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ABSTRACT 

 

We introduce a family of authenticated data structures — Ordered Merkle Trees (OMT) — and illustrate 

their utility in security kernels for a wide variety of sub-systems. Specifically, the utility of two types of 

OMTs: a) the index ordered merkle tree (IOMT) and b) the range ordered merkle tree (ROMT), are 

investigated for their suitability in security kernels for various sub-systems of Border Gateway Protocol 

(BGP), the Internet’s inter-autonomous system routing infrastructure. We outline simple generic security 

kernel functions to maintain OMTs, and sub-system specific security kernel functionality for BGP sub-

systems (like registries, autonomous system owners, and BGP speakers/routers), that take advantage of 

OMTs. 
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1. INTRODUCTION 

 
Any system can be seen as a network of sub-systems, each with a specific role in the operation of 

the system, interacting with each other according to system-specific and/or role-specific rules. For 

an ever increasing range of systems, some or all sub-systems take the form of a computer, or a 

collection of computers (most often a server with one or more back-end servers). For example, 

sub-systems in the domain name system (DNS) have roles like zone authorities, who create DNS 

resource records (RR) pertaining to the zone; authoritative name servers, that are chosen by the 

zone authority to disseminate DNS RRs for the zone; and local (or preferred) name servers, that 

iteratively query authoritative name servers to resolve queries from clients. Similarly, sub-

systems in the inter-domain routing infrastructure for the Internet — the Border Gateway Protocol 

(BGP) — have different roles like autonomous system (AS) owner; AS registry, that assigns AS 

numbers to AS owners; IP registry that issues (through IP registrars and ISPs) chunks of IP 

addresses, or IP prefixes (a chunk of consecutive addresses) to AS owners; and BGP speakers for 

an AS, authorized by the AS owner to originate routes for IP prefixes owned by AS.  

 

Undesired functionality in any hardware/software component of a sub-system may be exploited 

by an attacker to cause sub-system to misbehave. Undesired functionality may be deliberately 

hidden malicious functionality (HMF), or accidental bugs. Attackers who exploit undesired 

functionality may be personnel with legitimate access to the sub-system, or anyone who can take 

advantage of remotely exploitable HMF/bug to exert some control over the sub-system. For 
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example, an attacker can a) compromise a BGP speaker (in a router) to send incorrect routing 

information; or b) compromise a computer used by the AS administrator to modify the AS 

policies/preferences; or c) compromise a computer of an administrator in the IP/AS/DNS registry 

to make duplicate address/AS number assignments. 

 

1.1. Security Kernel 
 

It is far from practical to assure the integrity of every hardware/software component in every 

component of every sub-system. One possible approach to secure systems is to mandate that all 

important sub-systems should be associated with an appropriate security kernel that vouches for 

the integrity of (system-specific and role-specific) tasks performed by the sub-system. 

Specifically, all components of the sub-system are assumed to be untrustworthy; only the security 

kernel is trusted. 

 

The security kernel for a system/sub-system is also referred to as the trusted computing base 

(TCB) for the system/sub-system. The TCB for any system is “a small amount of software and 

hardware that security depends on, and that we distinguish from a much larger amount that can 

misbehave without affecting security” [1]. For purposes of this paper, the exact nature TCB is not 

important. For example, the TCB for any sub-system could take the form of a dedicated hardware 

security module, or a software module executed on a general purpose platform, with some special 

protections [2] to guarantee that the security kernel will run unmolested, etc. 

 

In the rest of this paper we shall assume that the security kernel for a sub-system is a set of 

functions executed by a read-proof and write-proof module T . It is essential that the security 

kernel functionality is deliberately constrained to be simple — to permit consummate verification 

of the functionality, and thereby, rule out the presence of undesired functionality within the 

security kernel. 

 

Some of the components of the security kernel will necessarily be specific to the nature of the 

sub-system whose operation is assured by the module — the security kernel functionality for a 

DNS server will be different from that of an IP registry or a BGP speaker. Nevertheless, to 

simplify testing of the security kernel functionality, it is advantageous to possess efficient re-

usable components of the security kernels, with potential to be useful in a wide range of sub-

systems. The specific contributions of this paper are: a) an efficient resuable authenticated data 

structure (ADS), an ordered merkle tree (OMT), and b)  illustration of utility of OMTs in a broad 

range of security kernels (for a broad range of sub-systems). 

 

1.2. Ordered Merkel Tree  
 

An ADS [3, 4, 5, 6, 7] is a strategy for obtaining a concise cryptographic commitment for a set of 

records. Often, the commitment is the root of a hash tree. Any record can be verified against the 

commitment by performing a small number of hash operations. An ordered merkle tree (OMT) is 

an ADS that is derived as an extension of the better known merkle hash tree. Similar to a plain 

merkle tree, an OMT permits a resource (computation and storage) limited module to track the 

records in a dynamic database of any size, maintained by untrusted components of the associated 

sub-system. Using an OMT (instead of a plain merkle tree) permits the resource limited module 

to additionally infer a few other “useful holistic properties” regarding the database. For 

illustrating the broad utility of OMTs, we explore the security kernel functionality necessary for 

assuring the operation of various BGP sub-systems like IP and autonomous system (AS) 

registry/registrars, AS owners, and BGP speakers, etc. 
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The rest of this paper is organized as follows. In Section 2 we introduce OMTs, and discuss two 

types of OMTs — the index ordered merkle tree (IOMT) and the range ordered merkle tree 

(ROMT). In Section 3 we provide an overview of BGP. We enumerate the desired assurances 

regarding the operation of BGP and suggest high level designs of the security kernel functionality 

utilizing OMTs to guarantee the desired assurances (to the extent the security kernels are trusted). 

In Section 5, we suggest other possible applications of OMTs and offer our conclusions. 

 

2. ORDERED MERKEL TREE 
 

The merkle hash tree [8] is a data structure constructed using repeated applications of a a pre-

image resistant hash function ()h  (for example, SHA-1). Figure 1 depicts a tree with 16=N  

leaves. In practical merkle tree applications each leaf can be seen as a record belonging to some 

database. 

 

 
 

Figure 1. A binary hash tree with 16 leaves. Nodes 
3

0

2

1

1

36 ,,, vvvv  (filled gray) and root ξ  are  ancestors of 

leaf 6L . },,,{= 3

1

2

0

1

276 vvvvv  are  complementary” to 6v .  

