overall assessed QoS. To evaluate the effectiveness of the proposed procedure, two issues are 
needed to be considered. Firstly, to assess how accurate the probe results are and secondly, to 

know how much the application user traffic and its QoS are being perturbed by these probing 

traffic (biasness). 
 

3.1. One-way Delay and Delay Variation 
 
Figure 1 illustrates how the one-way delay varies during the measurement period for both 

application user and probe traffics. In addition, Table 2 summarizes the actual and the estimated 

values (mean, maximum, minimum and standard deviation) for the delay and jitter for two 
different monitoring block sizes. As examples, two monitoring block sizes (i.e. probe rates) were 

used to compare the results of both traffics: 25 packets and 375 packets block sizes. From Figure 

1, it can be seen that the probe result of the one-way delay samples the user delay with an 
acceptable accuracy over the three network situations. As can be seen from the Figure 1, delay 

values increase when a high background traffic load is offered. That is because both probe and 

user traffic packets experienced the same network conditions and increasing the probe rate will 

produce high number of samples which will provide higher precision. So, increasing the probe 
rate has resulted in reducing the absolute error as can be observed in Table 1. These samples 

indicate that the measurements based on the monitoring packets can give fairly good estimates of 

the average delay and its variation. 
 

Moreover, Figure 2 below show the histogram distributions of the one-way delays for the actual 

traffic and for the probe traffics of M = 25 and M = 375 block sizes during the measurement 

period. From these histograms, it is clear that the one-way delay distribution of the M = 25 is 
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quite similar to the actual user delay distribution. This means that both delays have similar 
measurement results which is more accurate than the M = 375 results. Nevertheless, for both 

monitoring blocks, about 40% of the measured delays were less than 40msec which is also 

identical to the actual delay. 

 
Table 2: The actual values for one-way delays and delay variations and the estimated values  

for block sizes using M = 25 and 375 packets. 

 

Units: [msec] Actual values M = 375 M = 25 

Mean delay 335.7 328.8 334 

Absolute error ----- 6.9 1.7 

Delay St. Dev. 331.7 327.3 315.6 

Maximum delay 1915.7 1274.6 1586.9 

Minimum delay 2.5 0.78 0.72 

Mean jitter 6.4 100.2 42.3 

Absolute error ----- 93.8 35.9 

Jitter St. Dev. 15.6 136.5 73.5 

Maximum jitter 727.9 622.5 912.3 

Minimum jitter 0 0.04 0.004 

 

 
(a)                                            (b) 

 
(c) 

 
Figure 1: One-way delay of the: (a) actual traffic, (b) Monitoring traffic of M = 25 packets and (c) 

Monitoring traffic of M = 375 packets 
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(a)                                                         (b) 

 
 

(c) 

 

Figure 2: One-way delay distribution of the: (a) actual traffic, (b) Monitoring traffic of M = 25 packets and 

(c) Monitoring traffic of M = 375 packets 

 

Figure 3 illustrates the delay variation (jitter) during the measurement period for two different 
block sizes. It shows that the probe jitter during the lightly loaded network situation gives a 

reasonable representation of the user traffic jitter. On the other hand, as the network load is 

increased, the probe result overestimates the user delay variation. So, the probe jitter is higher 
than the traffic jitter over a congested or partially congested network. That is because the more 

loaded the network, the higher the contention between the nodes. A partially or fully loaded 

network will increase the probe delay in a significant amount compared to the delay a probe 

experiences when it encounters an empty network situation. 
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(c) 

 
Figure 3: One-way delay variation (jitter) of the: (a) actual traffic, (b) Monitoring traffic of M = 25 packets 

and (c) Monitoring traffic of M = 375 packets 
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(a)                                                    (b) 

 
(c) 

 
Figure 4: One-way delay variation distribution of the: (a) actual traffic, (b) Monitoring traffic of M = 25 

packets and (c) Monitoring traffic of M = 375 packets 

 

