
International Journal of Computer Networks & Communications (IJCNC) Vol.13, No.3, May 2021 

DOI: 10.5121/ijcnc.2021.13302                                                                                                                     15 

 
EVOLUTIONARY COMPUTING BASED  
NEURON -COMPUTATIONAL MODEL  
FOR MICROSTRIP PATCH ANTENNA  

DESIGN OPTIMIZATION 
 

Rohini Saxena, Mukesh Kumar and Shadman Aslam  
 

Department of Electronics and communication, University of Allahabad, U.P., India 

 

ABSTRACT 
 

In this paper, a novel Evolutionary Computing named Adaptive Genetic Algorithm (AGA) based ANN 

model is developed for rectangular MPA (Microstrip patch antenna). Considering at-hand and Next-

generation Ultra wideband application demands, the emphasis has been made on retaining optimal low-

cost design with desired cut-off frequency. The proposed method employs multiple sets of theoretically-

driven training instances or patch antenna design parameters which have been processed for 
normalization and sub-sampling to achieve a justifiable and reliable sample size for further design 

parameter prediction. Procedurally, the input design parameters were processed for normalization 

followed by sub-sampling to give rise to a sufficient set of inputs to perform knowledge-driven (design-

parameter) prediction. Considering limitations of the major at-hand machine learning methods which often 

undergo local minima and convergence while training, we designed a state-of-art new Adaptive Genetic 

Algorithm based neuro-computing model (AGA-ANN), which helped to predict the set of optimal design 

parameters for rectangular microstrip patch antenna. The predicted patch antenna length and width values 

were later used for verification which achieved the expected frequency. The depth analysis revealed that a 

rectangular patch antenna with width 14.78 mm, length 11.08mm, feed-line 50 Ω can achieve the cut-off 

frequency of 8.273 GHz, which can be of great significance for numerous UWB applications. 
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1. INTRODUCTION 
 
The exponential rise in technologies has broadened the horizon for both socio-scientific as well 

as industry stakeholders to achieve more efficient solutions to meet contemporary demands. 

Amongst the major innovations, communication systems, and allied antenna technologies have 
also been the broad region for researchers, where with an increase in demands and operating 

complexities the solution requires better design and performance. Considering antenna 

technologies which play an inevitable role in wireless applications, numerous design or models 

have been proposed [1]. Microstrip Patch Antenna (MPA) is one of the most sought innovations 
towards wireless applications or transmission systems. Light weight nature, cost-efficient, and 

ease-of-integration with electronic components make MPA a well-sought antenna model [1-4]. 

On the other hand, ease-of-fabrication with low-cost substrate materials makes it a popular and 
significant antenna solution for numerous applications [2][3]. Furthermore, MPA exists in both 

planers as well as a non-planer surface that enables it to be used in numerous applications 

including radiofrequency and satellite, defense communication devices, remote sensing, Radars, 
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and commercially used Radio Frequency Identification (RFID) [3][4]. Structurally, initially, 
MPA was developed for wireless communication with two radiating patch elements, one in 

rectangular shape while the other as a triangular patch. These two patch elements were interfaced 

using a distinct patch, also called element step sized. To operate for targeting communication, the 

far-field radiation characteristics of the antenna can be varied by selecting optimal shapes and 
sizes. It broadens the scope for further optimization; however getting an optimal MPA design 

solution by considering multiple dependent factors such as resonant frequency, material, length, 

height remains a challenging task [5][6][32]. 
 

In recent years, the miniaturization in electronic component design or expectation has triggered 

the scientific community to design MPA with low size while retaining high-frequency 
applications such as Ultra-Wideband (UWB) applications [6]. However, improper or random 

size-reduction might lead the shift in the resonant frequency and bandwidth that consequently can 

impact the overall performance of the UWB systems [7]. Therefore, MPA design and allied 

optimization are must to meet contemporary demands (low size and high frequency) [6][7]. In 
general, there are two different types of approaches applied for MPA design optimization, Cavity 

method and Full wave method, which are also called analytical and numerical methods, 

respectively [8]. Typically, the cavity method, also called the analytical method performs better, 
especially in terms of analysis [8]. However, both analytical, as well as numerical, have low 

controllability over operating frequency and bandwidth, which is unfortunately a must in major 

UWB applications. Factually, it happens due to random (patch) size reduction and hence shifts in 
operating frequency towards higher size. It also reduced bandwidth and hence can’t be suitable 

for UWB application demands. On contrary, the majority of the classical MPA designs suffer 

from low bandwidth and reduced gain that confines its suitability for UWB applications [1][8-

10]. Alleviating such issues can be potentially accomplished by designing MPA with optimal 
substrate thickness, dielectric constants, suitable feeding method, and dimensional values (i.e., 

patch height and width) [7]. Considering MPA design optimization motive numerous researches 

have been done; however maintaining an optimal balance between miniaturization and cut-off 
frequency and bandwidth has remained the challenge, especially for the different UWB 

applications [7]. Undeniably researches have to lead up to terahertz frequency performance with 

rectangular MPA; however, their low range confined its suitability for contemporary wireless 

applications. Noticeably, an optimal solution can be achieved only by considering all design 
variables together by maintaining an optimal balance between frequency, bandwidth as well as 

size [7][11][32]. 

 
In the last few years, machine learning methods have been applied extensively towards 

optimization problem, With this motivation, recently authors [12-29] applied Artificial Neural 

Network (ANN) were made to enhance bandwidth using machine learning methods to obtain 
optimal patch antenna design with high resonant frequency [18][22][25]. These efforts were 

made on designing a suitable antenna for circular polarization and annular disk structure. 

Similarly, a circularly polarized antenna was designed for GPS communication in [30]. However, 

size and frequency remained an unexplored region for further optimization. ANN is one of the 
most robust and efficient learning methods can undeniably is suitable to learn over the different 

design parameters of the MPA and achieve a suitable design solution [12-29]. However, training 

over a large non-linear data often confines the efficacy of ANN to yield an optimal solution. 
Local minima and convergence are the key challenges that confine ANN to give optimal 

solutions. On the other hand, considering multiple design parameters of MPA for optimal design 

while maintaining high cut-off frequency and bandwidth is a non-convex problem, this has not 
yet deal with. Considering major limitations of the existing classical approaches, in this paper, a 

highly robust Evolutionary Computing (EC) assisted ANN model is developed for MPA design 

optimization to suit UWB application purposes [31][32].  
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Hypothesizing the fact that the optimization of a patch antenna design parameters can enable 
optimal antenna performance for the desired cut-off frequency with higher coverage, in this paper 

the key emphasis is made on optimizing the design parameter(s) of the microstrip patch antenna. 

More specifically, this research paper focuses on optimizing the length, width, and other design 

constraints of the rectangular patch antenna to achieve desired cut-off frequency for UWB 
applications. Unlike the majority of the classical knowledge-driven and machine learning-based 

approaches, we focused on enhancing both the data model as well as the computing environment 

so that the proposed model can deliver optimal design parameters with higher reliability 
(hypothesizing higher accuracy with minimum error performance). To achieve it, at first design 

parameter optimization, also called synthesis was performed where inputting substrate height, 

dielectric coefficients, and cut-off frequency, our proposed AGA-ANN model predicted the 
optimal values of strip length and width. To assess whether the retrieved length and width values 

can deliver expected cut-off frequency, we performed verification where the estimated patch 

length, width, dielectric constants were applied as an input of AGA-ANN to estimate possible 

cut-off-frequency. To assess the efficacy of AGA-ANN-based patch antenna design estimation, 
other different neuro-computing models (i.e., ANN-Levenberg Marquardt, ANN-Radial Basis 

Function, ANN-Gradient Descent) were developed and corresponding performances were 

examined. Amongst the different neuro-computing models, the proposed AGA-ANN was found 
more accurate with negligible error performance, which affirms its robustness to yield accurate 

and optimal design parameters. The proposed work identified patch antenna’s width as 14.78 

mm, length as 11.08mm, and feed-line of 50 Ω which could achieve the cut-off frequency of 

8.273 GHz, which can be vital for many UWB applications.  
 

The remaining sections of this manuscript are divided as follows. Section 2 discusses the related 

work, which is followed by the discussion of the research questions and problem formulation in 
Section 3. Section 4 presents the overall system implementation and algorithmic discussion. 

