
International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

DOI: 10.5121/ijcnc.2016.8401 1

OMT: A DYNAMIC AUTHENTICATED DATA

STRUCTURE FOR SECURITY KERNELS

Somya D. Mohanty
1
, Mahalingam Ramkumar

2
 and Naresh Adhikari

3

1
Department of Computer Science, University of North Carolina - Greensboro,

Greensboro, USA
2
Department of Computer Science and Engineering, Mississippi State University,

Starkville, USA
3
Department of Computer Science and Engineering, Mississippi State University,

Starkville, USA

ABSTRACT

We introduce a family of authenticated data structures — Ordered Merkle Trees (OMT) — and illustrate

their utility in security kernels for a wide variety of sub-systems. Specifically, the utility of two types of

OMTs: a) the index ordered merkle tree (IOMT) and b) the range ordered merkle tree (ROMT), are

investigated for their suitability in security kernels for various sub-systems of Border Gateway Protocol

(BGP), the Internet’s inter-autonomous system routing infrastructure. We outline simple generic security

kernel functions to maintain OMTs, and sub-system specific security kernel functionality for BGP sub-

systems (like registries, autonomous system owners, and BGP speakers/routers), that take advantage of

OMTs.

KEYWORDS

Security Kernels, Broader Gateway Protocol (BGP), Authenticated Data Structure (ADS)

1. INTRODUCTION

Any system can be seen as a network of sub-systems, each with a specific role in the operation of

the system, interacting with each other according to system-specific and/or role-specific rules. For

an ever increasing range of systems, some or all sub-systems take the form of a computer, or a

collection of computers (most often a server with one or more back-end servers). For example,

sub-systems in the domain name system (DNS) have roles like zone authorities, who create DNS

resource records (RR) pertaining to the zone; authoritative name servers, that are chosen by the

zone authority to disseminate DNS RRs for the zone; and local (or preferred) name servers, that

iteratively query authoritative name servers to resolve queries from clients. Similarly, sub-

systems in the inter-domain routing infrastructure for the Internet — the Border Gateway Protocol

(BGP) — have different roles like autonomous system (AS) owner; AS registry, that assigns AS

numbers to AS owners; IP registry that issues (through IP registrars and ISPs) chunks of IP

addresses, or IP prefixes (a chunk of consecutive addresses) to AS owners; and BGP speakers for

an AS, authorized by the AS owner to originate routes for IP prefixes owned by AS.

Undesired functionality in any hardware/software component of a sub-system may be exploited

by an attacker to cause sub-system to misbehave. Undesired functionality may be deliberately

hidden malicious functionality (HMF), or accidental bugs. Attackers who exploit undesired

functionality may be personnel with legitimate access to the sub-system, or anyone who can take

advantage of remotely exploitable HMF/bug to exert some control over the sub-system. For

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

2

example, an attacker can a) compromise a BGP speaker (in a router) to send incorrect routing

information; or b) compromise a computer used by the AS administrator to modify the AS

policies/preferences; or c) compromise a computer of an administrator in the IP/AS/DNS registry

to make duplicate address/AS number assignments.

1.1. Security Kernel

It is far from practical to assure the integrity of every hardware/software component in every

component of every sub-system. One possible approach to secure systems is to mandate that all

important sub-systems should be associated with an appropriate security kernel that vouches for

the integrity of (system-specific and role-specific) tasks performed by the sub-system.

Specifically, all components of the sub-system are assumed to be untrustworthy; only the security

kernel is trusted.

The security kernel for a system/sub-system is also referred to as the trusted computing base

(TCB) for the system/sub-system. The TCB for any system is “a small amount of software and

hardware that security depends on, and that we distinguish from a much larger amount that can

misbehave without affecting security” [1]. For purposes of this paper, the exact nature TCB is not

important. For example, the TCB for any sub-system could take the form of a dedicated hardware

security module, or a software module executed on a general purpose platform, with some special

protections [2] to guarantee that the security kernel will run unmolested, etc.

In the rest of this paper we shall assume that the security kernel for a sub-system is a set of

functions executed by a read-proof and write-proof module T . It is essential that the security

kernel functionality is deliberately constrained to be simple — to permit consummate verification

of the functionality, and thereby, rule out the presence of undesired functionality within the

security kernel.