3.2. Packet Loss 
 

Unlike one-way delay or delay variation, packet loss estimation does not rely on sampling 

techniques (monitoring packets) directly. Packet loss is estimated based on providing a loss ratio 
for each monitoring block since the number of sent and received packets are counted and sent in 

the monitoring packets. One advantage of using monitoring packets is that the loss process 

calculation can be expressed with a higher resolution rather than the long-term average for the 
total measurement period. The resolution of these results depends on the ratio of the monitoring 

packets and the user traffic packets (M). In addition, this feature can be used to define periods 

that contain lost packets (loss periods) and those without losses (loss-free periods) and their 
lengths. 

 

 
(a)                                                                        (b) 

 
Figure 5: The packet loss ratio using: (a) M = 25 and (b) M = 375 
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The estimated packet loss ratios using monitoring blocks of M = 25 and 375 are shown in Figure 
5. These figures exhibit the degree of accuracy of the achieved resolutions in losses estimation 

over the measurement period. The smaller the monitoring block size the higher the loss 

resolution. The distributions of the loss ratio in the monitoring blocks are shown in Figure 6. This 

figure confirms that the required resolution depends on the monitoring block size. 
 

 
(a) (b) 

 
Figure 6: The packet loss ratio distributions using: (a) M = 25 and (b) 375 
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18 loss periods over the monitoring period. While the monitoring block (M = 375) shows that 
there were 6 loss-free periods and 2 loss periods over the same measurement period. The ratio 

between the loss-free time and the total measurement period is 83.3% for the M = 25 and 80.8% 

for the M = 375 monitoring block. Whilst the ratio between the loss time and the total 

measurement period is 2.8% for the M = 25 and 7.3% for the M = 375 monitoring block. 
 

 
(a)  

 
(b)  

 
Figure 7: the length of loss and loss-free periods versus time during the measurement period:  

(a) M = 25 and (b) M = 375 

 

3.3. Throughput 
 

Using the monitoring block concept and in addition to the long-term average of the utilized 
capacity (throughput) for an application, it is often useful to obtain the maximum and the 

minimum values as well as the variation during the measurement period. This can be calculated 

since the packet size, the number of the sent and received packets along with the timestamps are 
available for each monitoring block. This throughput is calculated between two monitoring 

packets in Kbps using the following equation: 
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Where PS is the actual traffic packet size in byte, N is the number of packets between two 
monitoring packets and i is the current monitoring packet. 

 

In Table 4, the average, maximum, minimum and standard deviation of the throughput per 

monitoring block are presented for several monitoring block sizes. The estimated average 
throughput is in the range of 345-355 Kbps for all values of monitoring block sizes. In this case, 

the estimated maximum throughput increases when the monitoring block size decreases. On the 

other hand, the minimum throughput decreases as the monitoring block size decreases. Moreover, 
the standard deviation increases when the block size decreases. The reason for this is that 

reducing the block size increases the number of samples. This in turn increases the throughput 

within the different network load situations over the monitoring period. The estimated throughput 
values vary between large and small values resulting in an increase in the standard deviation. 

 
Table 4: The actual throughput estimations based on different monitoring blocks 

 

Units: [Kbps] M = 375 M = 186 M = 93 M = 47 M = 25 

Average throughput 355.6 355.5 355.6 354 345.9 

Maximum throughput 423 460.6 518.1 656 705.5 

Minimum throughput 207.4 177.4 140 124 62.3 

Throughput St. Dev 53.32 54.5 56.3 61.6 70.7 

 
(a)                                                                       (b) 

 

Figure 8: The throughput distributions based on monitoring block of: (a) M = 25 and (b) M = 375 

 

Figure 8 depicts the distribution of the throughput, per monitoring block for M = 25 and 375. The 

distributions provide an accurate estimate of the actual throughput (384Kbps) as most of the 
estimated throughput values are distributed around this value. It is clear that the resolution 

produced by the M = 25 block size is more than that of M = 375. So, the desired estimated 

throughput resolution will be dependent on the required accuracy. 