 

A tree with N  leaves has a height of NL log=
2

. At level 0 of the tree are N  leaf-nodes, one 

corresponding to each leaf, typically derived by hashing the leaf. At the next level (level 1) are 
1/2=/2 NN  nodes, each computed by hashing together a pair of “sibling” nodes in level 0. Level 

i  has 
iN/2  nodes computed by hashing a pair of siblings in level 1−i , and so on, till we end up 

with a lone node ξ  at level L  — the root of the binary tree. A tree with 
LN 2=  nodes has 

12 −N  nodes distributed over 1+L  levels, where  NL log=
2

. Two nodes node 
j

iv  and 
j

iiv +  

at level j  are siblings if i  is even (else 
j

iv 1−  and 
j

iv  are siblings). Two siblings — the left sibling 

u  and the right sibling v  are hashed together to obtain the parent node as ),(= vuhp . Given a 

value 
0

iv , the index i  of the leaf node, and the set of k  complementary nodes, it is trivial to 

identify the sequence of k  hash operations necessary to map a leaf node to the root. We shall 

represent by   

 

),,,(= iim vivfy  (1) 

 

 a sequence of k  hash operations to obtain the sub-tree root y  from a leaf-node with value v  and 

position index i . 
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2.1. OMT Leaves and Node 

 
An ordered merkle tree (OMT) is an extension of the merkle tree with the imposition of a special 

structure for the leaves of the tree. Every leaf is of the form.  

 

),,(= AAAL ω′  (2) 

 

Corresponding to a leaf ),,( AAA ω′  is a leaf node computed as   

 

),,(= ALA AAHv ω′  

     



≠′ 0.),,(

0,=0
=

AAAh

A

Aω
 

 
 

(3) 

 

In addition, unlike a plain merkle tree which is intended primarily for dynamic databases with a 

static number of records (leaves), OMTs are intended to be used for scenarios where leaves may 

need to be inserted/deleted. For this purpose it is advantageous to redefine the operation of 

mapping two siblings u  and v  to their parent p  as  

 









≠≠ 00,),(

0=

0=

=),(=

vuifvuh

uifv

vifu

vuHp V  

 

 

 

(4) 

In other words, the parent of two nodes is the hash of the two child nodes  only if both children 

are non-zero. If any child is zero, the parent is the same as the other child. The parent of 

0== vu  is 0=p . 

 

An OMT leaf with the first field set to zero is an empty leaf, represented as Φ . The leaf hash 

corresponding to an empty leaf is 0. As introducing an empty leaf node (corresponding to an 
empty leaf) does not affect any other node of the tree, any number of empty leaves may be seen 

part of the tree. 

 

2.2. OMT Types 

 
OMTs can be seen as falling under two broad categories depending on the interpretation of the 

first two values. In the first category are index ordered MTs (IOMT), where the first value is 

interpreted as an index, the second value is the next higher index in the tree. For the leaf 

corresponding to the highest index the next index is the least index. The third value 
Aω  in a leaf 

),,( AAA ω′  provides some information regarding index A . For example, 
Aω  could be the hash 

of the contents of a database record with index A . It is also possible that 
Aω  is a root of another 

OMT, in which case A  is an index of a database (which may consist of any number of indexed 

records). 

 

In an IOMT, existence of a leaf like )(432,562, ω  indicates that no leaf exists for indexes 

between 432  and 562 . A wrapped around leaf like )(796,241, ω  indicates that no leaf exists 

for indexes greater than 796 , and for indexes less that 241. 
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For range ordered MT (ROMT) the values A  and A′  represent the range ),[ AA ′  of some 

quantity associated with the third value 
Aω . For example, a leaf like )(432,562,ω  indicates that 

the quantity ω  is associated with a range [432,562)  (or 562<432 x≤ ). For example, an 

ROMT may be used to represent a look up table (LUT) for some function )(= xfy . In such an 

ROMT each leaf indicates a range of the independent variable x , corresponding to which the 

function evaluates to the dependent variable ω=y  (the third value in the leaf). 
 

2.3. OMT Properties.  
 

Some of the important properties of OMTs are as follows.  The leaf hash corresponding to an 

empty leaf Φ  is zero. A tree with root 0 can be seen as a tree with any number of empty leaves. 

For a tree with a single leaf, the leaf hash is the same as the root of the tree. The existence of a 

leaf ),,( AAA ω  in an OMT indicates that the leaf is the only leaf in the tree (in which case the 

root will be the same as the leaf hash ),,( AL AAH ω ). Existence of a leaf like )(1,3, 1ω  is proof 

that no leaf exists with first field in-between 1 and 3. Existence of a leaf like )(7,1, 7ω  is proof 

that no leaf exists with first field less than 1 and that no leaf exists with first field greater than 7.  

As leaves are ordered virtually, the actual physical ordering of leaves has no inherent meaning. 
Thus, swapping leaves of an OMT does not affect the integrity of the database represented by the 

OMT.  
 

For both IOMT and ROMT, a leaf with a first field A  can be inserted only if a leaf with first two 

fields that circularly encloses A  exists. For inserting a leaf the contents of two leaves in the tree 

will need to be modified; and empty leaf Φ  will be modified to become the newly inserted leaf, 
and the second value of the enclosing leaf will need to be modified.  
 

A place-holder is a non-empty leaf whose insertion does not change the interpretation of the 

database. For an IOMT, a leaf of the form ,0),( AA ′  (third value zero) is a place holder. 

Introduction of a place holder for an index A  does not change the database in any way, as both 

existence of place holder for index A  and non-existence of a leaf for index A  implies that “no 

record exists for index A .” Thus,  
 

)(7,1,(5,7,0),),(4,5,),(1,3,),(3,4,

)(7,1,),(4,7,),(1,3,),(3,4,

7413

7413

ωωωω

ωωωω and
 

 

(5) 

 

which correspond to before and after insertion of a place holder for an index 5 , represent an 

identical database. For an ROMT, a place holder is a leaf with third value the same as the third 

value of the enclosing leaf. Specifically, inserting a leaf can be seen as a process of splitting a leaf 

(for example), )(4,7, 4ω  into two leaves (for example) )(4,5, 4ω  and )(5,7, 4ω . Specifically, 

both  
 

)(7,1,),(5,7,),,(4,5),(3,4,,)(1,3,

)(7,1,),(4,7,),(3,4,),(1,3,

dccba

anddcba
 

 

(6) 

 

represent an identical database. Before insertion, the leaf )(4,7,c  indicated that values 7<4 x≤  

are associated with c . Nothing has changed after the range is split into two, as values 

5)<(4 x≤  and values 7)<(5 x≤  are associated with the same quantity c .While operations 

like swapping leaves in any OMT or insertion/deletion of a place holder do not change the 

contents of the database, they will result in a change in the root of the tree — say from r  to r′ . 

Such roots are considered as equivalent roots. 
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2.4. OMT Functions for Security Kernels 
 

The module T  is assumed to possess limited protected storage, and expose well defined 

interfaces to the associated untrusted sub-system. Such interfaces can be used by an untrusted 

sub-system (say) A  to demonstrate the integrity of databases stored by the sub-system, and 

request 
AT  associated with sub-system A  to attest verified records. 

