
International Journal of Computer Networks & Communications (IJCNC) Vol.13, No.1, January 2021 

DOI: 10.5121/ijcnc.2021.13104                                                                                                                     53 

 
ENHANCED PARTICLE SWARM OPTIMIZATION  
FOR EFFECTIVE RELAY NODES DEPLOYMENT  

IN WIRELESS SENSOR NETWORKS 
 

Bader Alshaqqawi1, Sardar Anisul Haque2,  

Mohammed Alreshoodi3 and Ibrahim Alsukayti4 

 

1Department of Mathematics, Collage of Science,  

Qassim University, Buraydah, Saudi Arabia 
2Department of Mathematics and Computer Science,  

Alcorn State University, Lorman, Mississippi, USA 
3Department of Applied Science, Unizah Community College,  

Qassim University, Unizah, Saudi Arabia 
4Department of Computer Science, Collage of Computer,  

Qassim University, Buraydah, Saudi Arabia 
 

ABSTRACT 
 

One of the critical design problems in Wireless Sensor Networks (WSNs) is the Relay Node Placement 

(RNP) problem. Inefficient deployment of RNs would have adverse effects on the overall performance and 

energy efficiency of WSNs. The RNP problem is a typical example of an NP-hard optimization problem 

which can be addressed using metaheuristics with multi-objective formulation. In this paper, we aimed to 
provide an efficient optimization approach considering the unconstrained deployment of energy-harvesting 

RNs into a pre-established stationary WSN. The optimization was carried out for three different objectives: 

energy consumption, network coverage, and deployment cost. This was approached using a novel 

optimization approach based on the integration of the Particle Swarm Optimization (PSO) algorithm and a 

greedy technique. In the optimization process, the greedy algorithm is an essential component to provide 

effective guidance during PSO convergence. It supports the PSO algorithm with the required information 

to efficiently alleviate the complexity of the PSO search space and locate RNs in the spots of critical 

significance. The evaluation of the proposed greedy-based PSO algorithm was carried out with different 

WSN scenarios of varying complexity levels. A comparison was established with two PSO variants: the 

classical PSO and a PSO hybridized with the pattern search optimizer. The experimental results 

demonstrated the significance of the greedy algorithm in enhancing the optimization process for all the 
considered PSO variants. The results also showed how the solution quality and time efficiency were 

considerably improved by the proposed optimization approach. Such improvements were achieved using a 

simple integration technique without adding to the complexity of the system and introducing additional 

optimization stages. This was more evident in the RNP scenarios of considerably large search spaces, even 

with highly complex and challenging setups. 
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1. INTRODUCTION 
 

Over the recent years, Wireless Sensor Networks (WSNs) have attracted great interest at both the 

academic and industrial levels. A variety of WSN applications have emerged in different domains 
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including remote monitoring, logistics, health care, surveillance, utilities, and military. The 
deployment of WSNs for these applications involves implementing a number of sensor nodes 

over varying types of terrains and environments. Sensor nodes are typically small-sized devices 

of limited computing, sensing, memory, and communication resources. They also have 

limitations in terms of energy supply being typically powered using batteries. This would limit 
the lifetime of the nodes in addition to posing other challenges regarding the costly and time-

wasting process of battery replacement. 

 
Therefore, one of the common critical considerations for WSNs is energy efficiency. The most 

energy-consuming operation for sensor nodes is wireless radio communications. Accordingly, 

communication technologies supporting low-power low-rate wireless transmission/reception have 
become popular options for improving energy consumption and network lifetime. However, such 

an approach could come at the cost of limiting network coverage in practice. It is critical to 

address these WSN limitations to stop them hindering real-world WSN deployments. One 

strategic solution is the deployment of special nodes, Relay Nodes (RNs), in the network in 
addition to sensor nodes. RNs are typically mains-powered or energy-harvesting devices with 

good energy capacity and computing capabilities. Being costly components, it is of great 

significance to perform well-planned RNs placement for better management of the deployment 
and maintenance costs. 

 

The challenging task in this context is how to identify the optimal locations of the RNs 
considering multiple objectives towards improving WSN performance. This is known as the 

Relay Node Placement (RNP) problem. A number of architectural networking considerations 

need to be taken into account when addressing the RNP problem. The placement of RNs can be 

achieved in a single-tiered network structure with multi-hop topology or a two-tiered network 
structure with one-hop star topology. RNs can also be placed to ensure sensor nodes connectivity 

and bi-connectivity using two connectivity models, the connected and survivable models, 

respectively. It is also possible to carry out anywhere RN placement (unconstrained deployment) 
or restrict placement areas of the RNs (constrained deployment).      

  

The RNP problem is a Non-Deterministic Polynomial-time (NP)-hard optimization problem. 

Addressing such a problem using approximate techniques instead of exact techniques is more 
effective. This is evident considering time complexity as the problem dimension increases. 

Therefore, metaheuristics can be adopted to efficiently address the RNP problem. A number of 

metaheuristics exist in the literature and Swarm Intelligence (SI) is one of the common 
approaches in this context due to its effectiveness. It provides an effective methodology to solve 

multi-objective problems without prior knowledge of the problem domain. The SI family has 

different members among of which is the Particle Swarm Optimization (PSO) algorithm. The 
RNP problem can be addressed with multi-objective formulation using PSO to optimize certain 

conflicting objectives. These could include network connectivity, coverage, energy efficiency, 

overall performance, and cost effectiveness. 

 
The RNP problem is addressed in this paper for two-tiered RNs placement with connected and 

unconstrained deployment strategies. We consider the placement of energy-harvesting RNs in a 

pre-established WSN having a set of pre-positioned stationary sensor nodes. The RNP problem is 
formulated as a multi-objective optimization problem and addressed using a novel approach 

integrating a PSO algorithm with a greedy technique. The focus is on optimizing certain critical 

WSN objectives, namely network coverage, energy consumption, and deployment cost. The 
integration of the greedy algorithm provides an effective approach to limit the search space for 

RNS placement and help PSO to accelerate convergence time. From the evaluation results, the 

greedy algorithm provided significant information to enhance the optimization process for 

different PSO variants. In addition, the solution quality and time efficiency were considerably 
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improved by the proposed optimization approach without adding to the complexity of the system 
and introducing additional optimization stages. This was more evident in the RNP scenarios of 

considerably large search spaces, irrespective of their complexities.  