Section 5 presents the overall simulation results, while the overall research conclusion and 

inferences are discussed in Section 6. References used in this manuscript are presented at the end 
of the manuscript. 

 

2. RELATED WORK 
 

Considering the significance of MPA for contemporary up-surging UWB applications, numerous 
researches have been done, though a major fraction of efforts focuses on enhancing materials 

selection, design (shape or size) enhancement to achieve desired frequency, miniaturized design, 

and higher bandwidth. However, a significant effort also states that material directive constants 
being a fixed-range value, dimensional optimization can be of utmost significance. In other 

words, the authors have recommended applying machine learning methods to obtain a suitable set 

of design parameters for MPA to be used in UWB applications. The following section briefs a 

few recently made efforts towards optimizing MPA for UWB applications.   
 

As stated above, numerous efforts have been made to assess MPA in the different shapes to gain 

respective better performance. In this relation, Chakradhar et al [33] developed a compact 
dumbbell shape MPA for UWB application to be applied over the range of 3.1GHz-10.6GHz 

bandwidth. The authors primarily focused on achieving suitable values for size, planar profile, 

required impedance, bandwidth, and radiation pattern to achieve an intended goal. Mishra et al 
[34] developed a miniaturized W-slot MPA for UWB application; however they focused on 

applications as short-distance narrow-band communication. Authors could achieve a resonant 

frequency of 4.4 GHz with a return loss of 36 dB by retaining a VSWR of less than 2. It can be 

well suited for wireless USB, a short distance communication environment. Similarly, in [35], 
Khan et al developed U-shaped reconfigurable dielectric resonator antennas for 5G applications. 

The authors stated that their proposed model with permittivity of 10.2, Microstrip feed line of 50 
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Ω and 0.035 mm height can achieve above-stated performance. Also, to enhance return loss and 
bandwidth authors suggested stacking the dielectric resonator antenna at the back of the patch 

that in conjunction with a switch model can work for different frequencies. Slotted MPA was 

developed by Roy et al [36], where authors applied designed slotted MPA to achieve higher 

bandwidth to be used in C-band applications. However, the authors planned to achieve the above 
stated goal by applying a suitable dielectric constant (ε = 2.4) and substrate thickness (3.17 mm). 

ANN-based design simulation yields enhanced bandwidth of 5.88 GHz to 8.28 GHz. In [37], 

Motevasselian et al designed circular MPA using a semi-circle Arc projection mechanism. Here, 
the prime motive was to assess the efficacy of cuboid ridge to reduce the size of the MPA. Hasan 

et al [38] designed an F -Band Differential MPA to be used for radar application. Additionally, 

they designed a waveguide model to be applied for the operating environment 7 GHz with a 
maximum gain of 12.98 dBi at 122 GHz. Radavaram et al [39] designed reconfigurable MPA 

with dual inverted U-slots that in conjunction with two coaxial probes along the patch’s resonant 

length to achieve a frequency range of 1.98-4 GHz. Noticeably authors applied coaxial probes to 

fed current to introduce phase shift. Similarly, Zhang et al [40] developed a Compact Microstrip-
Fed Patch Antenna which was armored with harmonic suppression ability using a radiating patch 

and non-radiating λ/4 resonators. This method also avoided the need for thick substrate and hence 

was found size efficient. This prototype antenna could operate for 4.9 GHz. A similar effort was 
made by Zang et al [41]; however, as different authors applied dipole antenna, U-shaped patch, 

slender stub, and parasitic patch, which eventually yielded fractional bandwidth of 3.43-5.3 GHz. 

A dual-band slim MPA was designed by Jafargholi et al [42] were to design MPA authors 
applied patch and shorting, centered, and offset pins with the overall size of 30 × 50 mm 2. It 

resulted in better antenna matching while providing efficient radiation performance. It achieved a 

higher frequency band (3570 MHz). Liu et al [43] designed a Circular patch antenna with high 

gain and low cross-polarization. The authors achieved an impedance bandwidth of 4.25-6.15 GHz 
at the central frequency of 5.20 GHz. A similar effort was made by He et al [44] who designed 

dual linearly polarized MPA using a Slot-Loaded cross-shaped patch that enabled orthogonally 

polarized radiating element functional in TM50 mode. The authors suggested the scope of their 
model to be used for the 5G network. Unlike above-stated approach, Asaadi et al [45] designed a 

Square Dense Dielectric Patch Antenna using a Holey superstrate that yielded an impedance 

bandwidth of 30.8 GHz. In [46] Gao et al designed low-size dual-band stacked MPA for WLAN 

and inter-vehicle Communications. The stacked structure enabled dual-band ability and achieved 
impedance bandwidths from 2.24 to 2.53 GHz in the low band while 5.42 to 5.98 GHz in the high 

band. Chen et al [47] developed a polarization-reconfigurable high-gain MPA comprising a ring 

radiation patch, two switches, and six nonmetallic columns, whereby controlling the PIN 
switches the antenna was operated in three distinct polarized states; linear polarization (LP), one 

state for left-hand circular polarization (LHCP), and one state for right-hand circular polarization 

(RHCP). However, the authors could not address design and dimensional optimization objectives.  
 

Considering the above discusses key literature it can be found that the majority of these models 

primarily focus on either structural design enhancement by shape, supplementary feed-line, or 

circuit enhancement. Also, in the last few years, a few types of researches have been done by 
applying machine learning methods to predict optimal or sub-optimal shape, size, or dimensional 

characteristics. Khan et al [48] applied the ANN algorithm to predict slot-size and inserted air-

gap to enhance MPA performance. Also, the authors applied Roger's substrate to achieve better 
bandwidth performance. The neuro-spectral method was applied in [49] Mishra et al obtained a 

suitable combination of a continuous function and delta functions to derive the spectral domain 

Green's functions, which yield eventual parameters for MPA design. Kaur et al [50] applied ANN 
to obtain dimensions of the rectangular MPA. More specifically, the authors applied the 

Levenberg-Marquardt ANN model; though they merely focused on assessing ANN efficacy by 

matching observed or learned output with the theoretical estimation. Neeb has et al [51] too 

applied ANN for MPA design to be used in radar applications. In addition to the ANN model, the 
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authors recommended using Particle Swarm Optimization (PSO) for better design estimation. 
They found their antenna model suitable for 5 GHz applications. Similarly, Singh et al [52] 

developed ANN-based rectangular MPA parameter estimator where different ANN variants such 

as Feed Forward Back Propagation Algorithm (FFBPN), Resilient Back-propagation (RPROP), 

Levenberg-Marquardt (LM), and Radial Basis functions (RBF) were applied distinctly to obtain 
the resonant frequency of rectangular MPA. Similarly, in [53], Singh et al assessed different 

ANN for MPA parameter estimation, especially for a coaxial fed 2.4 GHz E-shaped MPA to be 

used in IEEE 802.11b application environment which demands a frequency band of 2.38GHz ~ 

2.455 GHz. Noticeably, authors focused on optimizing Resonant Frequency (𝑓𝑟) Return Loss 

(S11 parameter), VSWR (dB), and Input Impedance (𝑅𝑖𝑛Ω) by inputting two input parameters, x-

coordinate, and y- coordinate of the probe feed point. Similar work was done by Nayak et al [54] 

who applied ANN for MPA design estimation. The authors recommended a rectangular patch 
configuration with metal mounted over a large metal ground plane to achieve better resonant 

frequency. In [55], Deshmukh et al applied ANN for optimal parameter estimation of the 

suspended equilateral triangular MPAs. Their proposed antenna model was tested over the 
frequency band of 700 to 6000 MHz while varying the substrate thickness in the range of 0.02 to 

0.1λ. However, the eventual outcome revealed that it could work suitably with a higher thickness 

substrate. Jain et al [56] too focused on stacked patch antenna design optimization; however 
unlike conventional ANN models, authors applied ANN and PSO that eventually yield dual-band 

stacked patch antenna working within 2 GHz to 6 GHz bandwidth. Chiou et al [57] applied ANN 

to optimize the design of the Substrate Integrate Waveguides (SIW) patch antenna for Ku band 

applications. The authors found their model operating over the Ku microwave band (12-18 GHz) 
and resonate at 16.10 GHz. In [58], Verma et al designed slot-loaded proximity coupled MPA 

using knowledge-based ANN, which was found operating from 1 to 6 GHz frequency ranges. 

