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ABSTRACT 
 
Today's Internet and enterprise networks are so popular as they can easily provide multimedia and e-

commerce services to millions of users over the Internet in our daily lives. Since then, security has been a 

challenging problem in the Internet's world. That issue is called Cyberwar, in which attackers can aim or 

raise Distributed Denial of Service (DDoS) to others to take down the operation of enterprises Intranet.  

Therefore, the need of applying an Intrusion Detection System (IDS) is very important to enterprise 
networks. In this paper, we propose a smarter solution to detect network anomalies in Cyberwar using 

Stacking techniques in which we apply three popular machine learning models: k-nearest neighbor 

algorithm (KNN), Adaptive Boosting (AdaBoost), and Random Decision Forests (RandomForest). Our 

proposed scheme uses the Logistic Regression method to automatically search for better parameters to the 

Stacking model. We do the performance evaluation of our proposed scheme on the latest data set NSL-

KDD 2019 dataset. We also compare the achieved results with individual machine learning models to show 

that our proposed model achieves much higher accuracy than previous works. 
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1. INTRODUCTION 
 

Network Intrusion Detection System (N-IDS) plays an extremely important role in security 
management which can support network administrators about unusual behaviors where a traffic 

flow might be an intrusion, attack, or normal traffic flow. Currently, network administrators 

apply some solutions such as firewalls to prevent some unwanted traffics. However, network 

managers must conduct manual detection. In the traditional rule-based N-IDS, the rules are 
usually pre-defined by the security experts and need to be updated regularly [1,2]. The advantage 

of rule-based N-IDS is better known for attack detection. [3]. Therefore, we propose a smart N-

IDS which can capture network traffic, analyze, and detect network anomalies automatically. 
With the rapid development of machine learning models, several methods have been proposed to 

build a knowledge system on the IDS system [4-6], where abnormal traffic can be detected and 

prevented automatically. Another type of N-IDS based on statistical analysis analyses the 
statistical behavior of users to find abnormal behaviors [7]. We believe that a knowledge system 

based on the latest development of machine learning models to combat the risks is extremely 

important [8-10]. Some related works based on statistical methods [11] and Bayers algorithm 

[12] are typical representative algorithms in this field. An expert system is currently the most 
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feasible solution which uses artificial intelligence to solve problems in a field that requires human 
expertise[10]. The application of machine learning algorithms is a breakthrough that provides us 

an efficient tool to apply N-IDS in practice. Sincethe publication of the KDD99 data set, there 

have been several works on using machine learning for anomaly detection which has different 

characteristics, and efficiency/ accuracy level [13]. The stacking technique is an ensemble 
learning [14, 15] that takes advantage of different machine learning algorithms to include the 

predictions of those models for a better one. Stacking is based on the latest classification 

algorithms [16-17] in which several machine learning algorithms can be used simultaneously. 
Stacking aggregates different models to derive a better one, thus reducing the probability of false 

predictions and improving accuracy. Moreover, stacking does not require complex algorithms 

implemented on the system. In this paper, we propose a matrix that each algorithm will be 
assigned to an element of that matrix, so when the proposed system processes a final calculation, 

the model using this matrix factor multiplied by each algorithm prediction to get the final result. 

The problem is how to choose good coefficients to have a better result. So, we propose to use a 

logistic algorithm [16-17] to select parameters for our proposed model. The rest of the paper is 
organized as follows.  Section 2 gives an overview of related works and NSL-KDD2019 and 

other data sets. Section 3 presents our proposed model for network anomaly detection. Section 4 

introduces a performance comparison between our proposed model with individual machine 
learning algorithms. Finally, conclusions are given in Section 5. 

 

2. RELATED WORKS 
 

2.1. Network Anomaly Detection Data Sets 
 

In previous works, there are several data sets to evaluate the performance of machine learning for 
N-IDS such as DARPA98, KDD CUP 99 [30], CICIDS2017 [31], and NSL-KDD which usually 

classify by packet-based or flow-based data [26]. Labeled data sets are very important which is 

used to train and evaluate the anomaly-based N-IDS. The DARPA 1998/99 is the most popular 

data sets created at the MIT Lincoln Lab which includes various kinds of attacks like DoS, buffer 
overflow, port scans, or rootkits [27-28]. However, this data set does not reflect the actual traffic 

because it was simulated in the Lab.KDD CUP 99 is one of the most popular data sets for 

anomaly detection which contains basic attributes about TCP connections and high-level 
attributes like the number of failed logins without IP addresses [29]. However, this data set 

contains too many redundant and duplicate data, About 78% of the data is duplicated in the 

training data, and 75% in the testing data. NSL-KDD 2019 is the up-to-date data set we chose for 

testing the model since it has a lot of improvement compared to KDD CUP 99.  NSL-KDD data 
set was created as an optimized version of KDD'99 from the University of New Brunswick [25]. 