 

In the following section, related research efforts are presented and discussed. In Section 3, the 
main networking and optimization assumptions considered in this work are presented. Section 4, 

discusses the mathematical model. The proposed greedy-based PSO approach is described in 

Section 5. In Section 6, the experimental setup and the evaluation results are presented. The 
conclusion is provided in Section 7. 

 

2. RELATED WORK 
 

A number of survey papers in the literature discussed varying multi-objective problems in the 
context of WSNs [1, 2, 3, 4, 5]. The RNP problem is one of such problems which has been 

widely considered and addressed using different evolutionary algorithms [6, 7, 8, 9]. However, 

PSO has been a widely adopted optimization algorithm for the RNP problem in addition to other 
WSN optimization problems such as routing [10, 11], security [12, 13], clustering [14, 15, 16], 

and mobility [17]. 

 
In [18], the RNP problem was addressed using a PSO algorithm incorporating an advanced 

scheme of particle encoding. It also considered the minimization of the linear combination of two 

objective functions factoring in the sensor-to-relay nodes distance and hop count for energy 

efficiency. In [19], a PSO-based model was proposed to address constraint placement of relay 
nodes in addition to energy-efficient routing for smart grid applications. It enables capturing the 

restricted area of placement and encoding them into particle-space. A real-to-particle space 

transformation function was used to transform the areas into a contiguous domain of boundary to 
fill the particle space of PSO.  In [20], the focus was on addressing the RNP problem using a PSO 

algorithm towards establishing fault tolerance in WSNs with multi-path connectivity. PSO was 

adopted for finding the minimum number of relay nodes to achieve the required k-connectivity.  
It was based on establishing a connected network with minimum k-vertex disjoint paths among 

the different nodes. PSO takes a list of degree deficient nodes and places relay nodes with the 

objective of maximizing connectivity and minimizing sum of weights for all the nodes in the list. 

In [21], PSO was applied with a clustering-based approach to address the RNP problem 
considering energy balancing for large-scale WSNs. Initially, the network is partitioned into 

multiple clusters using K-mean clustering and Balance clustering algorithms. PSO is then applied 

to optimize the placement of a relay node towards energy balancing for each cluster. Similarly, 
PSO was adopted in [22] to address the RNP problem in a clustered WSN with multi-hop 

topology for tunnel monitoring applications. The focus was on minimizing the distances between 

relay nodes to optimize energy consumption. In [23], PSO was adopted to find the optimal 

location to place a sink node with respect to pre-deployed RNs in clustered WSN setups with 
multi-hop topologies. 

 

There has also been a number of attempts to develop more effective PSO-based approaches by 
combining PSO with other algorithms and techniques. In [24], PSO was combined with binary 

search for addressing the RNP problem in addition to optimizing the number of relay nodes in a 

single run. The binary search mechanism was used to initially fix the upper bound of the search 
space and then find for the optimal number of RNs. For every potential output, PSO was applied 

on the selected number of RNs to find their optimal locations. The best solution is determined 

according to a fitness function considering a single network performance metric. In [25], PSO 

was enhanced to discretize the RNP problem and integrate local search. It starts by discretizing 
the continuous RNP problem with a non-linear fitness function before applying discrete PSO with 

local search. The local search was used to improve the optimization process at the global level. 
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In a different research work [26], PSO was integrated with the Leave-one-out (LOO) algorithm in 
a general and customizable RNP optimization framework. The focus was on optimizing network 

connectivity in multi-hop WSNs considering both constrained and unconstrained strategies. It is 

based on a multi-stage procedure addressing the RNP problem into three different stages in which 

different algorithms can be flexibly adopted. LOO was used to select a subset of initially 
distributed relay nodes and PSO was then applied for further unconstrained placement 

optimization. Moreover, a PSO approach integrating multiple PSO variants of different 

optimization features was considered in [27] to address Quality of Service (QoS)-oriented 
deployment of WSNs. A heterogeneous multi-swarm PSO algorithm incorporating three different 

PS optimizers was proposed. These are the PSO with inertia weight, PSO with constriction factor 

and dynamic probabilistic PSO. Each is applied on a different sub-swarm after dividing the 
population into three sub-swarms. By allowing these sub-swarms to communicate and 

collaborate, the sub-swarms are able to coevolve. Information from the different optimizers is 

used in changing the convergence direction of the population. 

 
Other research works focused on addressing optimal placement of relay nodes for achieving 

network restoration. This was approached in [28] by modeling the RNP problem as a Steiner 

Minimum Tree (SMT) problem where Steiner points are located and a number of random 
spanning trees are generated. Then, a PSO variant modifying PSO to address discrete 

optimization problems with multi-dimensional discrete search space is applied to find the least 

cost tree.  It is based on having a swarm particle jump without specifying its velocity and attracts 
others once getting good fitness in a certain area. Similarly, the proposed approach in [29] 

extends PSO to consider variable-dimensional search spaces instead of the fixed number of 

dimensions considered for the search space in the classical PSO. The focus was on addressing the 

RNP problem with candidate solutions of varying lengths. Thus it was formulated as a SMT 
problem considering bounded edge length and the extended-PSO is applied for determining the 

anchor Steiner points.   

 
PSO was also adopted for the RNP problem in other similar domains such as in wireless body 

sensor networks [30].  A more dynamic PSO-based approach was also considered in [31] to find 

the best locations of mobile relay nodes over time in robotic-based MANETs. It enables moving 

relay nodes to optimal locations to maximize network performance in addition to restore network 
connectivity in case of dis-connectivity.  