Considering high-frequency demands and allied UWB applications, Yoo et al. [59] proposed a 
dual coupled feeding structure-based patch antenna design for 79 GHz automotive radar 

applications. Similarly, Bondarik et al. [60] designed a gridded parasitic patch stacked microstrip 

array antenna design for the 60 GHz band. Sun et al. [61] applied for 5.5 GHz applications. 
However, these approaches could not address the possibility of harmonics at a higher frequency, 

which as a result could reduce signal quality over transmission [62][70]. To alleviate this problem 

Liu et al. [62] proposed an Omni-directional patch antenna design, which was found more 

effective towards harmonics suppression at higher frequency applications. However, major 
efforts merely focus on higher bandwidth enhancement, rather than the quality of signal 

construction over the application environment [63]. Though, a few recent works, such as Xu et al. 

[64] made effort to inculcate low-profile patch array antenna with corporate stacked microstrip 
and substrate integrated waveguide feeding structure to retain higher bandwidth with better 

harmonics conditions. Khan et al. [65] focused on a patch antenna design for channel monitoring 

purposes, where in addition to the bandwidth, the signal quality assessment accuracy too was 

equally important. Shenet al. [66] suggested miniaturized patch antenna design to cope up with 
major at hand 5G communication demands. Islam et al [67] though worked for low UWB 

frequency patch antenna design; however, it focused on retaining IoT-specific band-performance. 

A similar effort was made by Chemkha et al. in [68]. An interesting effort was made by Hamid et 
al. [69] who designed a low-cost, miniaturized patch antenna design with resilience towards 

defected ground effects. However, it could be effective merely for 900 MHz band applications. 

The author's fabricated an S-formed RMPA utilizing multilayer perceptron (MLP)- ANN for S-
band application considering different boundaries like frequency, efficiency, gain, and directivity 

in [70]. Siddiqui et al. [71] estimated design parameters for Ellipsoidal fractal MSA through 

ANN. The calculations of transmission capability of the MSA by utilizing MLP and RBF-ANN 

based algorithm is proposed in [72].Undeniably, a large number of researches have been done 
towards patch antenna design; however, very few researches address optimality of design 

parameter and its optimization. A matter of fact is, the optimality of a patch antenna design 

primarily depends on the design parameters. The above-discussed survey indicates that the design 
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optimization of a patch antenna is a fundamental need that in sync with an optimal topological 
and structural design can enable an optimal antenna solution for major UWB applications. 

 

3. RESEARCH QUESTIONS 
 

 The overall research intends to find out the optimal answers for the following: 
 

RQ1: Can the strategic implementation of multi-parametric synthesis and verification yield a 

justifiable MPA design solution? 
RQ2: Can the use of Evolutionary Computing or heuristic model be effective to enhance ANN 

for better MPA design solutions? 

RQ3: Can the sub-functional components such as Data Normalization, sampling, etc be effective 

to achieve an optimal MPA design solution under limited and unbalanced/non-linear 
training data? 

 

In sync with above-presented research question, considering the significance of a novel and 
robust MPA design for UWB applications, in this paper the predominant emphasis has been made 

on optimizing the structural parameters to gain desired resonant frequency, cut-off frequency, and 

bandwidth. Our proposed model can be stated as a knowledge-based approach where ANN has 
been trained over the different rectangular MPA design parameters, which eventually yields the 

optimal set of design variables to achieve the above stated objectives. However, unlike 

conventional ANN learning methods, which often undergo local minima and convergence during 

training or learning in this paper a highly robust and efficient evolutionary computing model 
named Adaptive Genetic Algorithm, has been developed for ANN learning optimization. Such 

heuristic-based ANN model not only avoids saturation problems or local-minima and 

convergence but also yields the optimal set of rectangular MPA design parameters to get better 
performance. Additionally, different sub-functional enhancements have been incorporated such 

as input –normalization that makes the learning environment resilient to any pre-mature 

saturation or convergence. It enabled optimized design parameter estimation. Once designing the 
AGA-ANN learning model, it has been applied to perform a dual-phase implementation. 

 

 MPA Synthesis, and  

 MPA Design Verification. 

 

In the MPA synthesis model, the key parameters encompassing the cut-off frequencies (lower 

and upper frequencies, f1 and f2, respectively), thickness, and dielectric constants of the dielectric 

material have been fed as input that eventually yields the patch dimensions (i.e., Width and 

Length) as depicted in Figure 1. As shown in Figure 1, we feed the height of the substrate, cut-off 
frequency, and dielectric constants as input to be trained by our proposed AGA-ANN model, 

which yields the width and height of the patch antenna (Figure 4). This process is called 

synthesis. Once estimating the patch’s length and width values, we feed these values to the AGA-

ANN for verification, whether it delivers desired cut-off frequency. As depicted in Figure 2, the 
proposed AGA-ANN learning model generates the best possible cut-off frequency by the selected 

patch antenna design parameters. This process is called verification. Considering the overall 

process of the aforesaid design parameter estimation problem, the key role is being played by the 
machine learning model (here, AGA-ANN), and therefore we focus on enhancing the neuro-

computing environment with a metaheuristic algorithm named AGA, which strengthens ANN to 

deliver an optimal set of design parameters without undergoing computational adversaries like 
local minima and convergence. This approach intends to achieve optimal design estimation 

accuracy with higher reliability. The use of adaptive genetic parameters (i.e., crossover and 

mutation probability) strengthens AGA-ANN to have low search space and better computational 
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efficiency to yield optimal design parameters. Thus, the use of AGA-ANN intends to perform 
optimal learning over the design parameters (while avoiding NP-hard issues) to yield an optimal 

set of patch dimensions to have desired resonant frequency and allied MPA performance. 

 

 
 

Figure1. MPA synthesis and patch   Figure 2. Cut-off frequency verification 

dimensions estimation   with obtained patch dimensions 
 

Unlike classical approaches were to verify the obtained results for better antenna performance 
theoretical models were applied, in this research we have applied the AGA-ANN learning 

method. In our proposed method, inputting the obtained optimal set of patch dimensions along 

with the dielectric constants we obtain the desired cut-off frequency, signifying the performance 
of the proposed MPA model. Additionally, to assess the efficacy of the proposed model, the 

results are examined in terms of statistical performance measures like accuracy, error profile, etc. 

A detailed discussion of the overall proposed model is given in the subsequent sections. 
 

4. PROPOSED SYSTEM 
 

This section primarily discusses the overall proposed system for the rectangular MPA design 

optimization. The overall research model encompasses two key phases, MPA synthesis, and z 
MPA verification; however, to enable optimal computation in this process different procedural 

enhancements have been done. Considering the overall implementation paradigm, we define this 

research as following sequential phases. 
 

 Rectangular MPA Parameter Definition 

 MPA Data Generation  

 Data Normalization  

 MPA Synthesis  

o ANNs Based MPA dimensional parameter estimation (i.e., L and W estimation) 

o AGA-ANN based MPA dimensional parameter estimation  

 MPA Design verification (for cut-off frequency or resonant frequency). 

o ANNs Based MPA Design verification. 
o AGA-ANN based MPA Design verification. 

 

4.1. Rectangular MPA: The Parameter Definition  

 

Considering the parametric definition and estimation for the rectangular MPA model before 

discussing the proposed model and its implementation, it can be vital to understand a snippet of 
the design considered and the allied mathematical model involved. With this motive, a brief of 

the rectangular MPA design and allied parametric definition is given in the subsequent sections. 

As stated, we intend to obtain optimized design parameters for rectangular MPA. Here, we have 

considered the substrate dielectric constants in the range of 2.3 to 12; however, we hypothesize 
the dielectric substrate to be thicker. Additionally, the dielectric constant is considered to be less 

to achieve wide bandwidth and efficiency. An illustration of the considered rectangular MPA 



International Journal of Computer Networks & Communications (IJCNC) Vol.13, No.3, May 2021 

22 

design is given in Figure 3. Established on a simplified formulation for the rectangular MPA 
model has been described [4]. 