 

For attesting records or contents of records (for verification by other sub-systems, or security 

kernels in other sub-systems) every module is assumed to possess a unique identity, and secrets 
used for authenticating messages. For example, the secret could be a private component of an 

asymmetric key pair, which is used for signing messages. In this case, the public key of the 

module is certified by a trusted key distribution center, attesting the integrity of the module. 

Alternately one or more secrets could be provided by a trusted key distribution center to each 

module. Only modules that have been verified for integrity and issued such secrets by the trusted 

key distribution centers will be able to use their secrets to compute a pairwise secret with other 

modules attested by the KDCs. Such pairwise secrets may be used to compute message 

authentication codes for attesting the integrity of the contents of a record. 

 
Apart from secrets provided by trusted KDCs or certified by trusted certificate authorities, every 

module is assumed to spontaneously generate a random self-secret χ  which is used for 

authenticating memoranda to itself.  For example, after executing (say) ),,(= vixfz m
 , a module 

may issue a memoranda to itself to remind itself that it has already verified that  “ z  is an ancestor 

of x .”      
 

As we shall see very soon, the self-memoranda in this scenario is a value ),,1,(= χρ zxVh  

computed as a function of the type 1V  of the memoranda, the values x  and z , and the secret χ . 

No entity other than the module can fake such a memorandum. Thus, if values ,, zx  and ρ  are 

provided as inputs to the module, the module can safely conclude that “ z  is an ancestor of x .” 

In the rest of this section we provide an algorithmic description of generic OMT functions 
suitable for security kernels for a wide range of systems/ sub-systems. OMT functions issue 

different types of self-memoranda. Such self-memoranda may then be used by other system-

specific (or role-specific) security kernel components of the same module. As an illustration of 
how such memoranda can be used by other system-specific security kernel components of the 

same module, in a later section we outline the use of such memoranda in security kernels for 

various BGP sub-systems. 

}
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Figure 2. Verification and Update Memoranda. 
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2.5. OMT Memoranda 
 

Five different types of memoranda are issued by OMT functions.  

 

A certificate of type 1U  is issued by functions ()btF  and ()1catF . The inputs to ()btF  include a 

leaf node x  in a subtree, the index i  of the leaf node (in the sub-tree), and complementary nodes 

v . The root of the subtree can now be computed as ),,(= vixfy m . The function also accepts 

another value x′  and computes ),,(= vixfy m
′  (using the same complementary nodes). The 

certificate of type 1U  issued by this function, viz,  

 

),,,,,,2,(= 2121 χρ pxxpxxUh ′′′  (7) 

 

 states that “(it has been verified by me that) y  is the root of a sub-tree with leaf node x , and if 

xx ′→  then yy ′→ .” More generally, such a certificate implies that y  is an ancestor of x , and 

that if xx ′→ , then yy ′→ . 

 

Functions ()1catF  and ()2catF  combine self memoranda to issue (in general) more complex self-

memoranda. ()1catF  accepts inputs necessary to verify the integrity of two type 1U  certificates. If 

the second certificate is 0, and if in the first certificate binding yxyx ,,, 11 ′  if 
11 = ′xx  (implying 

merely that y  is an ancestor of 
1x , a certificate of type 1V , viz., ),,1,(= 1 χρ yxVh  is issued. 

If the child in the second certificate 
2x  is the same as the parent y  in the first certificate, the two 

certificates are combined to issue a single certificate of type 1U  binding the child 
1x  in the first 

certificate to the parent z  in the second certificate. Else, ()1catF  computes ),(= zyHp V
 and 

),(= zyHp V
′′′  to issue a certificate of type 2U   

 

1 2 1 2( 2, , , , , , , )h U x x p x x pρ χ′ ′ ′=  (8) 

 

 to the effect that that “
1x  and 

2x  are leaf nodes of a sub-tree with root p , and if 
11 ′→ xx  and 

22 ′→ xx  then pp ′→ . Note that if y  is an ancestor of 
1x  and z  is an ancestor of 

2x , then 

),(= zyHp V
 is simultaneously an ancestor of 

1x  and 
2x . 

 

Function ()2catF  extends the common ancestor y  of two nodes to an ancestor z  of y . In other 

words, ()2catF  combines a 2U  certificate with a 1U  certificate to produce a 2U  certificate. If 

only a certificate of type 2U  is provided as input to ()2catF  with 
11 = ′xx  and 

22 = ′xx , bound to 

yy ′= , ()2catF  issues a certificate of type 2V  binding two nodes 
1x  and 

2x  to a common 

ancestor y .  

 

Certificates of type 1U  and 2U  are useful for simultaneously verifying and updating the root of 

the tree. Certificates of type 1V  and 2V  are useful in scenarios where only verification is 

required.  Functions ()(), swph FF  and ()ceF  create certificates that bind equivalent roots. A 

certificate of ),,,(= χρ yyEIh ′  attests to the equivalence of IOMT roots y  and y ′ . A 

certificate ),,,(= χρ yyERh ′  attests to the equivalence of ROMT roots y  and y′ . 
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Through a certificate of type 2U , ()swF  recognizes the relationship between two roots resulting 

from swapping two leaves. As swapping leaves does not affect the integrity of an IOMT or an 

ROMT, the roots are equivalent for both IOMT and ROMT. Thus, depending on the value o  

which identifies the type of request ( 1=o  for ROMT certificate) ()swF  outputs a EI  or ER  

certificate.  
 

Function ()phF  issues equivalence certificates binding roots before and after deletion of a place 

holder. The input 1=o  is a request to issue a ER  certificate (else, the request is for an EI  

certificate). If no certificate is provided as input to ()phF  (or 0=ρ ), one root is assumed to the 

root of an empty tree, and the equivalent root is after insertion of the first place-holder for an 

index A . For both IOMT and ROMT the first place holder will be ,0),( AA , and the root after 

insertion will be ,0),( AAH L
. 

 

If 0≠ρ  this function interprets ),,( AAA ω′  (with leaf hash 
1x ) and a place-holder ),,( ωBA ′′  

(with leaf hash 
2x ) as two leaves in a tree with root y . If 1=o  (ROMT) the place holder has 

Aωω = , else (for an IOMT), 0=ω . If the place holder is the first leaf it needs to be modified to 

),,( ABA ω′  (leaf-hash 
1′x ) and the second leaf to an empty leaf (leaf hash 0 ). The certificate ρ  

attests that modifying two leaves 
1x  and 

2x  to 
1′x  and 

2′x  is equivalent to changing the root 

from y  to y′ . Hence, y  and y′  are equivalent roots. 
 