Some of the components of the security kernel will necessarily be specific to the nature of the

sub-system whose operation is assured by the module — the security kernel functionality for a

DNS server will be different from that of an IP registry or a BGP speaker. Nevertheless, to

simplify testing of the security kernel functionality, it is advantageous to possess efficient re-

usable components of the security kernels, with potential to be useful in a wide range of sub-

systems. The specific contributions of this paper are: a) an efficient resuable authenticated data

structure (ADS), an ordered merkle tree (OMT), and b) illustration of utility of OMTs in a broad

range of security kernels (for a broad range of sub-systems).

1.2. Ordered Merkel Tree

An ADS [3, 4, 5, 6, 7] is a strategy for obtaining a concise cryptographic commitment for a set of

records. Often, the commitment is the root of a hash tree. Any record can be verified against the

commitment by performing a small number of hash operations. An ordered merkle tree (OMT) is

an ADS that is derived as an extension of the better known merkle hash tree. Similar to a plain

merkle tree, an OMT permits a resource (computation and storage) limited module to track the

records in a dynamic database of any size, maintained by untrusted components of the associated

sub-system. Using an OMT (instead of a plain merkle tree) permits the resource limited module

to additionally infer a few other “useful holistic properties” regarding the database. For

illustrating the broad utility of OMTs, we explore the security kernel functionality necessary for

assuring the operation of various BGP sub-systems like IP and autonomous system (AS)

registry/registrars, AS owners, and BGP speakers, etc.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

3

The rest of this paper is organized as follows. In Section 2 we introduce OMTs, and discuss two

types of OMTs — the index ordered merkle tree (IOMT) and the range ordered merkle tree

(ROMT). In Section 3 we provide an overview of BGP. We enumerate the desired assurances

regarding the operation of BGP and suggest high level designs of the security kernel functionality

utilizing OMTs to guarantee the desired assurances (to the extent the security kernels are trusted).

In Section 5, we suggest other possible applications of OMTs and offer our conclusions.

2. ORDERED MERKEL TREE

The merkle hash tree [8] is a data structure constructed using repeated applications of a a pre-

image resistant hash function ()h (for example, SHA-1). Figure 1 depicts a tree with 16=N

leaves. In practical merkle tree applications each leaf can be seen as a record belonging to some

database.

Figure 1. A binary hash tree with 16 leaves. Nodes
3

0

2

1

1

36 ,,, vvvv (filled gray) and root ξ are ancestors of

leaf 6L . },,,{= 3

1

2

0

1

276 vvvvv are complementary” to 6v .

A tree with N leaves has a height of NL log=
2

. At level 0 of the tree are N leaf-nodes, one

corresponding to each leaf, typically derived by hashing the leaf. At the next level (level 1) are
1/2=/2 NN nodes, each computed by hashing together a pair of “sibling” nodes in level 0. Level

i has
iN/2 nodes computed by hashing a pair of siblings in level 1−i , and so on, till we end up

with a lone node ξ at level L — the root of the binary tree. A tree with
LN 2= nodes has

12 −N nodes distributed over 1+L levels, where NL log=
2

. Two nodes node
j

iv and
j

iiv +

at level j are siblings if i is even (else
j

iv 1− and
j

iv are siblings). Two siblings — the left sibling

u and the right sibling v are hashed together to obtain the parent node as),(= vuhp . Given a

value
0

iv , the index i of the leaf node, and the set of k complementary nodes, it is trivial to

identify the sequence of k hash operations necessary to map a leaf node to the root. We shall

represent by

),,,(= iim vivfy (1)

 a sequence of k hash operations to obtain the sub-tree root y from a leaf-node with value v and

position index i .

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

4

2.1. OMT Leaves and Node

An ordered merkle tree (OMT) is an extension of the merkle tree with the imposition of a special

structure for the leaves of the tree. Every leaf is of the form.

),,(= AAAL ω′ (2)

Corresponding to a leaf),,(AAA ω′ is a leaf node computed as

),,(= ALA AAHv ω′

≠′ 0.),,(

0,=0
=

AAAh

A

Aω

(3)

In addition, unlike a plain merkle tree which is intended primarily for dynamic databases with a

static number of records (leaves), OMTs are intended to be used for scenarios where leaves may

need to be inserted/deleted. For this purpose it is advantageous to redefine the operation of

mapping two siblings u and v to their parent p as

≠≠ 00,),(

0=

0=

=),(=

vuifvuh

uifv

vifu

vuHp V

(4)

In other words, the parent of two nodes is the hash of the two child nodes only if both children

are non-zero. If any child is zero, the parent is the same as the other child. The parent of

0== vu is 0=p .