 

 
 

Figure 3. Rectangular MPA model 

 

The width (w) for the effective radiator and its respective dielectric constant (εeff) have been 

obtained using equation (1) and (2), where  C is the velocity of the light. 
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The length of the patch L is obtained using equation (3-4) and effective length can be obtain 

through using equation (5). 

 

𝐿 = 𝐿𝑒𝑓𝑓 − 2∆𝐿 (3) 

𝐿 =
1

2𝑓𝑟√𝜀𝑒𝑓𝑓√𝜇0𝜀𝑟
− 2∆𝐿 

(4) 

𝐿𝑒𝑓𝑓 =
𝐶

2𝑓0√𝜀𝑒𝑓𝑓
 

(5) 

 

Noticeably, in equation (4), the parameter ∆L signifies the increase in the electric length, which is 

usually caused due to the fringing nature of patch. Mathematically, ∆L is obtained using equation 

(6). 

 

∆𝐿 = 0.412ℎ (
(𝜀𝑒𝑓𝑓 + 0.3) (

𝑤

ℎ
+ 0.264)

(𝜀𝑒𝑓𝑓 − 0.258) (
𝑤

ℎ
+ 0.813)

) 

 
(6) 

4.2. MPA Data Generation  

 
Being a knowledge-driven model, ANN and/or AGA-ANN requires training instances or 

parameters to obtain the eventual design solution. Considering this fact, we obtained a set of 
input instances by considering the UWB application environment. Observing the UWB 
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application environment such as Wireless Local Area Network (2.4-2.48 GHz and 5.75-5.825 
GHz), Inter-vehicular communications (5.85-5.925 GHz), etc, we simulated different training 

instances with the resonant frequencies in UWB ranges. At first considering the resonant 

frequency of 4.99 GHz, with the dielectric constant of 4.4 (though it can vary in between 2.2 to 

12), the height of dielectric material was maintained at 1.6 mm. With these initial parameters the 
dimension of the patch was obtained using the above discussed mathematical equations (1- 6) for 

4.99 GHz resonant frequency, and thus the Patch Length and Width values were obtained as 

13.34 mm and 17.7 mm, respectively. Noticeably, similar to [34] and [37], we introduced a 50 Ω 
port connected to the patch using the Microstrip fed-line method. To be noted, feed signifies the 

specific point where the patch radiates the maximum. In our proposed model, we applied 

equation (7) to estimate the width of the Microstrip feed line, where 𝜀𝑒𝑓𝑓 signifies the effective 

(substrate) dielectric constant. Mathematically, 

 

𝑍0 =

(

 
 120𝛱

[√(𝜀𝑒𝑓𝑓) {
𝑤0

ℎ
+ 1.393 + 0.667𝑙𝑛 (

𝑤0

ℎ
+ 1.444)}]

)

 
 

 

(7) 

 

The above mathematical model for the aforementioned initial parameters gives 𝑤0 = 2.94mm. 

Thus, obtaining the above-stated parameter different simulations and allied assessments were 

made for the return losses and frequency. Varying the patch dimensions, different resulting 
parameters were obtained to prepare the training instances. Considering application-specific 

environment, the lower cut-off frequency (𝑓𝑙)was maintained at 4.94 GHz, while 5.95 GHz was 

maintained as the upper cut-off frequency (𝑓𝑢). Similarly, we varied the dimensional parameters 

of the patch, while retaining the other parameters as constant and vice-versa. Thus, it helped to 
obtain a few samples needed to be used for MPA synthesis using ANN and further enhanced 

AGA-ANN models. 

 

4.3. Data Normalization 

 

Observing the input data nature the width and length are in millimeter (mm), while frequency 

ranges are in GHz. Similarly, the dielectric constant values are in tens. Such non-linearity and 
imbalance nature of data can force any machine learning model including ANN to undergo 

saturation and/or local minima and convergence. Interestingly, many researchers have been done 

for MPA parameter estimation or antenna design optimization; however, no significant effort is 
made to address such parametric nonlinearity or imbalance issues. Considering this fact, in this 

research paper, we have applied the “Data Normalization” concept over the obtained input 

training samples for MPA design optimization. This approach maps overall input data in the 
range of [0, 1] and hence avoids any probability of premature convergence or saturation. In our 

proposed model, we applied the Min-Max Normalization algorithm that maps or normalizes input 

data such as frequency, length, width, and dielectric constant in the range of [0,1]. Here, each 

data element xi of the MPA design parameter X is mapped to the allied normalized value xi
′ in the 

range of [0, 1] using equation (8). 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥𝑖) = 𝑥𝑖
′ =

𝑥𝑖 −𝑚𝑖𝑛 (𝑋)

𝑚𝑎𝑥(𝑋) −  𝑚𝑖𝑛 (𝑋)
 

(8) 

Where, component min(X) and max(X) signifies the minimum and maximum values of X 
correspondingly. 
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4.4. MPA Synthesis  

 

Once normalizing the input design parameters, it was fed as input to the ANN models, followed 

by the AGA-ANN algorithm. The detailed discussion of the proposed ANN variants including 

GD-ANN, ANN-RBF, ANN-LM, and eventually our proposed AGA-ANN model is given in the 
subsequent sections. 

 

4.4.1. ANN Design for MPA Synthesis  

 

Amongst the major machine learning models for data analysis and complex problem-solving 

tasks, ANN has emerged as a dominating solution. ANN mimics the behavior of the human brain, 
where it learns over the existing patterns to classify further unknown entities or variables. The 

suitability of ANN has made it a common machine learning model to be used in major Artificial 

Intelligence (AI) computations. Functionally, ANN comprises multiple neurons carrying input 

data or signals to be processed at the different hierarchies including the input layer, hidden layer 
and delivers the outcome at the output layer. Noticeably, ANN implements an error reduction 

principle to perform learning over the input data, where it estimated the difference between the 

expected value and the observed value, commonly called error. ANN intends to reduce this error 
iteratively to achieve minimum or zero error and thus classifies data into the most relevant class 

or classes. However, in this process obtaining optimal classification or in other, words error 

reduction requires suitable learning methods to achieve objective function (i.e., zero error) 
without forcing the algorithm to undergo saturation or convergence. To achieve it, ANN has 

undergone numerous evolutions including SD-ANN, GD-ANN, GDX-ANN, ANN-BP, ANN-

RBF, ANN-LM, and many more. Even in the last few years heuristic based ANNs have been 

proposed to handle large-scale data which might require swift learning and high accuracy. 
Enhancements have been made especially to enhance overall learning and weight estimation 

activities. As depicted in Figure 4, the prime efforts have been made on optimizing the values of 

weights (W and Wk). Some of the key variants of ANN are, Steepest Descent ANN (SD-ANN), 
Gauss-Newton-ANN (GN-ANN), Gradient Descent ANN (GD-ANN), Levenberg-Marquardt 

ANN (LM-ANN), Radial Basis Function ANN (RBF-ANN), etc, which primarily differ in terms 

of the manner it learns and updates its learning weights to achieve optimal performance. 

However, amongst these approaches, GD-ANN, LM-ANN, ANN-GDX (also called adaptive 
learning-based ANN) and RBF-ANN have been explored extensively due to their ability to 

process a large set of input data in low computational time. Considering it as motivation, in 

addition to the proposed AGA-ANN model, we have applied different ANN variants to perform 
MPA synthesis, where we feed different cut-off frequency parameters, dielectric constant, and 

height of the dielectric material as input to obtain the optimal (corresponding) values of the 

patch’s width and length. 
 

 
 

Figure 4. ANN based MPA synthesis 
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As depicted in Figure 4 a conventional ANN model encompasses three layers, input layer, hidden 
layer, and output layer. In our proposed MPA design optimization model, dielectric constants, 

frequency, and height of the substrate are fed as input to the input layer (Figure 4). Precisely 

stating, in our proposed ANN models, three inputs were feed as input-neurons. Here, we have 

applied a linear activation function at the input layer that enables output of the input layer equal 

to the input of the input layer (i.e.,Oo = Ii). Similarly, at the hidden layer sigmoid function has 

been applied that results𝑂ℎ. Here, for MPA synthesis we assigned two output neurons, as we 

intend to obtain W and L parameters as a learning result. Noticeably, with the input of the hidden 

layer ( Ih), we obtained the output Ohusing the sigmoid function equation (9). 