 

On the other hand, RNP optimization in WSNs has been addressed by the research community 
considering different optimization objectives. Some optimization solutions were developed with a 

single objective such as maximizing network lifetime [18, 19, 22, 32], enhancing network 

performance [24, 25, 30], and improving connectivity [26]. However, multi-objective 
optimization for the RNP problem has received more attention in the literature. In [4, 27], the 

focus was on maximizing network coverage while minimizing energy consumption. Another 

example is [31] in which network connectivity was optimized in combination with the overall 

network performance. RNP Optimization towards effective cost management and maximized 
network connectivity was also addressed in [33, 34]. Several optimization objectives were also 

considered such that a limited number of RNs is deployed for improving network lifetime while 

achieving higher network coverage [35, 36] or maintaining full network connectivity [37, 38]. 
Maximizing network coverage and connectivity was also targeted in conjunction with minimizing 

deployment cost [39, 40]. In other proposals, the focus was on improving coverage, lifetime, and 

connectivity of the network [41, 42]. 
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Table 1.  Basic Details of the Experimental Instances. 

 

Ref. Approach Objectives 
Deploymen

t Strategy  

App. Large-Scale 

Deployment 

[18] 
Incorporating an advanced 
scheme of particle encoding 

Network 
lifetime 

Unrestricted 
Smart 
Grid 

 

[19] 
Real-to-particle space 

transformation 

Network 

lifetime 
Restricted -  

[20] 
Establishing a connected 
network with minimum k-

vertex disjoint paths 

Connectivit

y & Cost 
Unrestricted -  

[21] 

PSO was integrated with K-

mean clustering and Balance 
clustering algorithms 

Energy 

balancing 
Unrestricted - √ 

[22] Clustering-based approach 
Network 

lifetime 

Unrestricted

, Multihop 

Tunnel 

monit. 
 

[23] 
Sink node placement with 
respect to pre-deployed RNs in 

clustered WSN 

Network 

lifetime 

Unrestricted

, Multihop 
-  

[24] 
PSO was combined with 

binary search 

Network 

performance 
Unrestricted -  

[25] 

PSO was enhanced to 

discretize the RNP problem 

and integrate local search 

Network 
performance 

Unrestricted -  

[26] 
PSO was integrated with the 
Leave-one-out (LOO) 

algorithm 

Connectivit

y 

Unrestricted
/Restricted, 

Multihop 

-  

[27] 
A heterogeneous multi-swarm 

PSO algorithm 

Network 
coverage & 

lifetime 

Unrestricted
, QoS 

support 

-  

[28] 

A PSO variant for discrete 

optimization with multi-
dimensional discrete search 

space 

Connectivit
y 

Unrestricted -  

[29] 

ExtendingPSO to consider 

variable-dimensional search 
spaces 

Connectivit

y & Cost 
Unrestricted -  

P
ro

p
o

se
d

 

W
o

rk
 Incorporating a greedy 

algorithm to guide the PSO 

algorithm during convergence 

Network 

coverage, 

lifetime, & 
cost 

Unrestricted - √ 

 
On the other hand, several studies were conducted to compare the applicability of PSO with other 

meta-heuristic algorithms for a number of WSN problems [43-46]. These included the Genetic 

Algorithm (GA) which is an important meta-heuristic technique to solve optimization problems. 
In [43], the authors found that PSO performs better than GA in forming clusters for wireless 

sensor networks considering both the computation time for convergence and the quality of the 

solution on various network topology. It should be noted that both RNP problem and forming 
clusters in WSN are similar considering the objectives. We found similar conclusions for RNP 
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problems in comparison with GA and PSO.  In this paper, we study the performance of PSO in 
solving very large RNP problems. To the best of our knowledge, this work is the first attempt that 

incorporates a greedy algorithm to guide the PSO algorithm during convergence. Such an 

integration approach has been commonly adopted in different research works for different 

optimization algorithms. For example, the authors in [47] hybrized a greedy algorithm with a 
metaheuristic based algorithm called ant colony optimization in finding a near optimal routes for 

the sensors in multihop based WSN. In [48], the authors propose a location-free greedy algorithm 

to make routing decision in WSN. In our proposed approach, the greedy algorithm is an essential 
contributor to the PSO optimization process. First, it provides an estimated number of RNs for 

PSO so that it can apply fixed-size encoding for a swarm in PSO. The actual number of RNs that 

will be included for the solution in each swarm is controlled by a set of predefined rules. These 
rules are flexible and can be controlled by algorithmic parameters so that the PSO can get rid of 

local optima. Using the output of the greedy algorithm, the search space complexity of the PSO 

can be effectively limited and the locations for energy-efficient placement of multiple RNs can be 

efficiently identified. Table 1 provides an overview of the reviewed literature and a comparison 
with the proposed research work in this paper.  

 

3. ASSUMPTIONS 
 
In this paper, a hierarchical network architecture is considered with a two-tiered WSN structure. 

It is assumed that a set of stationary battery-powered sensor nodes implemented as small-sized 

sensor devices in one tier. Each sensor node has short-range low-power low-rate wireless radio 

which is put to sleep during idle periods. It is also assumed that the sensor nodes are pre-placed in 
the field with random deployment considering a 2D Euclidean area without any obstacle. A 

remote monitoring application in which each sensor node periodically collects and transmits 

sensor data is considered. The communications are made with the RNs at the upper tier of the 
architecture using unified-sized data packets. Network paths of single hops are used to transmit 

the packets over the wireless radios using constant transmission power. Once received at the 

RNs, data is forwarded to the Internet infrastructure via nearby base stations. An ideal network 
situation of no external interference, collision, nor retransmission is assumed.  

 

At each sensor node, the operation of sensing the application data incur very less power 

consumption than that of wireless radio communication. Therefore, we only consider the power 
consumed in sensor data transmission while neglecting sensing power. It is important to note that 

sensor nodes only transmit sensor data and have no engagement in the operation of data 

reception. In the case of RNs, they receive and transmit sensor data while having no sensing 
modules to perform the sensing operation. 

 

Another important assumption is the implementation of the same wireless radio modules with 

identical transmission and reception ranges for all the sensor and relay nodes. Each base station is 
assumed to have a sufficient range to interconnect all the placed RNs in the deployment field. 