The complete data set NSL-KDD 2019 is an up-to-date data set which contains new types of 

attacks without duplicates from the KDD'99 data set. This resulting data set contains about 
150,000 data points and is divided into predefined training and test subsets which are KDDTest+, 

KDDTest-21, KDDTrain+, KDDTrain+_20Percent where KDDTest-21 and KDDTrain + 

_20Percent are subsets of KDDTest+ and KDDTrain+. KDDTrain+ is considered training data 
and KDDTest+ is considered testing data. KDDTest-21 is a subset of the testing data which 

removes the most difficult data records (point 21). KDDTrain _20Percent is a subset of the 

training data where the number of records equal to 20% of the total number of records in the 

training data. In other words, the records in KDDTest-21 and KDDTrain+_20Percent are 
included in testing and training data and no records exist in both data sets at the same time which 

makes the evaluation of anomaly detection more accurate. 

 
 

 



International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020 

119 

2.2. Recent Machine Learning Algorithms for Anomaly Detection 
 

In this paper, we choose three following machine learning algorithms: k-nearest neighbor 

algorithm (KNN) [18], Adaptive Boosting (AdaBoost) [19], and Random Decision Forests 
(RandomForest) [20] for our proposed model.  The motivation is that those algorithms are recent 

works on applying machine learning to N-IDS and they provide better results and lower 

processing time compared to others. In [18], the authors propose to use the PCA-fuzzy 
Clustering-KNN method which ensemble of Analysis of Principal Component and Fuzzy 

Clustering with K-Nearest Neighbor feature selection techniques to detect anomalies. In [19], the 

authors proposed the AdaBoost algorithm for N-IDS which provides competitive performances 

compared with other works on the old KDDCUP1999 data set. In [20], the authors proposed a 
model for N-IDS using the Random Forest classifier which performs well compared to other 

traditional classifiers. In [21], A. Ahmim and colleagues proposed a new N-IDS model that 

includes various classification methods based on 'decision tree' and 'rule-base' which are REP 
Tree, JRip, and Forest PA using the CICIDS 2017 data set. In particular, the first two 

classification models take input data as network data set characteristics and classify them into 

normal and anomalous groups. The third classification method uses the characteristics of the 
original data and combines with the data that has been processed by two previous methods to 

classify each specific type of attack. Therefore, their proposed model achieved an identification 

rate of up to 94,475% and reduced the error warning rate to 1,145%, which it is more efficient 

than Naive Bayes, Random Forest, Support Vector Machine (SVM). With the same CICIDS 
2017 data set, in [22], D. Aksu and colleagues proposed a model using the fisher score algorithm 

to select 30 from 80 characteristics/ features of network flow. Then, the authors apply to machine 

learning algorithms such as SVM, KNN, and Decision Tree (DT) algorithms where the results 
seem very promising. In the NSL-KDDdata set [23-24], the authors applied several feature 

selection algorithms which are J48, SU, and Random Forest algorithm to classify four network 

attacks. The attacks are Dos, Probe, R2L, U2R on KDD99. In [18], the authors applied Analysis 
of Principal Component (APC) and Fuzzy Clustering with KNN to reduce the data dimension of 

the data set then they passed the data via fuzzing clustering algorithm to detect anomaly traffic or 

not. Their proposed model is quite satisfactory when the accuracy of DoS is up to 94.23%. 