 

𝑂ℎ =
1

1 + 𝑒−𝐼ℎ
 

(9) 

 

Thus, the final result obtained after ANN learning is the value of  Oo =
1

1+e−Oi
. Typically, the 

ANN model is expressed as a function Y′ = f(W, X) where Y′ states the resultant vector, while 

Wand X signify the weight value and the input vector, correspondingly. To achieve the optimal 

value of the Weight and Length of the patch, the ANNs intend to reduce an error value 

iteratively. Here, we applied Mean Square Error (MSE) as the error function to obtain the optimal 

design parameters or equation (10). In equation (10), y states the observed value, while yi
′ 

signifies the expected result at an iteration. Also, we assigned learning rate for  

 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖

′ − 𝑦𝑖)
2

𝑛

𝑖=1

 
 

(10) 

 

ANNs (excluding AGA-ANN) as 0.01, while the error or stopping condition was fixed as 0.001. 
It means the ANN would keep on iterating till achieving the error of 0.001. As depicted in the 

above equation, ANN intends to learn over the input four parameters of patch antenna; however, 

learning while reducing error plays a significant role in the overall accuracy and reliability of the 

learning model. Different ANN variants can have distinct performance. Considering this fact, in 
this paper we have applied different ANN variants and their respective performance is examined. 

A brief of the different ANN algorithms applied is given in the subsequent sections. 

 

4.4.2. GD-ANN 

 

As already stated, ANN intends to reduce error function iteratively for all training sets. Let 
regression for the learning be  

 

𝑤∗ = argmin
𝑤

𝐿(𝑤) (11) 

𝐿(𝑤) =∑𝐿(𝑦𝑡, 𝑓𝑤(𝑥𝑡))

𝑁

𝑡=1

+ 𝜆𝑅(𝑤) 
(12) 

 

As depicted in equation (11), where fw(x)is non-linear in the weight vector (w), ANN-GD 

intends to achieve a local optimum for equation (11) using GD algorithm. Here, GD updates w 

iteratively by replacing wt by wt+1 using equation (13-14).  

 

wt+1 = wt − ηt∇L (13) 

wj,t+1 = wj,t − ηt
∂L

∂wj
 

(14) 
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In equation (13-14), ηt represents the learning rate that usually decreases with t.  Here, ∇L states 

the error, 
1

n
∑ (yi

′ − yi)
2n

i=1 . 

 

4.4.3. RBF-ANN 

 

Similar to the traditional ANN model, a Radial Basis Function (RBF) ANN too possesses an 

input layer, a hidden layer, and an output layer; however, the neurons in the hidden layer 

comprise Gaussian transfer functions whose results are inversely proportional to the distance 
from the center of the neuron. On the other hand, functionally, RBF-ANN is similar to the K-

Means clustering methods and Probabilistic Neural Network (PNN). The predominant difference 

is that the other models as stated (PNN) possess a single neuron for each data-point in the training 
set, while RBF-ANN contains multiple neurons but less than the number of training points. 

Undeniably, for medium-size datasets, PNN is sufficient; however, as targeted in current BigData 

analytics purpose where there is a huge dataset RBF-ANN seems a potential solution. With this 
motivation, in this paper, we have applied RBF-ANN as one of the base classifiers to estimate the 

patch dimensional parameters (i.e., W and L). Functionally, in RBF-ANN the hidden units enable 

the certain set of functions consisting of a random basis for the input patterns. Here, the hidden 

units are stated as radial centers and are signified as vector c1, c2, … , ch. In this method, the input 
variables (say, input space) are transferred into hidden space using a non-linear transformation 

approach, while the transformation from the hidden unit space to the output space is linear 

dimension of each center for an n point input network (i.e., n × 1 dimension). Here, the RBF in 
the hidden layer generates a non-zero response and each hidden unit possesses its receptive field 

in input space. For an input vector xi existing in the receptive field for center cj, activate cj by 

selecting suitable weights to achieve the intended target output. Mathematically, the target output 

is defined as equation (15) 

 

y′ = ∑ ∅jwj
h
j=1 ,    ∅j = ∅(‖x − cj‖)  (15) 

 

In equation (15), wj represents the weight of the jth center, while ∅ states radial function, Pseudo-

Inverse, or hybrid. Considering the popularity of the GD algorithm we have applied it as the 

activation function.  To achieve optimal classification, RBF-ANN requires optimal selection of 

the weight vector wj and cj, where j = 1,… , h. In this paper, we have applied GD based weight 

update method for RBF-ANN learning over the job datasets and user’s profile variable. In 

addition to the GD-ANN and RBF-ANN, we have applied the LM-ANN model as well to 
estimate the optimal dimensional parameters for patch antenna. A snippet of LM-ANN is given 

as follows: 

 

4.4.4. LM-ANN 

 

Unlike conventional GD and Steepest Descent (SD) ANN learning algorithms, Levenberg 
Marquardt ANN (LM-ANN) iteratively performs localization of the minimum value of the 

multivariate function, which is often called the Sum of Squares (SoS) of the non-linear real-

valued functions. Unlike above stated NN models, LM-ANN performs swift weight update when 

learning and thus achieves computationally as well as time-efficient. Also, LM-ANN combines 
the robustness of both SD-ANN and GD-ANN algorithms, where selecting the learning rate, 

achieves objective function swiftly. The weight-update function of LM-ANN is given by 

equation (16).  
 

Wj+1 = Wj − (Jj
TJj + μI)

−1
Jjej    (16) 
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J =

[
 
 
 
 
 
 
 

d

dW1
(E1,1)

d

dW2
(E1,1) ⋯

d

dWN
(E1,1)

d

dW1
(E1,2)

d

dW2
(E1,2) ⋯

d

dWN
(E1,2)

⋮ ⋮ ⋮ ⋮
d

dW1
(EP,M)

d

dW2
(EP,M) ⋯

d

dWN
(EP,M)]

 
 
 
 
 
 
 

 

 

 

 
(17) 

 

In equation (16), Wj signifies the current weight, while Wj+1 states the updated weight. The 

variable I presents the identity matrix, and J presents the Jacobian matrix. The parameter 

μpresents the combination coefficient where the low value of μ makes it functional as GD-ANN, 

while high value forces it to behave as SD-ANN.  Equation (17) presents the mathematical 

expression for the Jacobian matrix used. Where, N states the total weights, P presents the input 

pattern and the output pattern is shown by M. As already stated, the proposed LM-ANN model 

encompasses the efficacy of both SD-ANN as well as GD-ANN, where varying the value of μ, as 
given in equation (16), it can be operated as both SD-ANN as well as GD-ANN. A snippet of the 

overall process involved in our proposed LM-ANN model is given in Figure 5. 

 

 
 

Figure 5. Proposed LM-ANN based learning for patch antenna design parameter estimation. 

 

As depicted in Figure 5, for each output pattern 𝑚, the proposed model at first estimates the error 

value, which is subsequently processed for Jacobian estimation as given in (17). Thus, obtaining 

the Jacobian matrix, we applied equation (16) to estimate subsequent weight values to reduce the 

error 𝐸𝐾+1. Noticeably, assigning the higher value of 𝜇 enables it to function as SD-ANN, while 

a lower value of 𝜇 enables the same to behave as GD-ANN. As depicted in Figure 5, once finding 

the estimated error 𝐸𝐾+1 < 𝐸𝐾, the proposed LM-ANN model updated the learning coefficient 𝜇, 
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which is subsequently used as feedback to update the learning weight parameter. This process 

continues till the error 𝐸𝐾+1 < 𝐸𝑀𝑎𝑥. This state signifies the convergence state where it predicts 

the targeted class. Noticeably, observing the above discussion it can easily be found that 

estimation of the weight parameter is a highly iterative task and hence can force the algorithm to 

undergo local minima and convergence, which can decisively impact the accuracy and reliability 
of the design parameter estimation. This problem can be even more severe in case of increased 

search space or the number of weight parameters to be estimated, which is normal in the at-hand 

patch antenna design parameter estimation. Considering this fact, in this paper we proposed 
evolutionary computing -assisted ANN learning model. Unlike classical meta-heuristic concepts, 

in this paper, we designed adaptive genetic algorithm (AGA) based ANN (AGA-ANN). A 

detailed discussion of the proposed AGA-ANN model is given in the subsequent section. 
 