The Euclidean distance is used to examine sensor-relay nodes connectivity. Once having the 

Euclidean distance between two nodes shorter than their communication ranges, it is then 
assumed that the connectivity is established between them. 

 

The RNs placement is addressed to construct a network topology of single-hop connectivity 
considering no topological constraints. Adopting single-hop topology for power-constrained 

sensor devices would be a feasible approach to maintain energy efficiency. On the other hand, 

placing RNs in varying positions can result in imbalanced distribution of the number of the 

sensor nodes connected to each RN. As a consequence, traffic load and transmission power 
consumption will be varied among the RNs. However, we put no emphasis on such 
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considerations as the RNs are mains-powered or energy-harvesting devices with sufficient 
computing resources. 

 

4. MATHEMATICAL MODEL 
 

Table 2 list all the notations used throughout this section. Input to the RNP problem is a list of 
sensor nodes, each of which is described by a point. The list of points is drawn from a 2-D space. 

We will consider this as the search space associated with the given RNP problem. Note that the 

unit of our search space is arbitrary. We limit this search space by computing both maximum and 
minimum values in both X and Y directions. The solution to RNP problem is also a set of points, 

each of which describes the location of a RN. It should be noted that both input and output data 

are supposed to be continuous variables. This makes a RNP problem computationally hard as the 

optimal points can have arbitrary precision during the optimization process. To overcome this 
situation, we build a mathematical model of our problem which deals with only integers while 

describing the locations of both sensor nodes and RNs. As we are looking for a near-optimal 

solution, this conversion does make sense [43].  
 

Let d be a small value such that if a sensor or relay node’s location is moved d units in X or Y 

direction, it causes negligible effect on our near-optimal solution, and the distance between any 
two sensor nodes is more than d. Let (xmin, ymin), (xmax, ymin), (xmax, ymax), and (xmin, ymax) be the 

four corners of the smallest rectangle of our search space such that all input points (locations of 

sensor nodes) are inside of it and the distance from any sensor node to any side of the rectangle is 

more than d. For simplicity, let the length of each side of the rectangle be a multiple of d. We 
divide the rectangle by ((xmax - xmin)/d - 1) straight lines that are parallel to Y and ((ymax - ymin)/d - 

1) straight lines that are parallel to X. These two groups of straight lines will divide the rectangle 

in such a way that it will have ((xmax - xmin)/d ) * ((ymax - ymin)/d ) number of squares, each of the 
squares has area d2 units. This makes the discretization of any point in the search space straight 

forward, which can be described as follows: let (xi, yi) be a point in our search space, then this 

point is located in the square marked by a pair of two integers (floor(xi/d), floor(yi/d)).  
 

The above procedure redefines not only the sensor nodes’ positions but also the search space 

itself. Our new search space becomes a grid having ceil((xmax- xmin)/d) and ceil((ymax- ymin)/d) 

squares in X and Y directions, respectively.  In this new search space, our computation involves 
only integers considering the locations of sensor nodes and RNs.  

 

The output to our integrated approach will be a set of pairs of integers. Each pair defines a 
particular square in the search space, into which we can place a RN. The actual position of the 

RN should not affect our near-optimal solution according to the definition of d.  

 

Let m = ceil ((xmax- xmin)/d) and n = ceil ((ymax- ymin)/d). Now the sensor nodes can be described 
by S, a zero-one matrix of order m and n, where: 

 

𝑆[𝑖][𝑗] = {
1, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑠𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑑𝑒 𝑖𝑛 (𝑖, 𝑗) 𝑠𝑞𝑢𝑎𝑟𝑒,
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

s is the total number of sensor nodes such that ∑ 𝑆[𝑖][𝑗] = 𝑠0≤𝑖<𝑚,0≤𝑗<𝑛 .  

 

In addition, Q is a list of s unique pairs of integers, where each pair (i, j) describes a square where 
a particular sensor is located or S[i][j] = 1. 

 

Let w be a value such that a sensor node’s signal can travel at best. Let c = floor(w/d). It means 
that a sensor can communicate with a RN if and only if the distance between the RN and the 
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sensor node is at most c square units. In other words, if the nearest RN of a sensor node is c 
squares away from it in both X or Y directions, the sensor node cannot communicate with the 

nearest RN. 

 
Table 2.  List of Notations. 

 

Symbol Quantity 

S Sensor Nodes Matrix 

s Total Number of Sensor Nodes 

Q List of sensor nodes 

d The length of square 

w Physical Communication Range 

c Discretized Communication Range 

R RNs Matrix 

r Total Number of RNs 

P A list of pairs of integers that describes a solution to RNPP 

max Upper bound on the number of RNs 

Rgreedy RN Matrix from greedy algorithm 

rgreedy Total RNs by greedy algorithm 

rfirstKind Number of RNs of first kind 

rsecondKind Number of RNs of second kind 

cgreedy 
Discretized Communication Range used in greedy 
algorithm 

I Influence Matrix 

couterCircle Artificial Communication Range for first kind of RN in GA 

mouterBox, 

nouterBox 

Extension of search space to have flexible number of RNs 

of second kind 

 
R is a zero-one matrix of order m and n to store the positions of RNs, as follows: 

 

𝑅[𝑖][𝑗] = {
1, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑅𝑁 𝑖𝑛 (𝑖, 𝑗) 𝑠𝑞𝑢𝑎𝑟𝑒,
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 
Let r be the total number of RNs, which we expect to find by our solution. Then, 
∑ 𝑅[𝑖][𝑗] = 𝑟0≤𝑖<𝑚,0≤𝑗<𝑛 .  

 

The output of our solution is P, a list of r unique pairs of integers, where each pair (i, j) describes 

a square in our search space in the 2-D space and R[i][j] = 1. We consider P as a near-optimal 

solution to RNP problem. 
 