 

2.3. K-nearest neighbors algorithm (KNN) 
 

KNN is one of the simplest supervised-learning algorithms and a non-parametric method used for 
classification and regression proposed by Thomas Cover [32-33]. The algorithm does not learn 

anything from training data and all calculations are done when it needs to predict the results of 

new data.). In KNN classification, the output is a class membership is classified by a majority 
vote of its neighbors. The point is assigned to the class most common among its K nearest 

neighbor points. In [34], the authors proposed a technique to improve the accuracy of KNN 

where it provides weight for each point being considered. Further points play smaller roles in the 
classification of that point and vice versa. In [35], the authors proposed a TCM-KNN model 

(Transductive Confidence Machines for K-Nearest Neighbours) on the KDD'99 data set. In 

general, anomalies can be identified using a genetic weighted KNN based on a classifier [36]. In 

[37], the authors studied and compared the performances of various clustering algorithms for 
anomaly detection: k-Means; improved k-Means; k-Medoids; EM clustering and distance-based 

outlier detection algorithms. In [39], the authors proposed two hierarchical IDS frameworks using 

Radial Basis Functions (RBF) which can detect network intrusions in real time using the old 
KDD Cup 1999 Data. 
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2.4. Adaptive Boosting Algorithm (AdaBoost) 
 

Adaptive Boosting (AdaBoost) is a machine learning meta-algorithm proposed by Yoav Freund 

and Robert Schapire [38]. AdaBoost is classified as a boosting class because it aims to convert 
weak classification algorithms, correct previous algorithm errors then finally get a strong 

classifier. In this paper, we apply the Decision Tree (DT) algorithm [40] in AdaBoost because of 

the following motivation: 
● Since AdaBoost does not work well with linear algorithms, then we try to apply DT since 

it is not a linear algorithm. 

● DT algorithm shows good consistency; therefore, we do not need to adjust any 

parameters. 
● DT algorithm is built quickly, therefore we expect to combine several algorithms 

together, so the training process is not overloaded. 

 

2.5. Random Forest (RF) 
 
Random Forests (RF) is an ensemble learning method for classification, regression which 

constructs a multitude of decision trees at training time, and outputting which is classification or 

regression of the individual trees [41,42]. Following [43], RD uses multiple decision trees for 
layering. The algorithm assumes that if a sample is layered by multiple decision trees, whichever 

layer is chosen by most trees, then this sample will be assigned to that class. In [20, 44], several 

authors show that the RF model applied in N-IDS is efficient with low false alarm rate and high 

detection rate. For better accuracy, RF uses a Bootstrapping process. This is a statistical 
resampling technique that involves random sampling of a data set with replacement [45]. In 

addition, to make sure the decision trees are different, RF will randomly skip a few attributes 

when building a decision tree. In this case, if the best attribute is not selected, the next attribute 
will be selected to build the tree. This process is called attribute sampling. 

 

2.6. Logistic Algorithm 
 

The logistic algorithm estimates the parameters of a logistic model (a form of binary regression) 

whose method is quite flexible compared to other linear algorithms. This algorithm show several 
advantages in [46] which are (a) significance tests of the model against the null model, (b) the 

significance test of each predictor, (c) descriptive and inferential goodness-of-fit indices, (d) and 

predicted probabilities Based on the distribution of data points, we predict what the probability of 

being in a group is, the output we can take a coefficient matrix to calculate the probability of the 
points to be grouped in a class. We will use this feature to calculate parameters for what we call 

automatic Stacking. In the next section, we will propose a Stacking model to combine KNN, 

AdaBoost, and RF to increase accuracy level of N-IDSm, and logistic play an important role in 
this model. 

 

3. PROPOSED MODEL 
 

3.1. Late Fusion Approach to Anomaly Detection 

 

With the implementation of individual ML algorithms, we can get the accuracy of each model. 

However, we would like to increase the accuracy. One method is extracting important features 
that are relevant to attacks [47]. Another approach is to modify traditional ML algorithms to 

increase accuracy. This process is very costly and time-consuming, and somehow the results 

seem not general. Therefore, we propose to combine the results of KNN, RF, and AdaBoost to 
increase the overall accuracy of the mode.  Our simple Stack model will work as following: 
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Final result = x * result (KNN) + y * result (AdaBoost) + z * result (RandomForest); 

 

The problem with our proposed Stacking model is how to choose [x, y, z] parameters for better 

accuracy. Therefore, we apply a logistic algorithm because the nature of logistics is to classify 
data points. The logistic curve is the probability that the data to be labeled is labeled 1 or 0 when 

the data points are the same but different stratification. For example, a data point when tested 

with the KNN algorithm is classified into layer 1, AdaBoost is assigned to layer 0, and Random 
Forest is assigned to layer 1, the logistic will give us a probability of this data point is how many 

percent of the labels 0 and 1 are assigned. This technique helps to improve the accuracy of our 

proposed model. 
 