An OMT leaf with the first field set to zero is an empty leaf, represented as Φ . The leaf hash

corresponding to an empty leaf is 0. As introducing an empty leaf node (corresponding to an
empty leaf) does not affect any other node of the tree, any number of empty leaves may be seen

part of the tree.

2.2. OMT Types

OMTs can be seen as falling under two broad categories depending on the interpretation of the

first two values. In the first category are index ordered MTs (IOMT), where the first value is

interpreted as an index, the second value is the next higher index in the tree. For the leaf

corresponding to the highest index the next index is the least index. The third value
Aω in a leaf

),,(AAA ω′ provides some information regarding index A . For example,
Aω could be the hash

of the contents of a database record with index A . It is also possible that
Aω is a root of another

OMT, in which case A is an index of a database (which may consist of any number of indexed

records).

In an IOMT, existence of a leaf like)(432,562, ω indicates that no leaf exists for indexes

between 432 and 562 . A wrapped around leaf like)(796,241, ω indicates that no leaf exists

for indexes greater than 796 , and for indexes less that 241.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

5

For range ordered MT (ROMT) the values A and A′ represent the range),[AA ′ of some

quantity associated with the third value
Aω . For example, a leaf like)(432,562,ω indicates that

the quantity ω is associated with a range [432,562) (or 562<432 x≤). For example, an

ROMT may be used to represent a look up table (LUT) for some function)(= xfy . In such an

ROMT each leaf indicates a range of the independent variable x , corresponding to which the

function evaluates to the dependent variable ω=y (the third value in the leaf).

2.3. OMT Properties.

Some of the important properties of OMTs are as follows. The leaf hash corresponding to an

empty leaf Φ is zero. A tree with root 0 can be seen as a tree with any number of empty leaves.

For a tree with a single leaf, the leaf hash is the same as the root of the tree. The existence of a

leaf),,(AAA ω in an OMT indicates that the leaf is the only leaf in the tree (in which case the

root will be the same as the leaf hash),,(AL AAH ω). Existence of a leaf like)(1,3, 1ω is proof

that no leaf exists with first field in-between 1 and 3. Existence of a leaf like)(7,1, 7ω is proof

that no leaf exists with first field less than 1 and that no leaf exists with first field greater than 7.

As leaves are ordered virtually, the actual physical ordering of leaves has no inherent meaning.
Thus, swapping leaves of an OMT does not affect the integrity of the database represented by the

OMT.

For both IOMT and ROMT, a leaf with a first field A can be inserted only if a leaf with first two

fields that circularly encloses A exists. For inserting a leaf the contents of two leaves in the tree

will need to be modified; and empty leaf Φ will be modified to become the newly inserted leaf,
and the second value of the enclosing leaf will need to be modified.

A place-holder is a non-empty leaf whose insertion does not change the interpretation of the

database. For an IOMT, a leaf of the form ,0),(AA ′ (third value zero) is a place holder.

Introduction of a place holder for an index A does not change the database in any way, as both

existence of place holder for index A and non-existence of a leaf for index A implies that “no

record exists for index A .” Thus,

)(7,1,(5,7,0),),(4,5,),(1,3,),(3,4,

)(7,1,),(4,7,),(1,3,),(3,4,

7413

7413

ωωωω

ωωωω and

(5)

which correspond to before and after insertion of a place holder for an index 5 , represent an

identical database. For an ROMT, a place holder is a leaf with third value the same as the third

value of the enclosing leaf. Specifically, inserting a leaf can be seen as a process of splitting a leaf

(for example),)(4,7, 4ω into two leaves (for example))(4,5, 4ω and)(5,7, 4ω . Specifically,

both

)(7,1,),(5,7,),,(4,5),(3,4,,)(1,3,

)(7,1,),(4,7,),(3,4,),(1,3,

dccba

anddcba

(6)

represent an identical database. Before insertion, the leaf)(4,7,c indicated that values 7<4 x≤

are associated with c . Nothing has changed after the range is split into two, as values

5)<(4 x≤ and values 7)<(5 x≤ are associated with the same quantity c .While operations

like swapping leaves in any OMT or insertion/deletion of a place holder do not change the

contents of the database, they will result in a change in the root of the tree — say from r to r′ .