 

3.4. QoS 
 
The most important QoS parameters that affect the videoconferencing performance are the delay, 

delay variation and the packet loss. These parameters can be estimated (as described earlier) by 

probing the network. Delay and delay variation can be taken (estimated) directly from the probe 

traffic and packet loss is estimated using the monitoring block concept. After measuring these 
parameters, they were fed to the fuzzy system to produce the estimated overall QoS of the 

videoconferencing application based on the results obtained from the monitoring packets. In 

addition, and in order to check the accuracy of the estimated overall QoS result, these parameters 
were measured for the actual user with the probe traffic switched off. The actual traffic 
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parameters were averaged using the blocking technique for M = 25 and M = 375 packets. Fuzzy 
system outputs of the estimated QoS using the probe and the actual user overall QoS are shown in 

Figure 9 (a)-(c). 

 
(a)                                       (b) 

 
(c) 

 
Figure 9: Measured overall QoS of the: (a) actual traffic, (b) Monitoring traffic of M = 25 packets and 

 (c) Monitoring traffic of M = 375 packets 

 
It can be observed from Figure 9 that the QoS of the monitoring probe packets can infer the 

actual user overall QoS during the periods of light and heavy loaded network situations. On the 

other hand, during the partially loaded state, the probe QoS could not estimate the actual user 
QoS especially when using the M = 375 monitoring block size. However, the probe gave a better 

estimation of the actual overall QoS using the M = 25. This means that the QoS estimation was 

affected by the probe rate (i.e. number of samples). In addition to that, the poor QoS estimation 

was, mainly, due to jitter. As the network load is increased, the jitter will increase and in 
particular the probe jitter as explained earlier. The probe jitter will be higher than the actual 

traffic jitter. Occasionally the probe jitter will exceed the limits of the required QoS while the 

actual traffic jitter may stay within these limits. Due to this, the probe QoS will underestimate the 
actual traffic QoS and especially during the partially loaded situations because during the heavy 

loaded state periods both the probe and the traffic parameters will go beyond the required values 

and so the overall measured QoS will be poor. 

 
Table 5 illustrates the long-term statistics (mean, standard deviation, maximum and minimum) 

that characterize the overall QoS values for the actual user traffic and the estimated values using 

different monitoring block sizes. This table reveals that as the monitoring block size increases the 
estimated QoS is enhanced compared with the actual QoS value. Increasing the block size will 

provide more samples to be evaluated using the fuzzy system which will monitor the network 

more accurately. The estimated overall QoS standard deviation, maximum and minimum are 
mostly the same as the actual values. This means that the long-term average QoS estimation 

using monitoring packets is a good approximation of the actual QoS. 
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To compare the levels when the overall QoS was poor, average and good, for both the actual and 
the probe traffics (M = 25 and 375), a bar chart distribution was used. The length of the bar was 

representative of the percentage of each QoS case. Figure 10 shows the bar charts of both 

application’s overall QoS. Monitoring traffic using M = 25 was closer to the actual overall QoS 

regions. That was due to the fact that the network was subjected to more assessments over the 
measurement period using this rate which will result in a higher precision in the QoS estimation 

than the M = 375 probe rate. 

 
Table 5: The actual and the estimated values for overall QoS using different block sizes M 

 

units: [%] 
Actual 

values 
M = 375 M = 186 M = 93 M = 47 M = 25 

Evaluated QoS 52.74 40.94 40.51 42.14 43.24 44.51 

Absolute error  11.8 12.25 10.6 9.5 8.25 

QoS Std. Dev 37.09 38.96 38.49 38.79 38.84 38.66 

Maximum QoS 90.48 90.52 90.52 90.52 90.52 90.52 

Minimum QoS 9.30 9.27 9.27 9.27 9.27 9.27 

 

 
(a)                                               (b) 

 
(c) 

 
Figure 10: The overall QoS bar chart for: (a) Monitoring packets using M = 375 packets, (b) Monitoring 

packets using M = 25 packets, (c) actual traffic 

 