3.2. Detail Implementation 
 
To evaluate the Stacking model, we propose two steps need to be done as follows: 

 

1. Pre-processing data: In Figure 1, we process the data (digitalization) from the NSL-
KDD 2019 data set since it has some features including string data. Then, we divide this 

data set into three subsets which are Training; Validation; and Testing. After that, we 

need to bring data to a certain range to avoid an imbalance between features. 

Specifically, we use min-max scaling (sometimes called min-max normalization) which 
is calculated based on min, max value of training data [55]. Then, we have three data 

subsets as in Figure 1. 

2. Proposed Stacking model: In Figure 2 is the illustration of our proposed Stacking 
model. In the model, Training and Validation data are inputs for the three machine 

learning algorithms which we apply KNN, RandomForest, AdaBoost. Y_pred_KNN is 

the predicted output from KNN, Y_pred_AdaBoost is the predicted output from 
AdaBoost and Y_pred_RandomForest is the predicted output of the RandomForest 

algorithm model respectively. In 2nd step, we combine the predictions of three algorithm 

models into one, we suppose following: 

 Y_pred_KNN = [𝑦00, 𝑦01, 𝑦02, …,  𝑦0𝑁] 

 Y_pred_AdaBoost = [𝑦10, 𝑦11, 𝑦12, …,  𝑦1𝑁] 

 Y_pred_RandomForest = [𝑦20, 𝑦21, 𝑦22, …,  𝑦2𝑁] 

 

After obtaining results from the individual algorithm model, we sum up the results to have a 
matrix Xi = [y0i, y1i, y2i,]. We put X into the logistic regression algorithm where each row in the 

matrix is a sample and the label will be the label of the data validation. After that, the accuracy of 

the individual model and the whole model is calculated. Some parameters we use in the model for 
three machine learning algorithms are: 

 

 n_neighbor = 5 with KNN which is the number of neighbors to use by default for 
neighbors queries; 

 

 maxdepth = 1 and n_estimators = 100 with AdaBoost which is the maximum number of 

estimators at which boosting is terminated. In case of perfect fit, the learning procedure will stop 
early; 

 

 n_estimators = 100 with Random Forest which is the number of trees in the forest. 
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Figure 1.  Pre-processing NSL-KDD 2019 data 

 

 
 

Figure 2.  Proposed Stacking model 

 

3.3. Accuracy Calculation of the Model 
 
The simplest and most common performance metric is Accuracy. This metric simply calculates 

the ratio between the number of correctly predicted points and the total number of points in the 

test data set. The accuracy is calculated as the following: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑔ℎ𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎
 

 

For example, if we test on 1000 data, the number of times the model correctly predicts the other 

1000 data is 912, which means that the accuracy of the model on that data set is approximately 

91.2%. However, the accuracy in some cases has some drawbacks or only provides the general 
view of network attack. Instead of calculating the correct number of projections, we calculate the 

number of correct predictions on each label, specifically: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑓𝑟𝑜𝑚 𝑙𝑎𝑏𝑒𝑙 0) =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑔ℎ𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑙𝑎𝑏𝑒𝑙 0

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎
 

 
Data: The number of data input in the test is 1000, there are 4 types of labels {0,1,2,3} 

 

▪ Label 0: predicts exactly 250; the number of labels 0 are 300 which occupies 30% of the 
data 
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▪ Label 1: predicts exactly 0, the number of labels 1 are 100 which accounts for 10% of 
data 

▪ Label 2: predicts exactly 150, the number of labels 2: 200 makes up 20% of the data 

▪ Label 3: predicts exactly 300, the number of labels 3: 400 makes up 40% of the data  

 
Finally, the accuracy level is 70%. Moreover, we obtain the accuracy levels of individual (Label 

0) is 83.33%; accuracy(Label 1) is 0%; accuracy(Label 2) is 75%; and accuracy(Label 3) is 75% 

respectively. Accuracy on each label will affect general accuracy according to the amount of data 
that label occupies in the data set. Again, we can calculate the general accuracy by individual 