}

);,,,(

))),,,(=()),,,(=((

);,,,())),,,(=(0)=((

;},{

{),,,,,(

}

);,,,(:),,,(1)?=(

))),,,,,,2,(=(

)),,,,,,2,(=((

0;);,,();,,(

,0);,(:),,(1)?=(

),0),,(,0,(0)=(

),0),,(,0,(1)=(0)=(

{),,,,,,,(

}

);,,,(

);,,,(1)=(

)),,,,,,2,(=(

{),,,,,(

21

12

21

1212

2121

211

2

1221

21

χ

χρχρ

χχρρ

ρρ

χχ

χρ

χρ

ωω

ω

χρ

χρ

ρω

χ

χ

χρ

ρ

zxihRETURN

zyihyxihIF

xyihRETURNyxihIF

RETURNEREIiIF

zyxiF

yyEIhyyERhoRETURN

yxxyxxUh

yxxyxxUhIF

xBAHxAAHx

BAHBAHox

AAHEIhRETURNIFELSE

AAHERhRETURNoIF

oyyBAAF

yyEIhRETURNELSE

yyERhRETURNoIF

yxxyxxUhIF

oyyxxF

ce

ALAL

LAL

L

L

Aph

sw

∧

∧

∈/

′′

′

∨′

←′←′←

′′′′←

∧

′′′

′

′

′

′

′′

′′

′′

 

Figure 3. OMT Functions for Issuing Equivalent-Root Memoranda. 
 

3. BGP SUBSYSTEMS 
 

The Internet is an interconnection of autonomous systems (AS) [9], [10]. Each AS owns one or 

more chunks of the IP address space, where the number of addresses in each chunk is a power of 

2. IP chunks are represented using the CIDR (classless inter-domain routing) IP prefix notation. 

For example, the IP prefix 132.5.6.0/25 represents 
25322 −

 IP addresses for which the first 25 bits 

are the same as the address 132.5.6.0, viz., addresses 132.5.6.0 to 132.5.6.127. An AS registry 

assigns AS numbers to AS owners. AS owners may acquire ownership of IP prefixes from an IP 
registry (through IP registrars, or ISPs). 
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While each AS may follow any protocol for routing IP packets within their AS, all ASes need to 
follow a uniform protocol for inter-AS routing. The current inter-AS protocol is the border 

gateway protocol (BGP), where AS owners employ one or more BGP speakers to advertise 

reachability information for IP prefixes owned by the AS. Specifically, every BGP speaker 

recognizes a set of neighboring BGP speakers. Neighbors may belong to the same AS or a 

different AS. The main responsibility of BGP speakers are a) originate BGP update messages for 

prefixes owned by the AS, and convey such originated messages to neighbors of other ASes; b)  

relay BGP update messages received from neighbors to other neighbors; and c)  aggregate 

destination prefixes (that can be aggregated) for reducing the size of routing tables.   

 

BGP is a path vector protocol. BGP update messages communicated between BGP speakers 
indicate an AS path vector for a prefix. Specifically, a BGP update message   

 

]),,,,(,[ da WDCBAP  (9) 

 

from a speaker dS  (belonging to the last AS in the path) indicates that prefix aP  owned by the 

first AS A  in the path. dW  is the weight of the path. 

 

3.1. BGP Updates 

 
A BGP speaker may receive multiple paths for the same prefix. All such paths are stored by the 

BGP speaker in the incoming routing information database (RIDB-IN). However only the best 
path for a prefix may be copied to the outgoing database (RIDB-OUT), and advertised to other 

BGP speakers. Most often a BGP speaker is a component of a router which uses entries in RIDB-

OUT (best path for different prefixes) to forward IP packets. 

 

3.1.1. BGP Weights 

 
The best path is the one with the maximum weight. Several parameters are used to compute the 

weight of a BGP path. For simplicity, in this paper we restrict ourselves to some of the more 

important weight parameters, i) pre-path weight; ii) local preference iii) AS path length; and iv) 

multi-exit descriptor (MED). 
 

The pre-path weight is assigned at time of origination. If two paths for the same prefix have the 

same pre-path weight, then the the local preference is considered (higher the better). If both pre-
path weight and local preference are the same, the AS path length (number of ASes in the path) is 

considered. The longer the path, the lower the weight. If the path lengths are also the same, then 

the MED weight is considered (higher the better). 

 

 Local Preference and MED: Every BGP speaker recognizes a set of other BGP speakers as 

neighbors. Every neighbor is associated with two weight parameters — a local preference, and an 

MED. From the perspective of a speaker aS  . That bL  is the local preferenc of bS  implies that for 

all paths received from bS  the local preference component of the weight should be reset to bL .  

That bM  is the MED of bS  implies that for all paths advertised to bS , the MED component of 

the weight should be set to bM .  Local preference and MED weights are assigned only to 

neighbors that are speakers of foreign ASes.  
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Processing Received BGP Updates: When a BGP update message is received from a foreign 

speaker bS  (of AS B ) the steps to be taken by a speaker aS  (AS A ) are as follows:  1) 

increment hop-count; 2) add own AS A  to the path vector; 3) change local preference to value 

bL ; 4) set next hop to bS ; and 5) store path in RIDB-IN. When a path is received from a speaker 

aS ′  belonging to the same AS, no component of the weight is changed, and the AS number is not 

inserted. 

 

Relaying and Originating BGP Updates: For relaying a BGP message for a prefix P  to a BGP 

speaker bS  in a foreign AS, the steps to be taken by speaker aS  are: a) among all paths for the 

same prefix, choose the path with the highest weight; b) change the MED component of weight 

to; c) advertise the path with modified weight.   For originating a path (for owned prefixes), the 

pre-path weight is set, and the MED is set to that of the foreign neighbor. Such originated paths 

are not sent to speakers of the same AS (as paths to IP addresses within the AS are established 

using an intra-AS protocol). For relaying a BGP update message (for a prefix owned by a foreign 

AS) to a speaker 
aS ′  of the same AS, simply choose the path with the highest weight and send it 

without changing the weight. 

 

Policies and Preferences: The choice of BGP speakers for the AS, the prefixes for which a 
speaker may originate BGP update messages (along with their pre-path weights), neighbors of 

each speaker, along with their local preference and MED weights, etc., can be seen as policies and 

preferences specified by the AS owner to influence the weights assigned to BGP paths. 

 

 Aggregation: One of the major benefits of CIDR prefixes come from the fact that BGP speakers 

may aggregate prefixes. If two consecutive prefixes A  and B  (say 126.5.4.0/25 and 

126.5.4.128/25) and can be aggregated into a single prefix C  (126.5.4.0/24) if the next hop for 

prefixes A  and B  is the same. The speaker that performed the aggregation is the originator for 

the aggregated prefix. 

 

4. SECURITY KERNELS FOR BGP SUB-SYSTEMS 

 
Thus far we have outlined generic security kernel functionality for issuing OMT certificates. In 
this section we consider other sub-system specific security kernel functionality for various BGP 

sub-systems like AS and IP registries, AS owners, and BGP speakers.  