4.4.5. AGA-ANN Learning 

 

Almost all major machine learning algorithms undergo adversaries like local minima and 
convergence. On the other hand, with more number hidden neurons and huge data sets, it suffers 

premature convergence and hence exhibits false alarm. Inappropriate edge-weight estimation 

during learning is the predominant reason for local minima and convergence. Considering this 
fact, we have exploited EC algorithms to augment learning rate and allied optimal weight 

estimation. Though, numerous heuristic (EC) approaches are available for sub-optimal solution 

retrieval, such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony 

System (ACS), Cuckoo Search (CS), Artificial Immune System (AIS), Flower Pollination 
Algorithm (FPA), etc; however, their efficacy often remains confined due to convergence issues, 

higher computation time and cost. Considering this fact, in this paper unlike native EC 

algorithms, we have developed an enhanced GA model called AGA that introduces dynamic or 
adaptive parameter estimation (Crossover probability and mutation probability) and updates. 

Noticeably, in this paper AGA algorithm has been applied to enhance learning weight estimation 

of ANN classifier to estimate optimal dimensional parameters of the patch antenna. The detailed 
discussion of the proposed AGA-ANN model is given as follows: 

 

Extracting the data samples has been fed as input to the AGA-ANN that as a result predicts the 

values of the cut-off frequency. As depicted in Figure 4, the three patch antenna parameters are 
fed as input that eventually performs learning and estimates the optimal values of the patch width 

and length at the output layer. Since our proposed ANN model comprises 3 input neurons and 

hence we have considered 6 hidden neurons and 2 output neurons. In AGA-ANN linear 
activation function has been applied at the input layer that provides output equivalent to the input 

(i.e.,Oo = Ii). On the other hand, at the hidden layer sigmoid function has been implemented that 

outputs Oh. Feeding results of the input layer as the input of the hidden layer Ih, it applies the 

sigmoid function to generate output as Oh . Mathematically, Ohis calculated using (9). Observing 
the overall ANN structure as depicted in Figure 4, a total of 30 weight parameters are required to 

be updated iteratively in ANN to achieve optimal performance or error reduction. This 

mechanism with conventional weight update methods is highly complex, and therefore we have 
applied the AGA algorithm as a heuristic model to obtain the weights iteratively for better and 

efficient learning. The detailed discussion of the AGA model and eventual AGA-ANN is given as 

follows: 
 

4.4.6. Adaptive Genetic Algorithm (AGA) 

 

Genetic Algorithm (GA) being one of the most efficient and robust heuristic models exploits the 
concept of adaptive search and Darwin’s selection criteria to achieve the sub-optimal solutions. 

Principally, GA simulates the natural behavior of evolution, especially the principle of Darwinian 

natural selection. Functionally, GA is started with an initial population where it a generates 
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random population where each population signifies a unit sub-solution or candidate solution. In 
fact, these solutions are the chromosomes having a structure of binary strings where the entire 

parameters are encoded. Generating the initial population, GA estimates the fitness value for each 

chromosome that refers to certain user-defined function depicting the ability of each 

chromosome. In other words, higher fitness states a better probability of a chromosome to 
become a part of the candidate solution in the next generation to provide a more effective 

solution. Based on the estimated fitness values, children or offspring are generated using GA 

operators called crossover probability (Pc) and mutation probability (Pm). In GA-based 
optimization, the algorithm continues obtaining the best solution over the varied generations to 

achieve a set of solutions fulfilling expected criteria (here, minimum RMSE). Now, considering 

our proposed ANN structure (i.e., i – h - o) with i input neurons, h hidden neurons, and O output 
neurons, three patch antenna parameters are fed as input nodes. With this configuration (i.e., i=3, 

h=6 and O=2) the total weight component or factors required would be equation (18). 

 

𝑁 =  (𝑖 + 𝑂) ∗ ℎ (18) 

 

In AGA-ANN, we consider positive non-zero values as weight solution. Consider, l be the length 

of the gene, then the length of chromosome can be obtained as equation (19). 

𝐿𝐶ℎ𝑟𝑜𝑚 =  𝑁 ∗  𝑙 =  (𝑖 +  𝑂)  ∗ ℎ ∗  𝑙 (19) 

 

To estimate fitness value of each chromosome or population, we have derived weight values for 

each edge-graph, W k using equation (20).  Mathematically, 
 

𝑊𝑘 =

{
  
 

  
 

𝑖𝑓 0 ≤ 𝑥𝑘𝑙+1 < 5

−
𝑥𝑘𝑙+2∗10

𝑙−2 + 𝑥𝑘𝑙+3∗10
𝑙−3 +⋯+ 𝑥(𝑘+1)𝑙

10𝑙−2

𝑖𝑓 5 <= 𝑥𝑘𝑙+𝑙 <= 9

+
𝑥𝑘𝑙+2∗10

𝑙−2 + 𝑥𝑘𝑙+3∗10
𝑙−3 +⋯+ 𝑥(𝑘+1)𝑙

10𝑙−2

 

 

 

 
(20) 

 

As stated, in our proposed AGA-ANN model, we have applied MSE as the objective function to 

retrieve optimal weight solution. The following algorithm depicts the process for fitness value 
estimation for each chromosome 

 

AGA-ANN Fitness Calculation 
Input: Input patch antenna parameters𝐼�̅� = (𝐼1𝑖 , 𝐼2𝑖 , 𝐼3𝑖 , ⋯ , 𝐼𝑙𝑖) 
Output:�̅�𝑖 = (𝑇1𝑖 , 𝑇2𝑖 , 𝑇3𝑖 , ⋯ , 𝑇𝑛𝑖) 
Where I̅i, T̅i represent the input and output pairs of the i − h − o ANN 

structure. 

Step-1 :Estimate weight vector  W̅i from Ci using equation (21) 

𝑊𝑘 =

{
  
 

  
 

𝑖𝑓 0 ≤  𝑥𝑘𝑑+1 < 5

−
𝑥𝑘𝑑+2∗10

𝑑−2 + 𝑥𝑘𝑑+3∗10
𝑑−3 +⋯+ 𝑥(𝑘+1)𝑑

10𝑑−2

𝑖𝑓 5 <= 𝑥𝑘𝑑+𝑑 <= 9

+
𝑥𝑘𝑑+2∗10

𝑑−2 + 𝑥𝑘𝑑+3∗10
𝑑−3 +⋯+ 𝑥(𝑘+1)𝑑

10𝑑−2

 

Step-2 :Assuming W̅i as a fixed weight parameter, execute ANN training 

function for N input instances and calculate output Oi 
Step-3 :Calculate error Ej as the difference of expected value and current 
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estimated value for each input instance j 
𝐸𝑗 = (𝑇𝑗𝑖 − 𝑂𝑗𝑖) 

Step-4 :Calculate RMSE of each chromosome Ci using equation (22) 

𝐸𝑖 =
√
∑ 𝐸𝑗(𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑)
𝑗=𝑁
𝑗=1

𝑁
 

Where,N states the total number of training data set. 
Step-5 :Calculate the fitness value for chromosome Ci using equation (23). 

𝐹𝑖 =
1

𝐸𝑖
=

1

√
∑ 𝐸𝑗
𝑗=𝑁
𝑗=1

𝑁

 

 
Figure 6. Pseudo code for fitness estimation algorithm. 