Such roots are considered as equivalent roots.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

6

2.4. OMT Functions for Security Kernels

The module T is assumed to possess limited protected storage, and expose well defined

interfaces to the associated untrusted sub-system. Such interfaces can be used by an untrusted

sub-system (say) A to demonstrate the integrity of databases stored by the sub-system, and

request
AT associated with sub-system A to attest verified records.

For attesting records or contents of records (for verification by other sub-systems, or security

kernels in other sub-systems) every module is assumed to possess a unique identity, and secrets
used for authenticating messages. For example, the secret could be a private component of an

asymmetric key pair, which is used for signing messages. In this case, the public key of the

module is certified by a trusted key distribution center, attesting the integrity of the module.

Alternately one or more secrets could be provided by a trusted key distribution center to each

module. Only modules that have been verified for integrity and issued such secrets by the trusted

key distribution centers will be able to use their secrets to compute a pairwise secret with other

modules attested by the KDCs. Such pairwise secrets may be used to compute message

authentication codes for attesting the integrity of the contents of a record.

Apart from secrets provided by trusted KDCs or certified by trusted certificate authorities, every

module is assumed to spontaneously generate a random self-secret χ which is used for

authenticating memoranda to itself. For example, after executing (say)),,(= vixfz m
 , a module

may issue a memoranda to itself to remind itself that it has already verified that “ z is an ancestor

of x .”

As we shall see very soon, the self-memoranda in this scenario is a value),,1,(= χρ zxVh

computed as a function of the type 1V of the memoranda, the values x and z , and the secret χ .

No entity other than the module can fake such a memorandum. Thus, if values ,, zx and ρ are

provided as inputs to the module, the module can safely conclude that “ z is an ancestor of x .”

In the rest of this section we provide an algorithmic description of generic OMT functions
suitable for security kernels for a wide range of systems/ sub-systems. OMT functions issue

different types of self-memoranda. Such self-memoranda may then be used by other system-

specific (or role-specific) security kernel components of the same module. As an illustration of
how such memoranda can be used by other system-specific security kernel components of the

same module, in a later section we outline the use of such memoranda in security kernels for

various BGP sub-systems.

}

);,,,,,,2,(

;)),,,,1,((

);,,,2,())=()=(0)=((

;)),,,,,,2,((

{),,,,,,,,,(

}

);,,,,,,2,(

);,();,(

);,,,,1,())=()=((

;)),,,,1,((

);,,1,())=(0)=((

;)),,,,1,((

{),,,,,,,,,(

}

);,,,,1,(

);,,(:)?=();,,(

{),,,(

2121

2

2122112

21211

2121212

2121

1122

22222

1112

111

2221111

χ

χρ

χρ

χρ

ρρ

χ

χ

χρ

χρ

χρ

ρρ

χ

zxxzxxUhRETURN

RETURNzyzyUhIF

yxxVhRETURNxxxxIF

RETURNyxxyxxUhIF

zzyxxyxxF

pxxpxxUhRETURN

zyHpzyHp

zxzxUhRETURNxyxyIF

RETURNyxyxUhIF

yxVhRETURNxxIF

RETURNyxyxUhIF

zxzxyxyxF

yxyxUhRETURN

vixfyxxyvixfy

vixxF

cat

VV

cat

xmxm

xbt

′

′′≠

∧∧

′≠

′′

′

′′←′←

′′∧

≠

∧

′≠

′′

′′

′′←′←

′

′′

′′

′′

′′

′′

′′

′′

′

′

′′

Figure 2. Verification and Update Memoranda.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

7

2.5. OMT Memoranda

Five different types of memoranda are issued by OMT functions.

A certificate of type 1U is issued by functions ()btF and ()1catF . The inputs to ()btF include a

leaf node x in a subtree, the index i of the leaf node (in the sub-tree), and complementary nodes

v . The root of the subtree can now be computed as),,(= vixfy m . The function also accepts

another value x′ and computes),,(= vixfy m
′ (using the same complementary nodes). The

certificate of type 1U issued by this function, viz,

),,,,,,2,(= 2121 χρ pxxpxxUh ′′′ (7)

 states that “(it has been verified by me that) y is the root of a sub-tree with leaf node x , and if

xx ′→ then yy ′→ .” More generally, such a certificate implies that y is an ancestor of x , and

that if xx ′→ , then yy ′→ .