 
For simplicity, we shall assume a single registry for both AS numbers and IP addresses. All 

security kernel modules have a unique identity. Let U  be the identity of the module associated 

with the registry. One module is associated with every AS owner. We shall assume the identities 

of an AS owner modules to be the same as the AS number. Each BGP speaker is associated with 

a module. We shall assume that the identity of BGP speaker modules to be the IP address of the 

router/BGP speaker. We also assume the existence of module functionality for 

authentication/verification of messages exchanged between modules. Specifically, we shall 

represent such functionality as   

 

andvvYXfa }),,{,,(= 21 Kµ )},,,{,,(={0,1} 21 µKvvYXfv  (10) 
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the process of authentication (by module X , using ()af ) and verification (by module Y , using 

()vf ) of a message conveying values },,{ 21 Kvv , from module X  to module Y . Function ()af  

outputs a authentication code µ . Function ()vf  outputs a binary value (TRUE if authentication 

µ  is consistent, or FALSE).  
 

The identity U  of the registry module is known to all AS owner modules. The registry module 

U  delegates AS numbers and IP prefixes to AS owner modules. AS owner modules will only 

accept delegations from U . AS owner modules in turn delegate IP address ranges they own to 

one or more BGP speaker modules.  
 

Some of the specific desired assurances regarding the operation of BGP are as follows:   
 

1.  AS number can not have more than one owner; an IP address can not be owned   by one 

or more ASes. Such assurances should be guaranteed even if the computers employed by 

the registry have been compromised by an attacker.  
2. AS owners can only delegate address ranges owned by the AS to BGP speakers.  

3. Notwithstanding the possibility that a router/ BGP speaker may be under the control of an 

attacker, the following assurances are desired  
a) The BGP speaker will only be able to create BGP update messages for prefixes 

delegated by the AS owner  

b) No BGP update message can be created by violating any of the policies / 

preferences specified by the AS owner (neighboring speakers, local preference 

and MED, pre-path weights) or BGP rules (only the path with the best weight can 

be advertised).  

c) A speaker will not accept paths which already includes its own AS (to ensure that 
routing loops can not be created).  

d) All BGP speakers will increment the hop count exactly by one.  

e) A speaker will be able to aggregate only prefixes for which the next hop is the 
same speaker.   

 

4.1. OMTs Used by BGP Subsystems 
 

The registry and AS owners maintain an ROMT where each leaf indicates a range of IP 

addresses, and the third value is the AS number (of the AS that owns the address range). 

 

BGP speakers maintain one ROMT, multiple IOMTs, and a plain Merkle tree. A plain Merkle 
tree is used to maintain a neighbour table with a static number of records. More specifically, for 

scenarios involving dynamic databases where records can not be inserted or deleted (the 

dynamics come only from modification of records) OMT is an over-kill; a plain Merkle tree is 
adequate. The ROMT is used maintaining address ranges for which the speaker can originate 

BGP updates (owned prefixes and aggregated prefixes). 

 
An IOMT is used for maintaining the RIDB-IN database. More specifically a nested IOMT is 

used where the root corresponds to a tree with leaves whose indexes are IP prefixes. 

Corresponding to each prefix the value (third field) is the hash of two IOMT roots. The root   of 

the “path tree” has one leaf for every path for the prefix. The root   of the “weight tree” represents 

the weights of different paths, and enables the module to readily identify the path with the highest 

weight. The index of leaves in path tree is a function of a quantity   that is itself the root of an 

IOMT. Specifically, the “path vector” IOMT with root   has a leaf corresponding to every AS in 

the AS path. Representing the AS path in this way makes it possible for the module to recognize 

that it is already in the path, and thereby prohibit creation of routing loops. 
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4.2. Registry Module U  and AS Owner Modules 

 

The registry module maintains an ROMT root 
rξ , where each leaf indicates ranges of IP 

addresses, and the AS number of the owner. Unassigned IP chunks have a leaf with value 0.  
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 Figure 4. Security Kernel Functionality in Registry and AS Owner Modules. 

 

The function ()R

phF  can be utilized to insert/delete any place holders in the ROMT by providing a 

memoranda of type ER .  The registry employs the function ()R

asF  to convert the third value of 

any leaf from 0 to a non zero value. A leaf ),,( AII ′  in the ROMT indicates that the IP addresses 

in the range I  and 1−′I  have been assigned to AS A . The leaf ),,( AII ′  can be conveyed to an 

AS owner module A  using interface ()R

dpF .   

 

AS owner modules also maintain an ROMT with root 
rξ . The leaves indicate IP addresses owned 

by the AS. In the tree maintained by the owner of AS A  who (for example) owns two non 

consecutive chunks with addresses between ),[ aa ′  and ),[ bb ′  the ROMT leaves will be 

),,( Aaa ′ , ,0),( ba′ , ),,( Abb ′  and ,0),( ab′ . The function ()o

phF  can be used to insert/delete 

place-holders in the tree. Once a place older ,0),( aa ′  exists, a delegation ),,( Aaa ′  from the 

registry module U  can be used to update the place holder to a leaf ),,( Aaa ′ . Any node in the 

tree with root 
rξ  can now be sub-delegated to a BGP speaker. Depending on which prefixes need 

to be delegated to which BGP speaker the owner can use ()O

phF  to subdivide owned prefixes and 

swap positions of prefix leaves, and choose the root of a subtree which includes all prefixes to be 
delegated to the speaker. Apart from delegating IP prefixes, the AS owner also specifies various 

preferences as leaves of a hash tree (with root n′ξ ). The types of records in this tree include 

 

1)  Pre-path weight; a record of the form ],[ oP  for each owned prefix P  that can be 

originated by the speaker, indicating the pre-path weight o . 

2) Neighbor preferences record for each neighbor. A record for neighbor F  is of the form  
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],,,0,=0,=,[= ffffffF MLAtsFN τ  (11) 

 

where fA  is the AS number of the neighbor, fL  and fM  are the local preference and MED 

weights, and fτ  is the maximum permitted duration between HELLO messages from the 

neighbor N . The values fs  and ft  are set to zero by the AS owner. Such fields can be modified 

only by the module of a BGP speaker initialized using the value n′ξ . The value fs  is the time at 

which a link to F  was established. Value ft  is the time at which the F  was last heard-from. 

 

4.3. BGP Speakers 

 

The security kernel of BGP speakers maintains 3 dynamic roots (see Figure 5): the root oξ  of an 

ROMT  is initialized to a value o′ξ communicated by the AS owner module; the root nξ  of a 

Merkle tree (with a leaf corresponding to every neighbour, and a static leaf for every owned 

prefix corresponding to which BGP speaker can originate BGP updates) is initialized to the value 

n′ξ  conveyed by the AS owner module; the root 
dξ  of an IOMT indexed by IP prefix – the RIDB 

tree, which  is initialized to zero. BGP speakers also maintain a static value A  — initialized to 

the AS number represented by the speaker. During regular operation of the BGP speaker the 

RIDB root dξ  is updated whenever a BGP update message is received, or if a path is removed 

(for example) due to loss of link to neighbor. 