 

 
 

Figure 7. Proposed AGA-ANN based weight estimation 

 

In classical GA algorithms typically a static stopping criterion such as the number of generations 

or iterations are used. However, such approaches often undergo local minima and convergence 
due to increased search space and allied computational overheads. Considering this fact, we 

proposed the AGA-ANN model by applying dynamic or adaptive genetic parameters (i.e., Pc 
and Pm) that avoid the issue of over-fitting or under-fitting. One of the most efficient and 

noticeable contributions of our proposed model is that unlike the traditional GA algorithm where 
the number of iterations is used as stopping criteria, AGA–ANN considers an adaptive update 

approach. It is supported by the fact that during training, there can be multiple chromosomes 

having similar fitness value that could force ANN to undergo local minima and convergence. 
Considering this fact, AGA-ANN estimates the number of chromosomes having a similar fitness 

value which is further used to update Pc and Pm dynamically by the using equation (24). 
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(𝑃𝑐)𝑘+1 = (𝑃𝑐)𝑘 −
𝐶1 ∗ 𝑁𝑁𝐶𝐹

7
 

(𝑃𝑚)𝑘+1 = (𝑃𝑚)𝑘 −
𝐶2 ∗ 𝑁𝑁𝐶𝐹 

7
 

 
(24) 

 

In equation (24), the variables (Pc)k+1 and (Pm)k+1 signify the updated crossover and mutation 

probability, while its current probability is given by (Pc)k and (Pm)k. Furthermore, we have 

considered static values for the coefficient parameters C1 and C2as 0.1 and 0.01, respectively. 

The parameter NNCF signifies the total chromosome having a similar fitness value. 

 

4.5. MPA Design verification 

 

Similar to the MPA synthesis, we have applied ANN variants to perform verification, where 
height, length, width, and substrate dielectric constants are fed as input; the output is obtained as 

the cut-off frequency. Noticeably, the predominant intend is to assess whether the obtained 

(optimal) value of the width and length achieves desired cut-off frequency or not.  

 

 
 

Figure 8. MPA Parametric Verification using ANN 

 

A snippet of the ANN model applied for verification is given in Figure 8. A detailed discussion 

of the simulated results and allied inferences is given in the subsequent sections. 

 

5. RESULTS AND DISCUSSION 
 
In this paper, the predominant emphasis was made on identifying the optimal dimensional 

parameters of the rectangular MPA antenna model, especially to be used for UWB applications. 

To achieve it, at first, a patch antenna model was designed with the parameters identified as the 

height of the dielectric substrate (h), dielectric coefficients also called dielectric constants (εr), 
initial cut-off frequency (Fr) and Width (W) and Length (L) of the patch antenna. As stated, 

being knowledge of the data-driven model, at first the training instances were obtained by 

varying input dimensional parameters while maintaining constant dielectric constants (εr) and 
height of the dielectric substrate (h). Concerning the above-stated parameters frequency values 

were obtained. Thus, inputting the respective values, the W and L dimensional parameters were 

obtained. The results obtained are given in Table 1.  
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Table 1. Input training samples 

 
h(cm) 𝛆𝐫 W(cm) L(cm) 𝐅𝐫(GHz) 

0.3175 2.330 5.770 3.800 2.310 

0.3175 2.330 4.550 3.050 2.890 

0.3175 2.330 2.950 1.950 4.240 

0.3175 2.330 1.950 1.300 5.840 

0.3175 2.330 1.300 1.100 6.800 

0.3175 2.330 1.400 0.900 7.700 

0.3175 2.330 1.200 0.800 8.270 

0.3175 2.330 1.050 0.700 9.140 

0.9525 2.330 1.700 1.100 4.730 

0.4000 2.550 0.790 1.255 7.134 

0.4500 2.550 0.987 1.450 6.000 

0.4760 2.550 1.000 1.520 5.820 

0.4760 2.550 0.814 1.440 6.380 

0.5500 2.550 0.790 1.620 5.990 

0.1570 2.330 0.720 1.860 5.060 

 
Table 2. ANN-GD based MAP Dimensional estimation 

 
h(cm) 𝛆𝐫 W(cm) L(cm) 𝐅𝐫(GHz) 

0.3175 2.330 4.984 3.811 2.907 

0.3175 2.330 4.830 3.201 2.237 

0.3175 2.330 2.266 3.142 1.643 

0.3175 2.330 1.569 1.306 4.625 

0.3175 2.330 1.620 1.087 7.067 

0.3175 2.330 1.490 1.005 7.039 

0.3175 2.330 1.256 0.792 8.090 

0.3175 2.330 1.042 0.767 1.000 

0.9525 2.330 1.812 1.119 5.631 

0.4000 2.550 0.880 1.105 7.351 

0.4500 2.550 1.002 1.400 5.943 

0.4760 2.550 1.214 1.498 5.522 

0.4760 2.550 0.911 1.390 5.583 

0.5500 2.550 0.980 1.626 4.900 

0.1570 2.330 1.920 1.799 3.550 

 
Table 3. ANN-LM based MAP Dimensional estimation 

 
h(cm) 𝛆𝐫 W(cm) L(cm) 𝐅𝐫(GHz) 

0.3175 2.330 5.071 3.861 0.002 

0.3175 2.330 5.103 3.020 0.084 

0.3175 2.330 2.300 3.195 2.819 

0.3175 2.330 2.121 1.369 5.167 

0.3175 2.330 2.002 1.200 6.572 

0.3175 2.330 1.366 1.801 8.151 

0.3175 2.330 1.261 0.811 8.061 

0.3175 2.330 1.026 0.738 7.990 

0.9525 2.330 1.610 1.171 3.544 

0.4000 2.550 0.899 1.262 6.531 

0.4500 2.550 0.992 1.502 5.412 

0.4760 2.550 1.002 1.509 5.143 

0.4760 2.550 0.841 1.439 5.963 

0.5500 2.550 0.800 1.579 5.390 

0.1570 2.330 1.712 1.850 4.025 
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Table 4. ANN-RBF based MAP Dimensional estimation 

 
h(cm) 𝛆𝐫 W(cm) L(cm) 𝐅𝐫(GHz) 

0.3175 2.330 5.689 3.799 1.8758 

0.3175 2.330 5.455 3.011 1.2942 

0.3175 2.330 2.951 3.050 0.186 

0.3175 2.330 1.950 1.296 3.3663 

0.3175 2.330 1.744 1.103 6.856 

0.3175 2.330 1.421 0.907 7.327 

0.3175 2.330 1.271 0.790 8.279 

0.3175 2.330 1.042 0.701 8.926 

0.9525 2.330 1.702 1.100 8.177 

0.4000 2.550 0.791 1.257 5.994 

0.4500 2.550 0.981 1.456 5.632 

0.4760 2.550 1.103 1.514 5.644 

0.4760 2.550 0.823 1.441 6.221 

0.5500 2.550 0.782 1.618 6.423 

0.1570 2.330 1.811 1.836 2.349 

 

The above-depicted results (Table 2-4) show the dimensional parameters obtained using different 

ANN variants such as ANN-GD, ANN-LM, and ANN-RBF. Observing overall results and 
respective inferences, it can be found that a patch antenna with 0.3175 cm height, 1.042 cm 

width, and 0.701 cm length, in conjunction with the dielectric constant of 2.330 can achieve the 

highest cut-off frequency of 8.926 GHz. 
 

Considering the key issues with the classical ANN-based methods, such as local minima and 

convergence, in this paper we applied AGA-ANN, where AGA was applied primarily for 
learning enhancement and dynamic weight estimation. Noticeably, in AGA-ANN implementation 

for MPA synthesis, we maintained 3 input neurons and 6 hidden neurons, while two neurons 

were defined as output, to yield two patch’s dimensional parameters, W and L. The simulation 

results obtained by AGA-ANN based model is given in Table 5. 
   

Table 5. MPA Synthesis results using AGA-ANN 

 

h(cm) 𝛆𝐫 W(cm) L(cm) 𝐅𝐫(GHz) 

0.3175 2.330 6.779 7.141 2.310 

0.3175 2.330 5.868 6.297 2.890 

0.3175 2.330 3.652 4.160 4.240 

0.3175 2.330 1.526 1.849 5.840 

0.3175 2.330 1.277 1.539 6.800 

0.3175 2.330 1.178 1.408 7.700 

0.3175 2.330 1.080 1.271 8.270 

0.3175 2.330 6.922 4.845 9.140 

0.9525 2.330 1.144 2.158 4.730 

0.4000 2.550 1.163 2.180 7.134 

0.4500 2.550 1.170 2.187 6.000 

0.4760 2.550 1.158 2.171 5.820 

0.4760 2.550 1.176 2.171 6.380 

0.5500 2.550 1.171 2.181 5.990 

0.1570 2.330 1.165 2.031 5.060 

 
Observing the results obtained (Table 5), it can be found that amongst the different possible 

design configurations, the microstrip patch antenna with substrate height of 0.3175 cm, dielectric 

constant of 2.330, and dimensional characteristics length 4.845 cm, and width of 6.922 cm 
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achieves the highest cut-off frequency of 9.140 GHz. One very interesting output can be 
visualized here by observing Table 4 and Table 5. Noticeably, the design parameters by ANN-

RBF for which the cut-off frequency is the highest (i.e., 8.926 GHz) are relatively small and 

hence low cost than the best performance by AGA-ANN. However, since the proposed work 

doesn’t perform physical verification in the form of radiation pattern or SWR, it is must assess 
whether the performance delivered by the different neuro-computing models is accurate and 

which should be generalized as the best solution. Considering this fact, we assessed each neuro-

computing model for its error-proneness towards prediction. The results of prediction error(s) are 
given in the subsequent sections. 