An optimal solution to a RNP problem is to find out the locations for a set of RNs, such that (i) 

the number of RNs in the set is minimum, (ii) each of the sensor nodes can reach at least one RN, 
and (iii) the energy consumed by each sensor node is minimized. We will call each of these 

expected properties as Cost, Coverage and Energy, respectively. We expressed each of these 

properties by a numerical value as follows: 
 

(i) Cost: the cost associated with the procurement, installment, and maintenance of RNs 

that are suggested in a candidate solution. Let, max be an integer that we assume to 
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be an upper bound for the expected number of RNs. So, for any candidate solution, 
Pcandidate, let rcandidate  be the number of RNs to solve a RNP problem, where 

rcandidate≤max. We compute cost as the ratio between rcandidate and max as follows:  

𝑓1  =  
𝑟𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒

𝑚𝑎𝑥
                 (1) 

This ratio is then multiplied by 100 to normalize it with other metrics. This 

normalized value is further multiplied with a weight factor w1. 

(i) Coverage: the fraction of sensor nodes that can communicate with at least one RN. 

This value is further multiplied with a weight factor w2. Let 𝑠′ be the number of 
sensor nodes that can communicate with at least any RN for a given solution. Then, 

the network coverage rate is computed as follows:  

𝑓2  =  
𝑠′

𝑠
(2) 

(ii) Energy: Let the maximum distance possible for a sensor node to reach the nearest 
RN is limited by c squares. Let the sum of distances in square units by the sensors, 

which has the nearest RN in c square, be Distance. We compute energy consumption 

rate as the ratio between Distance and s*c as follows:  

𝑓3  =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑠∗𝑐
 (3) 

 
This ratio is then multiplied by 100 to normalize it. This normalized value is further multiplied 

with a weight factor w3. 

 
The objective value for Pcandidate is the weighted sum of (1), (2), and (3) as follows: 

 

𝐹 = 𝑤1 𝑓1 + 𝑤2(−𝑓2 )  +  𝑤3 𝑓3 (4) 
 

Algorithm 1 OBJECTIVE 

Input: Pcandidate, w1, w2, w3, rcandidate 

Output: a real value that is the evaluation of the given candidate solution Pcandidate 

Begin 

1:  total_cost = cost* rcandidate 

2:  norm_cost= w1*100*(total_cost/(max*cost)) 

3:  coverred_sensor = 0 
4:  total_distance = 0 

5:  total_dist_coverred = 0 

6:  for each pair (i, j) in Qdo 
7:   (a, b) = closest(Pcandidate , (i, j))  //closest() finds RN at (a,b) from Pcandidate which is closest to (j,j) 

8:        total_distance += distance (a, b) to (i, j)  

9:      if distance (a, b) to (i, j) < c then 

10:            ++coverred_sensor 
11:             total_dist_coverred += distance (a, b) to (i, j) 

12:      end if 

13:  end for 
14:  norm_energy= w3*100*(total_distance/(s*c)) 

15:  norm_coverage= w2*100*( - coverred_sensor/s) 

16:  return (norm_energy + norm_cost + norm_coverage) 

End 

 

Accordingly, the optimization problem is formulated as a minimization problem. The actual 

values for the weights w1, w2 and w3 depend on user requirements. For example, we keep w1 < 
w2, if we emphasize more on network coverage than deployment cost.  Algorithm 1 describes the 

above procedure. 
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5. THE PROPOSED SOLUTION 
 
Our greedy-based PSO solution has two main steps. In the first step, we apply a greedy algorithm 

to find out some squares on the search space in which we observe signals from a maximum 

number of sensor nodes. In other words, the greedy algorithm tries to place RNs to reduce the 

energy consumption by sensor nodes. As the greedy algorithm is used to accelerate the 
convergence in the PSO, we are not looking for any complete solution from it. Once the greedy 

algorithm returns the list of squares, in which RNs are in need, we instrument and execute the 

PSO with the help of that list of squares. The following subsections provide detailed descriptions 
of these two main steps: the greedy algorithm and greedy-based PSO. Figure 1 provides an 

architectural overview of the proposed PSO-based solution.  

 
 

 
 

Figure 1.  An Architectural Overview of the Proposed PSO-based Solution 

 

5.1. The Greedy Algorithm 
 
We need to list the following notations in order to explain the working principle of our greedy 

algorithm. Let Rgreedy be a zero-one matrix of order m and n, where: 

 

𝑅greedy[𝑖][𝑗] = {
1, 𝑖𝑓 𝐺𝑅𝐸𝐸𝐷𝑌 𝑝𝑢𝑡𝑠 𝑎 𝑅𝑁 𝑖𝑛 𝑠𝑞𝑢𝑎𝑟𝑒 (𝑖, 𝑗),
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

Let rgreedy be the total number of RNs that our greedy algorithm suggests to be placed across the 

search space. It is clear that ∑ 𝑅𝑔𝑟𝑒𝑒𝑑𝑦[𝑖][𝑗] =  𝑟𝑔𝑟𝑒𝑒𝑑𝑦0≤𝑖<𝑚,0≤𝑗<𝑛 . 

 

In the greedy algorithm, we assume that each sensor node can connect to a RN if the distance 

between them is equal or smaller than cgreedy squares. cgreedy is an artificial value such that cgreedy > 
c. It is expected that rgreedyis inversely proportional to the value of cgreedy. 

 

Our greedy algorithm is explained with the ComputingInfluence and GREEDY algorithm as 
presented in Algorithm 2 and 3, respectively. The input to ComputingInfluence is a set of sensor 

nodes, G. The output of this algorithm is I, an integer matrix of order m and n. I[i][j] is the 

number of sensor nodes from G whose signal can be reached at square (i, j) assuming that the 

signal from each sensor node can be propagated cgreedy squares in all directions. 
 

The GREEDY algorithm is an iterative algorithm. The input to this algorithm is Q, which is the 

set of all sensor nodes. In each iteration, it computes I using ComputingINfluence. It then finds 
the maximum value in I. Let I[i][j] contains maximum value, it then updates with R[i][j] = 1 and 

deletes the sensor nodes which could be served by placing a RN at (i, j) before starting the next 

iteration (if any). 
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5.2. The Greedy-Based PSO Algorithm 
 

The PSO algorithm is executed once the greedy algorithm has completed its execution. Two very 

important pieces of information are obtained from the greedy algorithm:  
 

(i) the approximate number of RNs that can be used to serve all sensor nodes 

(ii) the squares in the search space where RNs are more likely to be placed 
 

These two outputs from the greedy algorithm will be used to effectively configure the PSO to 

solve the RNP problem.  