Functions ()1catF and ()2catF combine self memoranda to issue (in general) more complex self-

memoranda. ()1catF accepts inputs necessary to verify the integrity of two type 1U certificates. If

the second certificate is 0, and if in the first certificate binding yxyx ,,, 11 ′ if
11 = ′xx (implying

merely that y is an ancestor of
1x , a certificate of type 1V , viz.,),,1,(= 1 χρ yxVh is issued.

If the child in the second certificate
2x is the same as the parent y in the first certificate, the two

certificates are combined to issue a single certificate of type 1U binding the child
1x in the first

certificate to the parent z in the second certificate. Else, ()1catF computes),(= zyHp V
 and

),(= zyHp V
′′′ to issue a certificate of type 2U

1 2 1 2(2, , , , , , ,)h U x x p x x pρ χ′ ′ ′= (8)

 to the effect that that “
1x and

2x are leaf nodes of a sub-tree with root p , and if
11 ′→ xx and

22 ′→ xx then pp ′→ . Note that if y is an ancestor of
1x and z is an ancestor of

2x , then

),(= zyHp V
 is simultaneously an ancestor of

1x and
2x .

Function ()2catF extends the common ancestor y of two nodes to an ancestor z of y . In other

words, ()2catF combines a 2U certificate with a 1U certificate to produce a 2U certificate. If

only a certificate of type 2U is provided as input to ()2catF with
11 = ′xx and

22 = ′xx , bound to

yy ′= , ()2catF issues a certificate of type 2V binding two nodes
1x and

2x to a common

ancestor y .

Certificates of type 1U and 2U are useful for simultaneously verifying and updating the root of

the tree. Certificates of type 1V and 2V are useful in scenarios where only verification is

required. Functions ()(), swph FF and ()ceF create certificates that bind equivalent roots. A

certificate of),,,(= χρ yyEIh ′ attests to the equivalence of IOMT roots y and y ′ . A

certificate),,,(= χρ yyERh ′ attests to the equivalence of ROMT roots y and y′ .

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

8

Through a certificate of type 2U , ()swF recognizes the relationship between two roots resulting

from swapping two leaves. As swapping leaves does not affect the integrity of an IOMT or an

ROMT, the roots are equivalent for both IOMT and ROMT. Thus, depending on the value o

which identifies the type of request (1=o for ROMT certificate) ()swF outputs a EI or ER

certificate.

Function ()phF issues equivalence certificates binding roots before and after deletion of a place

holder. The input 1=o is a request to issue a ER certificate (else, the request is for an EI

certificate). If no certificate is provided as input to ()phF (or 0=ρ), one root is assumed to the

root of an empty tree, and the equivalent root is after insertion of the first place-holder for an

index A . For both IOMT and ROMT the first place holder will be ,0),(AA , and the root after

insertion will be ,0),(AAH L
.

If 0≠ρ this function interprets),,(AAA ω′ (with leaf hash
1x) and a place-holder),,(ωBA ′′

(with leaf hash
2x) as two leaves in a tree with root y . If 1=o (ROMT) the place holder has

Aωω = , else (for an IOMT), 0=ω . If the place holder is the first leaf it needs to be modified to

),,(ABA ω′ (leaf-hash
1′x) and the second leaf to an empty leaf (leaf hash 0). The certificate ρ

attests that modifying two leaves
1x and

2x to
1′x and

2′x is equivalent to changing the root

from y to y′ . Hence, y and y′ are equivalent roots.

}

);,,,(

))),,,(=()),,,(=((

);,,,())),,,(=(0)=((

;},{

{),,,,,(

}

);,,,(:),,,(1)?=(

))),,,,,,2,(=(

)),,,,,,2,(=((

0;);,,();,,(

,0);,(:),,(1)?=(

),0),,(,0,(0)=(

),0),,(,0,(1)=(0)=(

{),,,,,,,(

}

);,,,(

);,,,(1)=(

)),,,,,,2,(=(

{),,,,,(

21

12

21

1212

2121

211

2

1221

21

χ

χρχρ

χχρρ

ρρ

χχ

χρ

χρ

ωω

ω

χρ

χρ

ρω

χ

χ

χρ

ρ

zxihRETURN

zyihyxihIF

xyihRETURNyxihIF

RETURNEREIiIF

zyxiF

yyEIhyyERhoRETURN

yxxyxxUh

yxxyxxUhIF

xBAHxAAHx

BAHBAHox

AAHEIhRETURNIFELSE

AAHERhRETURNoIF

oyyBAAF

yyEIhRETURNELSE

yyERhRETURNoIF

yxxyxxUhIF

oyyxxF

ce

ALAL

LAL

L

L

Aph

sw

∧

∧

∈/

′′

′

∨′

←′←′←

′′′′←

∧

′′′

′

′

′

′

′′

′′

′′

Figure 3. OMT Functions for Issuing Equivalent-Root Memoranda.