 

5.1. Error Profiling 
 

Our proposed knowledge-driven model has been assessed in terms of the different error profile 

parameters such as mean absolute error (MAE), root means square error (RMSE), the mean 
magnitude of the relative error (MMSE), etc. The performance comparison has been done for the 

different ANN variants towards MPA design optimization. Before discussing the error profile 

obtained a snippet of the different error parameters and their respective mathematical models are 
discussed as follows:   

 

5.1.1. Mean Absolute Error (MAE) 

 
Mathematically, MAE is obtained as 

MAE =
1

n
∑(|Yi

′ − Yi|)

n

i=1

 
(25)  

 

Where, Yi
′ refers the calculated output, while Yi states for the expected value.  

 

5.1.2. Mean Magnitude of the Relative Error (MMRE) 

 

Mathematically, MMRE is obtained as 

 

MMRE =
1

n
∑

|Yi
′ − Yi|

Yi

n

i=1

 
(26) 

 

Where, Yi
′ signifies the estimate output, while Yi signifies the expected value. To deal with 

overflow conditions (when denominator becomes Zero (Yi = 0)), we have added 0.01 in 

denominator. Thus, MMRE is obtained as 
 

MMRE =
1

n
∑

|Yi
′ − Yi|

Yi + 0.01

n

i=1

 
(27) 

 

5.1.3. Standard Error of the Mean (SEM) 

 

Mathematically, SEM is presented as  

 

SEM =
σ

√N
 (28) 
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Where,σ and N present the standard deviation and the total number of samples, respectively. The 
results obtained for the different error parameters are given in Table 6. 

 
Table 6. Error parameters 

 

Techniques MAE MMRE RMSE SEM 

ANN-GD 0.1190 0.2130 0.6313 0.1120 

ANN-RBF 0.1283 0.3545 0.1859 0.1109 

ANN-LM 0.0078 0.0091 0.0042 0.0873 

AGA-ANN 0.0014 0.0045 0.00164 0.0424 

 

As depicted in Table 6, in comparison to the ANN-GD, ANN-RBF, ANN-LM the proposed 

AGA-ANN model exhibits minimum average error (0.0014), MMRE (0.0045), RMSE (0.0016), 
and SEM (0.424). It indicates that the proposed AGA-ANN model can have higher accurate 

predictions than the other neuro-computing models. This result helps us to conclude or infer that 

the results of the AGA-ANN model are superior even though it shows higher dimensions than the 
ANN-RBF model (Table 4). In this reference, exploring the error by ANN-RBF based model, it 

can be found that it (ANN-RBF) shows higher error (MAE, MMRE, RMSE, and SEM) than the 

proposed AGA-ANN. This result affirms that the proposed AGA-ANN-based patch antenna 

design should be considered as the best viable solution than the other approaches, even ANN-
RBF which shows a smaller size of patch design; however, undergoes higher error proneness.  

Considering this fact, its resulting outputs (W and L design parameters) have further been applied 

for MPA design verification. To perform MPA design verification ANN was modeled with four 
input neurons, six hidden neurons, and a single output neuron that yielded cut-off-frequency 

Concerning the dimensional inputs (i.e., h, εr,W, and L). The cut-off frequencies for the varied 

input parameters are given in Table 7. 

 
Table 7. Simulated results for MPA design verification 

 
h(cm) 𝛆𝐫 W(cm) L(cm) 𝐅𝐫(GHz) 

0.3175 2.330 6.779 7.141 1.232 

0.3175 2.330 5.868 6.297 1.485 

0.3175 2.330 3.652 4.160 2.707 

0.3175 2.330 1.526 1.849 4.738 

0.3175 2.330 1.277 1.539 6.395 

0.3175 2.330 1.478 1.108 8.273 

0.3175 2.330 1.080 1.271 6.990 

0.3175 2.330 6.922 4.845 6.640 

0.9525 2.330 1.144 2.158 6.300 

0.4000 2.550 1.163 2.180 6.236 

0.4500 2.550 1.170 2.187 6.021 

0.4760 2.550 1.158 2.171 6.001 

0.4760 2.550 1.176 2.171 5.912 

0.5500 2.550 1.171 2.181 6.023 

0.1570 2.330 1.165 2.031 5.342 
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Observing the overall results as depicted in the above tables (Table 6 and Table 7), it can be 
found that a rectangular MPA with 3.17 mm of dielectric substrate height (h), and dielectric 

constant of 2.33 with patch width of 14.78 mm and a length of 11.08 mm can achieve the 

maximum resonant frequency of 8.23 GHz. Noticeably, the dimensional parameters of the MPA 

are small enough to fulfill miniaturization aspects, while delivering a high resonant frequency of 
8.23 GHz, which can be of great significance for numerous UWB applications such as WLAN, 

inter-vehicular communication, IoT ecosystems, etc. The overall research conclusion and allied 

inferences are given in the subsequent sections. 
 

Considering the fact that in a majority of the existing works authors have applied different input 

design parameters and topological structure and therefore their predicted design parameters roam 
around the target value. Similarly, in this paper, inputting a set of parameters we intended to 

obtain the optimal design parameters in sync with some predefined estimated values. Summarily, 

the predicted output of a model with the different input (data) values would vary from each other, 

and therefore in this study, an inter-model comparison is not performed. It can also be considered 
as the motivation for further research, where with obtained design parameters, their respective 

performance can be assessed in the form of radiation attributes, gain, etc. The overall research 

conclusion and allied inferences are given in the subsequent sections. 
 

6. CONCLUSION 
 

Considering the significance of a robust knowledge -driven approach for rectangular Microstrip 

patch antenna in this paper the focus was made on obtaining an optimal set of patch dimensional 
parameters to achieve desired cut-off frequency. To achieve it, this paper inherited the robustness 

of the software computing environment including data normalization, enhanced machine learning 

models, heuristic models, etc. Here, the prime objective was to enhance the classical ANN model 
to yield an optimal set of MPA design parameters for expected cut-off frequency. Also, the 

implementation of Min-Max normalization enabled alleviating pre-mature saturation and helped 

to achieve efficient learning over the input data. On the other hand, AGA with adaptive learning 
ability strengthened ANN to deliver an optimal set of design parameters and respective cut-off 

frequency. The proposed AGA-ANN based neuron-computational model revealed that for a 

rectangular MPA with 3.17 mm of dielectric height (h), a dielectric constant of 2.33 and, 14.78 

mm and 11.08 mm of width and length, respectively can achieve the maximum resonant 
frequency of 8.23 GHz, which can be of utmost significance for low-size compact MPA for 

UWB applications. Though the proposed model exhibited better solution with generic 

expectations of compact size (miniaturized) and predicted cut-off frequency, it could employ 
merely 15 sets of instances to perform training. Recalling the fact that increasing the numerous of 

training instances can yield more accurate and reliable performance. In the future more efficient 

computing environment such as up-sampling, feature selection, and hidden neuron adaptive 

neuron-computational model can be developed. Additionally, performance can also be assessed 
for its under-fitting or over-fitting conditions to yield the most reliable and efficient MPA design 

solution. Though, the results obtained signify the optimality of the proposed rectangular 

microstrip patch antenna design for UWB applications; however, its realistic behavior voltage 
standing wave ratio (VSWR), gain and radiation pattern could not be assessed. Moreover, 

literature indicates that poly lines structure or other Omni-directional pattern- centric designs can 

have higher coverage and signal performance. These key factors can be considered as the future 
scope for further study. 
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