 

Algorithm 3 GREEDY 

Input:  Set Q 

Output: Rgreedy 

Begin 
1:  Set Q1 = Q 

2:  Create a zero matrix Rgreedy of order m and n 

3:  While Q1 ≠ null do  
4:      I = ComputingInfluence(Q1)  

5:      I(i,j) = max(I) 

6:      Rgreedy[i][j] = 1 
7:     for each sensor g in Q1; where g is at (x, y) do 

8:             if distance from (x, y) to (i, j)≤ cgreedy then 

9:                    delete g from Q1 

10:           end if 

11:     end for 

12: end while 

13: return Rgreedy 

End 

 
Algorithm 2 ComputingInfluence 

Input: Set G 

Output: Matrix I of order m and n 

Begin 
1:  Create a zero matrix I of order m and n 

2:  for each sensor g in G; where g is at (i, j) do 

3:  for each square (x, y) in Ido  
4:               if distance from (i, j)to (x, y) ≤ cgreedy then 

5:  I[x][y] = I[x][[y]+1 

6:               end if 
7:        end for 

8:  end for 

9:  return I 

End 

 

From the PSO algorithm, three kinds of RNs are expected: 

 
i. rfirstKind: First Kind RNs are the nodes that are being tried to place near to the squares 

suggested by the greedy algorithm. To describe this kind, we need to introduce another 

artificial communication range couterCircle, where cgreedy > couterCircle >c. In total, PSO will try 

to place rgreedy number of RNs of this kind. The range of each of the RN’s coordinate 
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values is by both adding and subtracting cgreedy with the corresponding coordinate 
positions from greedy algorithm. The main purpose of these RNs is to increase the 

coverage metric. During the convergence phase of PSO, a RN will be considered for 

fitness value if it is, by random choice, not more than couterCircle away from the position 

suggested by the greedy algorithm. This technique gives us the flexibility for our PSO on 
the number of RNs. We use rfirstKind, to represent the total number of RNs of first kind. 

ii. rsecondKind: Second Kind RNs are the nodes that are being tried to place anywhere in the 

search space. To describe this kind of RNs, we need to introduce mouterBox, nouterBox, where 
mouterBox > m and nouterBox > n. The PSO will try to place a number of RNs of second kind. 

The range of coordinates of each RN is defined as (0, mouterBox) and (0, nouterBox). The main 

purpose of these RNs is to get rid of local optima that might be caused by those of first 
kind. The number of RNs of second kind will depend on the complexity of RNP problem. 

If the solution from the PSO algorithm is not satisfactory considering energy 

consumption and network coverage, it can be increased. During the convergence phase of 

the PSO, a RN will be considered for fitness value if it is, by random choice, placed in 
the legal boundary of the search space. This technique gives us the flexibility for our 

PSO on the number of RNs. We use rsecondKind, to represent the total number of RNs of 

second kind. 
iii. rthirdKind: Third Kind RNs are exactly like first kind with one exception. For each square, 

that is suggested by the greedy algorithm, we can try to put any number of relay nodes of 

third kind. For some of those squares, we might not try for any relay node of third kind. 
On the other hand, for some of those squares, we might try for more than one relay node. 

The number of relay nodes in each of those squares, proportionally depends on the value 

computed for the corresponding square from ComputingINfluence algorithm. The main 

purpose of these relay nodes is to improve the energy value in the RNP problem. 
 

In our PSO code, the number of decision variables is equal to the sum of RNs of first, second and 

third kind. As we can see these different kinds of RNs can be defined by applying lower and 
upper bound value constraints. We kept the value for social and self-adjustment weight small 

(around 1.0) for our experimentations. These two values are used to calculate the velocity of the 

swarms by considering the swarm’s own best solution and the best solution by any swarm. 

 

6. EVALUATION 
 

6.1. Experimental Setups 
 
The evaluation of the proposed greedy-based PSO algorithm was carried out using an 

experimental WSN dataset representing varying RNP problem scenarios of fairly complex setups. 

The dataset contains four artificial WSN instances with randomly distributed stationary sensor 
nodes. The instances had deployment areas of square shapes with different dimensions and 

numbers of sensor nodes as illustrated in Table 3. We made sure that the proposed approach was 

tested under a varied set of RNP scenarios, from fairly small- to large-scale. We deemed it 
important to include the sufficient number of sensor nodes to cover the entire deployment area in 

each scenario. For all the sensor nodes and RNs in all the scenarios, w and d were set to 40 and 

4m, respectively [44, 45]. 

 
The implementation and evaluation of the proposed algorithm was accomplished using 

MATLAB R2018b on a PC having an Intel Core i5, 2.5 GHz CPU, 4 GB RAM, and Mac OS. 

Similar PSO configurations were set for all the experiments. However, the initial population 
varies for all the scenarios and increases as the instance size increases. In each experiment, the 

greedy algorithm provides the PSO process with the number of RNs. For the proposed greedy-



International Journal of Computer Networks & Communications (IJCNC) Vol.13, No.1, January 2021 

65 

based PSO, the number of RNs that the solution will try to place is the sum of rfirstKindandrsecondKind. 
Each rfirstKindhas a domain of defined by the corresponding RN from greedy algorithm and 

couterCircle whereas rsecondKind‘s domain is defined as (0, mouterBox) and (0, nouterBox).  Any non-zero 

positive value can be assigned to the weight factors, W1, W2 and W3. For the current 

implementation, the network coverage was deemed the most important objective while energy 
consumption was considered more important than the deployment cost. Therefore, the weights 

were set to have W2 > W3 > W1. 

 
Considering the randomness effect in such optimization techniques, 20 independent runs were 

conducted for each instance in all the experiments. The average of the collected results was taken 

for each experiment.  It is important to note that a confidence level of 95% was considered. 
 

Table 3.  Basic Details of the Experimental Instances. 