In order to quantify how much the overall QoS of each application was; poor, average or good, 
the variation of these values, mean and standard deviation were calculated. Table 6 illustrates 

these statistics that characterize each region of each the traffic overall QoS values for the actual 

user traffic and the estimated values of M = 25 and 375 monitoring block sizes. Table 6 exhibits 
that the probe rate of M = 25 had better QoS approximation of the actual overall QoS because all 

of its estimated statistics are closer to the actual values. 
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Table 6: Statistics of actual and estimated overall QoS region for M = 25 and 375 

 
Units: [%] Actual values M = 375 M = 25 

QoS Poor Average Good Poor Average Good Poor Average Good 

Mean 11.8 51.9 88.1 9.8 38.8 89.7 10.5 46.2 89.5 

Std. Dev. 5.4 9.9 5.2 2.6 0 2.2 4 7.8 2.5 

 
So as to obtain a more specific picture about the actual and the estimated overall QoS for each 

application without classification of the QoS values into good, average and poor regions, 

probability distribution functions have been generated of each QoS. These distributions are 

shown in Figure 11. This figure illustrates the cumulative distributions, Pr{X < a}, where the 
random variable X denotes the end-to-end QoS.  The usefulness of this method stems from the 

fact that it gives the percentage that the QoS is less than any preselected threshold value (a). 

Using these types of distributions, for example, it is very easy to assess the probability of the 
QoS. In addition to that, it can be observed that the minimum and maximum values of the QoS 

can be found from these figures. It is apparent that the monitoring packets could, to some extent, 

estimate the actual QoS cumulative distribution. For example, it can be seen from the figures that 
it is very easy to assess the probability that the QoS was less than 40%. It is from the actual 

traffic 0.47, 0.57 and 0.55 using the monitoring traffic of M = 25 and 375 respectively. In 

addition to that, it can be observed that the minimum and maximum values of the QoS can be 

found from these figures. The minimum value for both traffics (actual and monitoring) was 9.3%. 
The maximum value for the actual traffic was 90.5% and 90.5% for M = 25 and 375 probe traffic. 

 

 
(a)                                                     (b) 

 
(c) 

 
Figure 11: The overall QoS distribution for: (a) actual traffic, (b) Monitoring packets using M = 25 packets, 

(c) Monitoring packets using M = 375 packets 

 

4. CONCLUSIONS  
 

The aim of this paper is to devise a new approach for monitoring the performance of wireless 

networks based on measurements of QoS parameters and the overall QoS obtained from the 
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combination of passive and active measurement approaches. Delay and jitter parameters were 
taken directly from the injected probe packets (active measurement). Packet loss and throughput 

were taken from combination of both active and passive measurements. The overall QoS was 

estimated based on the measured delay, jitter and packet loss which were combined and fed to a 

fuzzy logic system to get a unified value which summarised these parameters in a one single 
value. The simulation results showed that this approach is very effective to be used to monitor the 

actual traffic transmitted over wireless networks using different probe traffic rates. Furthermore, 

these measurements were also tested and examined in terms of its accuracy and biasness to be 
representative of the actual traffic results. The proposed approach provided good accuracy in 

estimation of the overall QoS and the QoS parameters. On the other hand, it showed drawbacks 

in jitter estimations which affected the precision of the estimated overall QoS especially during 
moderate and heavy traffic periods. Further work may be conducted to devise a new estimation 

method to overcome some of the shortcomings of the proposed approach in jitter measurements. 

In addition, there were some discrepancies between the estimated QoS using the proposed 

approach and the measured one without the use of the probe traffic. Therefore, some 
modifications may be incorporated to the proposed approach to minimize and correct these 

discrepancies. Moreover, the proposed system was tested using a simple wireless network 

topology. Further experiments may be conducted on larger and more sophisticated network 
topologies and on may be implemented on real networks and for different multimedia 

applications. 
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