Label accuracy as follows: 

 

Accuracy = 83.33% ∗30% + 0%∗10% + 75%∗20% + 75%∗40% = 70%; 

 

We change the testing data with the data distribution on the labels appropriately, we can achieve 

very different levels of accuracy. For example, we assume that the data has two labels in which 
one is 100% accurate and the other is 70%. So, the general accuracy will be 100% * 50% + 70% 

* 50% = 85%. However, sometimes it is difficult for us to obtain data uniformly, so we need 

better metrics to evaluate the models which are Precision; Recall; and F1 score (or F-score) [49]. 
In statistics, the F-score is a measure of a test's accuracy [50].  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

and 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

and 
2

𝐹1
=  

1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
+ 

1

𝑅𝑒𝑐𝑎𝑙𝑙
 

 

In order to clarify the meaning of those parameters, we have some following definitions on True 

Positive; True Negative; False Positive; and False Negative which are usually used in N-IDS 
anomaly detection [51]. 

 

● True Positive (TP): The number of points of the positive class that is correctly classified 

as positive. 
● True Negative (TN): The number of points of the negative class that is classified as 

negative. 

● False Positive (FP): the number of points of the negative class that is mistakenly 
classified as positive. 

● False Negative (FN): the number of points of a positive class that has been misclassified 

as negative. 
 

We can see that the Precision parameter demonstrates the ability to predict the X label correctly. 

We also see that in Precision's formula, the factor that makes Precision increase or decrease is not 

TP but FP. Therefore, when a high Precision means a small FP or several incorrectly predicted 
labels to an X label is low. The Recall parameter shows the ability to predict without missing the 

X label, as well as the Precision, Recall depends on FN, or in other words it depends on the 

ability of the model to correctly predict the wrong label is X. In evaluating the effectiveness of 
these models, we always expect both Precision and Recall parameters to be high as much as 

possible. Unfortunately, there is always a trade-off between two parameters. For example, when a 

high Precision parameter often entails a lower Recall parameter and vice versa. The reason is if 

the high Precision parameter means that the model must have very high accuracy to predict the X 
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label, but the opposite can make the prediction missing the actual data as X label, vice versa. 
Therefore, we need to use another parameter to synthesize these two parameters by another 

parameter, F1 score, to evaluate the model for more accuracy and efficiency. 

 

4. PERFORMANCE EVALUATION 
 
In this section, we do a performance evaluation of three individual machine learning models 

which are KNN, Random Forest, AdaBoost, and our proposed Stacking model on an up-to-date 

NSL-KDD 2019 data set. The computing environment is Ubuntu 18.0.4 64-bit; CPU Intel i7 
8750H chip, 6 cores 12 threads; GPU: Intel UHD Graphic 630 4Gb; 8Gb RAM DDR4 and the 

Pycharm software [48]. 

 

4.1. Evaluation of Individual KNN Model 
 

KNN works by taking a data point and looking at the ‘k’ closest data points. The data point is 
then assigned the label of the majority of the ‘k’ closest points, therefore, how to choose a 

n_neighbor parameter in the individual KNN model is very important for our proposed model. 

We try several n_neighbor values starting at 1 and ending in 8. In Figure 3, we can see the 

accuracy level corresponding to the n_neighbor values. With the value of k = 5, the accuracy 
level almost reaches peak constant Therefore, we choose the value of k = 5 for our proposed 

Stacking model. 

 

 
 

Figure 3.  Accuracy level of different n_neighbor of KNN model 

 

4.2. Evaluation of Individual Adaboost Model 

 
We select the parameter n_estimators for the AdaBoost model with each value of n_estimators 

running with k = 5 times, then take the average value. Adaboost will execute with a decision tree 

with depth = 1. The fundamental parameter n_estimators is used to select the maximum number 
of trees involved in the classification process. After each classification, the algorithm re-

calculates weight for each sample that has been misclassified, and after many calculations, we 

will get the most accurate model. A higher number of trees that participate in the classification 

will increase the accuracy of the AdaBoost algorithm. We see in Figure 4, Accuracy is higher 
when the parameter n_estimators = 100, then the line goes horizontally with accuracy equal to 

98.13% on average. Thus, if we further increase in n_estimators can reach a certain threshold or 

when n_estimators -> ∞, accuracy will converge at near 1. However, the disadvantage of 
increasing n_estimator too much is not determining the threshold when the algorithm converges. 