 

Scenario Area Size (m2) s 

INS1 300×300 150 

INS2 600×600 300 

INS3 800×800 400 

INS4 1000×1000 500 

 

Performance evaluation of the proposed greedy-based PSO algorithm was assessed considering 

two different aspects. Firstly, it was compared with the performance of the classical PSO 
algorithm. A further comparison was also established with an enhanced PSO version integrating 

the Pattern Search (PS) optimizer. We add “hybrid” in a PSO algorithm to refer the integration of 

pattern search algorithm with it. This gave more insights into the performance of the proposed 
approach and allowed for a further and deeper investigation. As in many similar studies [16, 17, 

40], the main considered comparison criteria were solution quality and time efficiency. The 

solution quality was measured by the values of the main objectives: network coverage, energy 
consumption, and deployment cost. For the time efficiency, a machine-independent measure, 

which was the total number of generations required by the algorithm before code termination, 

was considered. The second assessment aspect was studying the impact of network area size and 

number of sensor nodes on the performance of the proposed approach. This is important to 
understand to what extent the greedy-based PSO algorithm would be affected by the different 

deployment setups. 

 

6.2. Results and Discussion 
 

For the small-scale scenario INS1, all the considered variants of PSO achieved similar 
performance in terms of network coverage and energy consumption with relatively high solution 

quality as presented in Tables 4 and 5. The classical PSO was able to cover more than 94% of the 

sensor nodes and the Greedy-based PSO increases the coverage rate to more than 96%. However, 
the classical PSO required relatively less number of generations to maintain such high 

performance as indicated by the results in Figure 2.    

 

In general, the performance of all the variants degraded as the network size increased in INS1-
INS3. However, this was more adverse in the case of the classical PSO as the coverage rate 

decreased by more than 22% compared to less than 10% for the greedy-based PSO and 

hybridized greedy-based PSO. In terms of energy consumption, less degradation was experienced 
by greedy-based and hybridized PSO while the network became wider and denser. On the other 
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hand, all the variants achieved quite a similar performance in INS3 and INS4 despite the increase 
in the size of INS4.      

 

The classical PSO performed inefficiently in the large-scale scenarios (INS2-INS4) providing a 

coverage rate of less than 80% and energy consumption rate of more than 74%. The greedy-based 
PSO improved such results by increasing the network coverage rate and reducing the energy 

consumption rate. For example, in Scenario INS4 with a very large setup, the rates were 

improved by more than 17% and 6%, respectively. In regards to time efficiency, the proposed 
algorithm tended to converge faster than the classical PSO in the large-scale setups as the results 

indicated in Figure 2. For example, it required about 13% less iterations for converging to a better 

solution in scenario INS4. 
 

Another comparison for the number of RNs was established between the classical PSO and the 

greedy-based PSO as presented in Figure 3. It can be seen that the greedy-based PSO did not add 

much improvement to the number of RNs in the small-scale scenario of INS1. That is, the 
classical PSO required only one additional RN to provide the same performance of the greedy-

based PSO in that case. However, the number of RNs was reduced by the greedy-based PSO as 

the network scaled up. It was able to provide a cost-effective deployment solution with high 
solution quality using less number of RNs by more than 15%.  

 
Table 4.  Network Coverage Results. 

 

Scenari

o 

Classical-PSO 
PS-Hybridized 

PSO 

Greedy-Based 

PSO 

PS-Hybridized 

Greedy-PSO 

Mean STD Mean STD Mean STD Mean STD 

INS1 94.0 ±3.0 97.0 ±2.1 96.7 ±0.9 97.5 ±1.2 

INS2 79.4 ±3.5 95.8 ±1.4 91.2 ±1.5 95.0 ±1.6 

INS3 73.7 ±3.2 93.1 ±1.7 88.2 ±1.4 92.3 ±1.3 

INS4 73.4 ±3.6 94.5 ±1.7 87.3 ±1.4 92.8 ±1.6 

 
Table 5.  Energy Consumption Results. 

 

Scenario 
Classical-PSO 

PS-Hybridized 

PSO 

Greedy-Based 

PSO 

PS-Hybridized 

Greedy-PSO 

Mean STD Mean STD Mean STD Mean STD 

INS1 63.7 ±3.7 57.8 ±1.5 61.4 ±1.6 57.3 ±1.1 

INS2 74.4 ±1.7 62.1 ±3.0 69.5 ±1.3 64.6 ±3.0 

INS3 76.9 ±1.8 67.8 ±4.5 72.4 ±0.6 71.1 ±2.6 

INS4 77.0 ±1.8 63.4 ±4.7 72.2 ±0.9 69.1 ±5.0 
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Figure 2.  Number of Generation Comparison 

 

 
Figure 3.  Number of RNs Comparison 

 

In a further investigation, we compared the improvement provided by the classical PSO and the 
greedy-based PSO with other PSO variants hybridizing PSO with a further optimization 

technique. This was done by applying the pattern search optimizer on the PSO output in a second 

optimization stage for the classical PSO and the greedy-based PSO separately. As the results 
indicated in Tables 4 and 5, the hybridized greedy-based PSO improved network coverage and 

energy consumption of the greedy-based PSO by about 4% and 5% on an average, respectively. 

Higher increase in the network coverage and energy consumption rates by 19% and 14% on an 

average, respectively, was experienced once the pattern search optimization incorporated into the 
classical PSO. By comparing these performance gaps introduced by the hybrid approach in both 

cases, it is evident that the greedy-based PSO did not leave much room for significant 

improvement by additional optimizers. It was able to provide highly optimized results using a 
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simple integration technique without adding to the complexity of the system and introducing 
additional optimization stages. 

 

It is also important to notice the high solution quality provided by the classical PSO when 

hybridized with the pattern search optimizer as indicated by the results in Tables 4 and 5. It 
noticeably improved the performance of the classical PSO and achieved a high network coverage 

rate of more than 94% and low energy consumption rate of less than 68% in all the scenarios. 