 

The neighbor/preferences tree root nξ  is updated whenever a neighbor state is updated. 

Specifically, corresponding to each neighbor are two dynamic values: a connection identifier s  

(which is the time at which the connection was initiated) and a time-stamp t  (time of last activity 

in the connection). 

 

The leaves of the ROMT are IP address ranges for which the speaker can originate BGP updates. 

Originated updates can be for owned IP address ranges or for aggregated prefixes. When 

initialized, the ROMT root oξ  is a commitment to leaves corresponding to owned IP ranges 

(delegated by the AS owner module by conveying a root of a sub-tree from its tree of owned 

prefixes). In all such leaves the third value a  is the AS number. The ROMT root oξ  may also be 

updated for purposes of aggregating CIDR prefixes. Specifically, for any prefix in the RIDB tree 

the address range and the next hop in the best path to the prefix can be added to the ROMT. Thus, 

for leaves corresponding to foreign IP ranges the third value is the next hop. Two adjacent 

prefixes with the same next hop can now be aggregated. More specifically, aggregation 

corresponds to removing a place-holder. For example, two leaves ),,( 21 xII  and ),,( 32 xII  

where ),[ 21 II  and ),[ 32 II  are two ranges with the same next hop x , can be converted to a 

single leaf ),,( 31 xII  through an equivalence operation. 

 

 

From the perspective of the BGP speaker modules, corresponding to a BGP update message from 

a speaker (with IP address) X  to a speaker Y  is an authenticated message from module X  to 

module Y  computed as: 
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]}),,,,,{,,(= medlpppa wwwlPYXf αµ  (12) 

 

where P  is the prefix for which the path is advertised, α  is a one-way function of the AS path, 

l  is the path length, lppp ww ,  and medw  are respectively the pre-path weight, local preference,  

MED. The four weights are used to construct a weight represented as   

 

].[= medlppp wlMAXwwW    −  (13) 

 

Thus, for any prefix the path with the highest weight W  is the best path. 
 

Security kernel functions ()S

relF  and ()S

origF  are used to create such BGP update messages, and 

()S

updF  is used to process such messages from neighboring speakers and update the RIDB root.  

 

More specifically, ()S

origF  is used to originate BGP updates (for own prefixes and aggregated 

prefixes). Specifically, a path for a prefix P  (represented in the origin tree as a leaf with range 

),[ 21 II  and third value v ) can be advertised only if a) the third value v  is its own AS number, 

and a leaf exists in the tree with root nξ  for the prefix P , conveying the pre-path weight ppw  for 

prefix P ; or b) the third value v  corresponds to a neighbor with a live link, and no leaf with 

prefix P  exists in the RIDB tree.  ()S

relF  is used to relay stored BGP paths in the RIDB to 

neighbors. ()S

relF  identifies the best path for a prefix, and only the best path may be advertised. 

Alternately, information regarding the best path can also be added to the origination tree to 

aggregate a prefix. 
 

 
 

Figure 5: OMTs Used by BGP Speakers. 

 

Neighbouring BGP speakers maintain a TCP connection over which BGP update messages are 

exchanged. To keep the connection alive, and for testing the existence of the link, special HELLO 

messages are exchanged periodically. From the perspective of the security kernel in a speaker S  

the link to a neighbour F  is associated with the link establishment time fs    and a timestamp ft .  
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Once a link has been established, the module F  in   is expected to confirm their continued 

presence by periodically sending authenticated time-stamped messages for updating the 

timestamp ft . 

 

In the RIDB-IN, multiple paths, each with possibly different weights, may exist for each prefix. 

To enable the security kernel to readily determine the path with the highest weight, the plurality 

of weights for each prefix are maintained as an ordered list. In the weight IOMT, the index of a 

leaf is a weight, and the value (third field) is the number of occurrences of the weight in the list. 
 

 For example, corresponding to a list with four weights 42)(21,21,34, , three leaves 

(42,21,1)(34,42,1),(21,34,2), will exist in the weight tree (index 21 occurs twice as indicated 

by the value field). As in any IOMT, insertion of a place-holder (say for index 5, which signifies 

“zero occurrences of value 5 in the list)” does not modify the list.  

 

Within the RIDB IOMT a special IOMT is also used to represent AS paths. In the AS path IOMT 
the the index of leaves are ASes. A tree corresponding to a path of length 5 will have 5 leaves. 

The value field (third field) is the position in the path. As an example, corresponding to a path  

EBDA →→→   the leaves of the tree will be ,2),(,3),,(,1),,( EDDBBA  and ,4),( AE  

(note that the value for index D  is 2 as D  is the second AS in the path).nIn the RIDB IOMT the 

index of leaves are IP prefixes. The value field in the IOMT is a one way function of two IOMT 

roots 1) OMT root γ  — is the root of a weight-IOMT; and 2)IOMT root θ  — the root of an 

IOMT whose leaves like ),,( vββ ′  characterize each path to the prefix.In the IOMT with root θ  

the index of leaves are functions of the path; more specifically, in the index )),(,(= αβ lhGh , 

G  is the next hop, l  is the path length, and α  is the root of an AS-path IOMT root. The value v  

corresponding to an index β  is a function of two values — the weight W  of the path, and the 

connection identifier of the next hop that provided the path. If the connection identifier in a path 
is not the same as the identifier in the neighbor record for that neighbor, then the path is 

considered as stale (and the weight is set to 0). 

 

4.4. Using Security Kernel Functions in BGP Speaker Module  

 

BGP speaker modules expose a function ()S

initF  which is invoked to initialize the module. In the 

rest of this paper we shall investigate the functionality of a speaker S  belonging to an AS A . An 

authenticated message from AS module A  (created by using function ()A

dpF  in Figure 6) is 

necessary for initializing the roots of the neighbor tree to n′ξ , and the origin tree to o′ξ . 

 

Any place holder can be added to the IOMT with root 
rξ  or the ROMT with root pξ . Using 

function ()S

phF . Any place holder can also be added to the path tree or weight tree corresponding 

to any prefix. This can be accomplished using function ()2

S

phF  which issues a equivalence 

memoranda of type 2E  identifying two roots corresponding to before and after insertion of a 

place holder in a tree with root θ , or a tree with root γ , or both. 
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Function ()hlo

SF  can be invoked to create authenticated messages that can be sent to other 

speakers. This function ensures that speaker S  can only connect to speakers explicitly authorized 

by the AS owner (by providing the initial root nξ ). Such authenticated messages can be used to 

create a connection (with a new value of s  deemed sufficiently close to the current time t ), and 

for updating time stamps of neighbors. 
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Figure  6: Security Kernel Functions for BGP Speakers. 