International Journal of Computer Networks & Communications (IJCNC) Vol.12, No.6, November 2020 

125 

Figure 5 illustrates the timing processing of AdaBoost with varying n_estimators. In addition, we 
see that increasing n_estimators will be resource-intensive for training. In this paper, we choose 

n_estimators = 100. 

 

 
 

Figure 4.  Accuracy level of different n_estimators of AdaBoost model 

 

 
 

Figure 5.  Time implementation estimation of AdaBoost model 

 

4.3. Evaluation on Individual Random Forest Model 

 
For RandomForest, the n_estimator’s parameter is the number of trees participating in the 

classification process. For example, if a sample would like to be classified then it will receive 

votes from other trees. If receiving the largest number of tree votes in a class, the sample will be 
assigned to this class. In Figure 6, we can see that the RF model obtains peak accuracy when 

n_estimator’s equals 100. 
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Figure 6.  Accuracy level of different n_estimators of Random Forest 

 

4.4. Performance Comparisons of Accuracy, Precision, F1-Score and Recall 

 

In Figure 7, the general accuracy obtained from our proposed Stacking model is higher than three 
individual machine learning algorithms. Accuracy of the proposed Stacking model is 0,6% higher 

than KNN, 2,5% for AdaBoost, and 0.03% for RandomForest respectively. In Figure 8, we can 

see that Precision is higher than KNN by 0,5%, AdaBoost by 2,4%, and Random Forest by 0,02% 
respectively. 

 

 
 

Figure 7. Accuracy level of individual algorithm and Stacking model 

 

In Figure 9, the Recall of our proposed Stacking model is higher than KNN by 0.6%, AdaBoost 

by 2,2%, and Random Forest by 0.02% respectively. In Figure 10, F1 of our proposed Stacking 
model is higher than KNN 0,6%, compared to AdaBoost is 2,34% and with Random Forest is 

0.03% respectively. We can see that with the NSL-KDD 2019 data set, for three individual ML 

models, RF gives the most accurate prediction results with the highest Precision. RF algorithms 
predict the best label compared to the remaining algorithms, and the higher Recall shows that 
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Random Forest is also less likely to miss labels than the others. The reason might be when 
choosing the input parameter of the algorithm without considering the max depth parameter, 

Decision Tree constituting Random Forest will have the depth equal to the depth when browsing 

the tree with the ID3 algorithm [52] when each Decision Tree is reached. This reason makes 

Random Forest able to learn more deeply than others. With AdaBoost, we do not set the 
base_estimator parameter results in the algorithm using a training data set with Decision Tree 

with max_dept equal to 1. The base estimator from which the boosted ensemble is built that 

makes the algorithm much faster than Random Forest and provides lower accuracy but in the 
acceptable range compared to others. Finally, our proposed Stacking model provides significant 

improvements in Accuracy, Precision, Recall, F1-score which can be applied in practice with a 

very good performance. The increase in Accuracy indicates that our proposed model is more 
accurate than other individual models. Higher Recall shows that our model is less likely to miss 

labels. 

 

 
 

Figure 8. Precision of individual algorithm and Stacking model 

 

 
 

Figure 9. Recall of individual algorithm and Stacking model 
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Figure 10. F1-score of individual algorithm and Stacking model 

 

5. CONCLUSIONS 
 

In this paper, we have proposed a Stacking model to combine three machine learning algorithms 

which are KNN, AdaBoost, and Random Forest for anomaly detection. Moreover, we proposed a 
Logistic algorithm to automatically select parameters for the stacking model. This model 

achieves a very high accuracy of 99.64% and significant improvement of Recall, Precision, and 

F1-score compared to individual machine learning models. A drawback of our proposed Stacking 
model is that it is more time-consuming than individual machine learning models. However, we 

consider processing in parallel individual machine learning models on individual dynamic Virtual 

Machines (VM) by using Apache Hadoop or Spark which we would like to extend in another 
work. Finally, we hope to integrate deep learning algorithms to increase the accuracy of the 

overall model and combine time-series training for online, smart, and early detection. 
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