However, such an improvement was a result of a significant help of the greedy algorithm 
providing the best number of RNs to effectively start the optimization process. In Table 6, the 

performance of the hybridized PSO is presented for different numbers of RNs less than the 

greedy algorithm’s output by 40-10% (represented as x). It can be seen that the performance 
improved as the number of RNs came closer to the greedy value. For example, when taking only 

60% of the number of RNs given by the greedy algorithm (x=0.6, RNs=32), the PSO was unable 

to maintain the high solution quality even with the pattern search optimizer. On the other hand, 

when the optimization process stopped with 43 RNs (x=0.8), the pattern search optimizer 
concluded by covering about 87% of the sensor nodes with an energy consumption rate of about 

74%. However, by knowing the near optimal number of RNs, it concluded by covering about 

95% of the sensor nodes with an energy consumption rate of about 62% as presented in Table 4 
and 5 for Scenario INS2. In the former case, if we add more RNs by a separate optimization 

algorithm to have all the sensor nodes covered, it is very unlikely that the resulting energy 

consumption is so little to make averaged energy consumption comparable with the latter case. 
This provides a good indication of the significance of our greedy algorithm in enhancing the 

optimization process with critical information regarding the near-optimal number of RNs at the 

initial stage. 

 
Table 6.  Results of the PS-Hybridized PSO for INS2 with Different Numbers of RNs. 

 

X RNs 
Network Coverage 

Rate 

Energy Consumption 

Rate 

Number of 

Iterations 

0.6 38 82 76.62 112 

0.7 43 87.02 73.72 118 

0.8 48 92.05 70.74 112 

0.9 53 95.8 62.13 114 

1 32 74.12 80.21 109 

 

Moreover, we studied the impact of the complexity of the scenario on the performance of the 

greedy-based PSO compared to the classical PSO. As presented in Table 7, different scenarios of 
varying levels of network density (ranging from 500-50 sensor nodes) were considered for the 

large-scale scenario of INS4. For each case, a different number of RNs proportional to the 

number of sensor nodes was considered by the algorithms. 

 
The results presented in Table 7 shows that the lower the network density the higher the 

improvements provided by the greedy-based PSO for network coverage and energy consumption. 

Comparing the results for the scenario INS4 with 500 and 50 sensor nodes, such improvements 
increased by more than 52 and 16 percentage points, respectively. Noticeably, the greedy-based 

PSO performed relatively better as the scenario became more complex whereas the classical PSO 

failed to maintain satisfactory performance in cases of lower density levels. 
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Table 7.  Impact of the Problem Complexity on the performance of the  

greedy-based PSO Considering INS4. 

 

N
o

. 
o

f 
S

en
so

r 
N

o
d

es
 

RNs 

Network Coverage 

Rate 

Energy Consumption 

Rate 
No. of Iterations 

C
la

ss
ic

a
l-

P
S

O
 

G
re

ed
y

-P
S

O
 

Im
p

ro
v

em
en

t 

C
la

ss
ic

a
l-

P
S

O
 

G
re

ed
y

-P
S

O
 

Im
p

ro
v

em
en

t 

C
la

ss
ic

a
l-

P
S

O
 

G
re

ed
y

-P
S

O
 

Im
p

ro
v

em
en

t 

500 121 74.43 87.28 17.26% 76.99 72.18 6.25% 132 115 12.88% 

400 105 70.06 87.51 24.91% 79.03 72.07 8.81% 122 108 11.48% 

300 93 68.47 86.73 26.67% 80.42 73 9.23% 134 104 22.39% 

200 77 67.35 89.35 32.67% 81.07 70.87 12.58% 112 89 20.54% 

100 52 65.1 91.9 41.17% 82.08 67.73 17.48% 105 94 10.48% 

50 30 52.3 89 70.17% 88.06 67.76 23.05% 84 72 14.26% 

 

It can also be seen that the performance variation experienced by the classical PSO across the 

different cases was relatively very high. Considering the scenarios with 500 and 50 sensor nodes, 
the network coverage rate decreased by almost 30% and the energy consumption rate increased 

by about 14%. On the other hand, the greedy-based PSO was able to maintain its high 

performance with very low performance variation across the different scenarios, despite their 
complexity levels. 

 

In all the experiments, we configured the algorithms to terminate once the relative changes of 
objective values for a fixed number of iterations do not exceed a predefined small value. We 

expect that the PSO should find out the positions of the RNs before it terminates.  In this 

experiment, we found that the classical PSO does not demonstrate the ability to explore the 

search space for finding the suitable places for RNs to cover a significant percentage of the 
sensor nodes before reaching the terminating condition. Whereas, the greedy-based PSO 

demonstrates a better performance and the difference in their iteration numbers was not 

significant. That means that the classical PSO reached the terminating condition without 
exploring the search space well enough. For example, in the scenario with 50 sensor nodes in the 

1000*1000 search space, it was only able to cover about 52% of the sensor nodes by 84 iterations 

before reaching the terminating condition as can be seen in Table 7. For the greedy-based PSO to 
cover 89% of the sensor nodes, however, it required 14% less iterations before reaching the 

terminating condition. 

 

7. CONCLUSION 
 
The RNP problem considering unconstrained RNs deployment into a pre-established stationary 

WSN was addressed in this paper based on a novel integration of the PSO algorithm and a greedy 

technique. The proposed integration enables effective initiation of the optimization process with 
significant information allowing better guidance of the PSO algorithm during its convergence. As 

the evaluation results demonstrated, such a critical contribution of the greedy strategy played a 

significant role in enhancing the overall performance of the PSO algorithm even when hybridized 
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with other optimizers. In addition, the proposed integration provided a simple approach to 
improve solution quality and time efficiency without the need for introducing additional 

optimization stages. As the search spaces became larger and the setups got more complex, the 

proposed greedy-based PSO maintained its performance with relatively high network coverage 

and low energy consumption in addition to enabling cost-effective deployment. In our future 
work, the focus will be on addressing other variants of the RNP problem. Other aspects such as k-

connectivity establishment, multihop WSN topologies, 3D search spaces, constrained 

deployment, and heterogeneous setups will be considered. 
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