 

4.5. Processing BGP Updates  

 

Function ()S

updF  is invoked to update the RIDB-IN tree — either due to a BGP update message 

received from a neighbor, or due to loss of link to the next hop. From the perspective of the 

security kernel the link to the next hop is broken if the time-stamp in the neighbor record is stale. 
If the current neighbor session identity is different from the session identity of the next hop in the 

stored path, then the path is assumed to be invalid (as the path was provided during an earlier 

session). If the neighbor is no longer active, or if the path is invalid, the path weight will be set to 
0. 

 

()S

updF  is invoked to update a path for a prefix P . Recall that a prefix P  is associated with a 

path tree root θ  and a weight tree root γ . A path in the path tree is uniquely identified as a 

function of the AS-path α , path-length l , and next hop N : the index of the path is 

)),(,(= αβ lhNh . The path is associated with a path weight cW  and the session identity ns  of 

the next hop. 
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Figure 7.  BGP Speaker Security Kernel Functionality for Accepting BGP Updates 

 

Updating the path implies modifying the current weight cW  associated with the index β  to a 

weight W . In addition, modification of the weight requires the weight tree to be modified. 

Specifically,   a) if 0=cW  and 0≠W  (inserting a path), then the value W  has to be added to 

the IOMT with root γ ; b) if 0=W  and 0≠cW  (setting path weight to 0) then the value cW  has 

to be removed from the tree with root γ . c) if 0== cWW , then ()S

updF  is invoked to delete a 

path with zero weight. In this case no change is necessary to the weight tree root γ . 

 

For inserting a path ()S

updF  is invoked by submitting a received BGP update from a neighbor N  

specifying path vector α , path length l , and weights medlppp www || || . The weight for the 

inserted path is then  

 

medpp wlMAXxwW || || || −=  (14) 

 

where nLx =  or lpwx = . Specifically, if the neighbor N  providing the update belongs to from a 

foreign AS, the nLx =  (the local preference of X ); if N  belongs to the same AS, the local 

preference lpw  advertised by N  is retained. 

 

For setting weight to zero ()S

updF  may be invoked without a BGP message, or a BGP message 

that withdraws a previously advertised path. A withdraw message from a neighbor indicates 

0=== medlppp www .  
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In general, updating a path with index β  (for prefix P ) will require modification to the path tree 

root θ  and weight tree root γ  (in the leaf for prefix P ). For incorporating the change in values 

α  and γ  associated with leaf index P , the RIDB root dξ  will need to be modified.  

 

The inputs to ()S

updF  include a) a neighbor record NN  for N  and a 1V  memoranda nρ  to 

verify the integrity of the record against the root nξ  b) 1U  memoranda tρ , necessary to update a 

leaf with index β  in a tree with root θ , c) 1U  memoranda wρ , necessary to increment the 

counter in leaf with index W  (when a path with weight W  is inserted), or decrement the counter 

in a leaf with index cW  (when the current weight cW  of the path is reset to 0), in the weight tree 

with root γ , d) 1U  memoranda dρ , necessary to update the RIDB-IN root dξ  due to the 

changes to values γ  and θ  associated with index P ; and e) a received authenticated BGP 

update message ],,,[ µα medlppp wwwl  ||  ||  from neighbor N .  

 

4.6. Advertising BGP Paths 

 

Function ()S

advF   is invoked to identify the best path for a prefix and a) advertise the best path 

(create BGP update) to a neighbor, or b) add the prefix for the path (along with the next hop and 

session identity of the next hop) to the origination (This is to enable aggregation of prefixes, i.e. 

two adjacent prefixes with the same next hop and session identity can be aggregated by removing 

a place-holder in the ROMT) tree. ()
S

advF  can also be invoked to create a BGP update to 

withdraw a path with weight 0.  
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Figure 8.  BGP Speaker Security Kernel Functionality for Relaying BGP Updates. 
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If W  is the best weight for prefix P  then a leaf ),,( mWW ′  with WW <′  and 0≠m  should 

exist in the tree with root γ . This is demonstrated using a memorandum of type 1V . There 

should also exist a leaf for an index )),(,(= αβ lhGh  in the tree with root θ  associated with 

values gs  and W . For this purpose a 1V  memoranda is necessary to demonstrate the integrity of 

a neighbor record for G  against nξ , and another 1V  memoranda is required to demonstrate the 

integrity of the leaf with index β  against root θ . Finally, another 1V  memoranda is required to 

demonstrate the integrity of values θ  and γ  associated with index P  against the RIDB root dξ . 

Now that the best path (described by next hop G , AS vector α , path length l  and weight W ) 

has been identified,  

 

1. a leaf with range ),[ yx  corresponding to prefix P  can be added to the origination tree 

indicating next hop and session identity gsG || , or  

2.  a BGP update for prefix P  can be created and sent to a neighbor F .  

  

In the former case, updating the origination tree will require a leaf ,0),( yx  to be modified to 

)||,,( gsGyx P  where ),[ yxP ≡ . For updating the leaf of the origination tree, a 1U  memoranda 

is required as input to ()
S

advF . 

 

Before a BGP message for a path can be advertised to a foreign neighbor F , the path vector and 

path length have to be modified (to insert own AS number). If the path vector root is currently α , 

and the length is currently l , the value l  should be incremented, and a new leaf needs to be 

inserted into the IOMT with root α . Specifically, the new leaf will have index A  (AS number of 

the speaker) and value 1+l . More specifically, a place holder for A  needs to be inserted in a tree 

with root α , following which the place holder can be updated to modify the third field from 0 to 

1+l . Thus, a memoranda of type EI  (for inserting a place holder) and a memoranda of type 1U  

(for updating the place-holder) are required as inputs. 

 

4.7. Originating BGP Updates 
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Figure 9. BGP Speaker Security Kernel Functionality for Originating BGP Updates. 
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()S

origF  is used to advertise path information for two categories of prefixes 1) prefixes owned by 

the AS; and 2) aggregated prefixes. Specifically, in leaves corresponding to owned prefixes in the 

origination tree, the third value will be its own AS number A . Corresponding to other leaves the 

third value will be a neighboring speaker G  (next hop for the prefix) and a session identity gs ′  

of G  (at the time the prefix was added to the origination tree.) An owned range ),[ yx  can be 

converted into a prefix P  and advertised to a neighbor F  only if a record ),( ppwP  exists in the 

neighbor/policies tree with root 
nξ . A certificate of type 2V  is provided as input to 

simultaneously verify the integrity of the neighbor record 
FN  and record ),( ppwP  in the 

neighbor tree. To advertise an aggregated prefix P  a 1V  memoranda attesting the integrity of the 

next hop neighbor record 
GN  is required. In addition, a 1V  certificate is required to demonstrate 

that prefix P  does not exist in the RIDB-IN tree. If the next hop F  (to whom the origination 

message is to be sent) is set to 0=F , then ()S

origF  interprets this as a request to delete an 

aggregated leaf for prefix P  with third value gsG ′|| . To remove the aggregated prefix the third 

value gsG ′||  is set to 0. For this purpose a certificate oρ  of type 1U  is required as input. 

 

When a BGP message is originated for an owned prefix or an aggregated prefix the MED weight 

is set to to value fM  (for the intended receiver F ) provided by the AS owner; the local 

preference is set to 0; for owned prefixes the pre-path weight is set to the value pW  prescribed by 

the AS owner, and for aggregated prefixes the pre-path-weight is set to 0. 

 

5. RELATED WORK AND CONCLUSIONS 

 
In a large majority of security-kernel based approaches in the literature, the purpose of the 
security kernel is to ensure that verified software is executed unmolested on an untrusted 

platform. In the trusted computing group (TCG) approach based on the trusted platform modules 

(TPM) only the security kernel is trusted to realize the assurance that that “only pre-verified 

software can take control of the platform.” 

 

The security kernel, or the TCB for the TCG-TPM approach, can be seen as composed of three 

roots of trust — the root of trust for storage (RTS), reporting (RTR) and measurement (RTM). 

The RTS and RTR are offered by a hardware TPM bound to an untrusted platform. The RTM 

includes “all essential hardware required to run software.” Most often, the “essential hardware” 

includes the CPU, RAM, CPU-RAM bridge and BIOS. 
 

The purpose of the RTM is to measure every unit of software that takes control of the CPU. The 

unit of software is typically a file, and the measure is the file hash. The trusted BIOS includes 
software that measures itself, reports the measurement to the TPM, load the next level of software 

(usually the boot-loader), measure the boot-loader, and report the measurement to the TPM. 

If the boot loader can be verified to be free of malicious code then the boot loader loads the next 

level of code (the operating system kernel), measures the kernel and reports the measurement to 

the TPM. Similarly the operating system can load other higher level components and report 

measurements to the TPM. 
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The RTS is trusted to securely store measurements; the RTR is trusted to report measurements. 
Any entity interacting with the untrusted platform can now request the TPM to report the 

measurements, and may choose to abandon the interaction if the reported measurements differ 

from expected measurements. This strategy of building a chain of trust starting with the BIOS is 

the AEGIS model [11] adopted in the TCG approach. 

 

The main issues with the TCG-TPM approach are three fold:    

 

1. Ensuring that software can run unmolested is very little comfort when the software itself 

becomes too complex to be thoroughly verified. Furthermore, hidden malicious 

functionality in complex software may actually load other software without reporting 
their measurements (or reporting arbitrary measurements) to TPM.  

2. Lack of a secure binding between the RTM (trusted components of the untrusted 

platform) and the TPM (which houses RTS and RTR). The implication of this is that the 

TPM can uncoupled from the RTM, and supplied expected measurements (while the 

platform runs arbitrary software).  

3. The “minimal hardware trusted to run software” may also include peripherals with direct 
access to RAM. This results in the well known TOCTOU problem [12] in the TCG 

approach.  

 
In the proposed approach the goal of the security kernel is not to ensure the integrity of the all 

software related to a system/ sub-system. Rather, the goal is to ensure only some very specific 

sub-system specific properties. For example, if the TCG approach is used to secure the AS/IP 
Registry, every computer used by the Registry should be TPM enabled, and every piece of 

software that can take control of any computer should be carefully examined to be free of 

malicious code. However, in the proposed approach, only the simple security kernel functionality 

outlined in Figure 4 needs to be assured to be clear of undesired functionality. 

 

Most commonly used hash tree based ADSs include the well-known merkle tree [8], skip-lists 

[7], red-black trees [5], and B-trees [3, 13]. All such ADSs (except the plain Merkle tree) 

essentially provide the capability to order values in a set (based on some index). The main 

difference between OMTs and other ADSes like skip-list, red-black trees and B-trees are: 
 

1. In the OMT, the ordering is virtual (the first two fields in an OMT can be seen as a 

circular link list). In other trees the ordering is physical.  
2. An OMT without the third field is functionally equivalent to other trees. The third value 

in an OMT binds the first value to a record (in an IOMT) or a range to some “owner” (in 

an ROMT).   
 

Alternately, a skip-list and a merkle tree are together functionally equivalent to an OMT. From 

this perspective, the main advantage of the OMT is that with a simple tweak to the merkle tree, 

the OMT realizes the advantages of ordering values (viz., ability to readily determine existence 

and non-existence of records, maximum/minimum values, etc.) without using an additional tree. 

 
While there is very little algorithmic difference between an ROMT and an IOMT, there is a 

substantial difference in their functional utility. In this paper we illustrated the utility of an 

ROMT for registry and AS owner security kernels to maintain database of IP address ranges and 

the ownership of the range. In a BGP speaker the ROMT additionally enables the speaker to 

aggregate IP prefixes. The IOMT is used for a wide range of purposes like maintaining the RIDB, 

AS path trees (one for every path), and weight trees (one for every prefix). 
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The current approach to secure BGP is based on the Secure BGP [14] protocol proposed by Kent 
et.al. This approach employs public key certificates to authenticate communication between ASes 

(BGP updates) and delegation of AS numbers/IP prefixes. More specifically, a dual certificate 

system (supported in the back-end by a public key infrastructure (PKI)) is used where the one 

certificate binds the public key of the AS owner to the operating address space (IP prefix) and AS 

number, and a second certificate binds routers to an AS. Apart from such static certificates, 

dynamic certificates are also created by BGP speakers along with every update message. 

Specifically, such certificates created by every AS in the path seeks to assure the integrity of the 

AS path vector. Whenever a router receives an update message, it verifies the dual certificates to 

ascertain the validity of the message. In order to advertise the received message it extends the 

path by adding itself to the path and signing it (along with the nested signatures of the previous 
hops) with its own public key. To prevent deletion attacks a speaker in AS A sending an update 

message to a speaker in AS B also includes the next hop   in the signature. 

 

While S-BGP approach is successful in its claims for identity verification (AS owner, routers) and 

update message integrity, it fails to provide any assurances for the overall operation of a sub-

system in the protocol. For example, there are no assurances provided by the protocol 
guaranteeing that a router will indeed select the best path and that it will strictly abide by the 

policies and preferences prescribed by the AS owner. The security features of S-BGP protocol 

does not extend to aggregated prefixes as it is impractical to create static certificates to validate 
“ownership” of aggregated prefixes. This is a severe disadvantage of S-BGP as much of the 

advantages of CIDR stem from the ability to aggregate prefixes. 

 
In the proposed approach the simple security kernel associated with BGP speakers ensure that the 

speakers can only advertise the best path, that all preferences and policies of the As owner will be 

strictly adhered to. More importantly, the assurances also extend to aggregated prefixes. 
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