3. BGP SUBSYSTEMS

The Internet is an interconnection of autonomous systems (AS) [9], [10]. Each AS owns one or

more chunks of the IP address space, where the number of addresses in each chunk is a power of

2. IP chunks are represented using the CIDR (classless inter-domain routing) IP prefix notation.

For example, the IP prefix 132.5.6.0/25 represents
25322 −

 IP addresses for which the first 25 bits

are the same as the address 132.5.6.0, viz., addresses 132.5.6.0 to 132.5.6.127. An AS registry

assigns AS numbers to AS owners. AS owners may acquire ownership of IP prefixes from an IP
registry (through IP registrars, or ISPs).

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

9

While each AS may follow any protocol for routing IP packets within their AS, all ASes need to
follow a uniform protocol for inter-AS routing. The current inter-AS protocol is the border

gateway protocol (BGP), where AS owners employ one or more BGP speakers to advertise

reachability information for IP prefixes owned by the AS. Specifically, every BGP speaker

recognizes a set of neighboring BGP speakers. Neighbors may belong to the same AS or a

different AS. The main responsibility of BGP speakers are a) originate BGP update messages for

prefixes owned by the AS, and convey such originated messages to neighbors of other ASes; b)

relay BGP update messages received from neighbors to other neighbors; and c) aggregate

destination prefixes (that can be aggregated) for reducing the size of routing tables.

BGP is a path vector protocol. BGP update messages communicated between BGP speakers
indicate an AS path vector for a prefix. Specifically, a BGP update message

]),,,,(,[da WDCBAP (9)

from a speaker dS (belonging to the last AS in the path) indicates that prefix aP owned by the

first AS A in the path. dW is the weight of the path.

3.1. BGP Updates

A BGP speaker may receive multiple paths for the same prefix. All such paths are stored by the

BGP speaker in the incoming routing information database (RIDB-IN). However only the best
path for a prefix may be copied to the outgoing database (RIDB-OUT), and advertised to other

BGP speakers. Most often a BGP speaker is a component of a router which uses entries in RIDB-

OUT (best path for different prefixes) to forward IP packets.

3.1.1. BGP Weights

The best path is the one with the maximum weight. Several parameters are used to compute the

weight of a BGP path. For simplicity, in this paper we restrict ourselves to some of the more

important weight parameters, i) pre-path weight; ii) local preference iii) AS path length; and iv)

multi-exit descriptor (MED).

The pre-path weight is assigned at time of origination. If two paths for the same prefix have the

same pre-path weight, then the the local preference is considered (higher the better). If both pre-
path weight and local preference are the same, the AS path length (number of ASes in the path) is

considered. The longer the path, the lower the weight. If the path lengths are also the same, then

the MED weight is considered (higher the better).

 Local Preference and MED: Every BGP speaker recognizes a set of other BGP speakers as

neighbors. Every neighbor is associated with two weight parameters — a local preference, and an

MED. From the perspective of a speaker aS . That bL is the local preferenc of bS implies that for

all paths received from bS the local preference component of the weight should be reset to bL .

That bM is the MED of bS implies that for all paths advertised to bS , the MED component of

the weight should be set to bM . Local preference and MED weights are assigned only to

neighbors that are speakers of foreign ASes.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

10

Processing Received BGP Updates: When a BGP update message is received from a foreign

speaker bS (of AS B) the steps to be taken by a speaker aS (AS A) are as follows: 1)

increment hop-count; 2) add own AS A to the path vector; 3) change local preference to value

bL ; 4) set next hop to bS ; and 5) store path in RIDB-IN. When a path is received from a speaker

aS ′ belonging to the same AS, no component of the weight is changed, and the AS number is not

inserted.

Relaying and Originating BGP Updates: For relaying a BGP message for a prefix P to a BGP

speaker bS in a foreign AS, the steps to be taken by speaker aS are: a) among all paths for the

same prefix, choose the path with the highest weight; b) change the MED component of weight

to; c) advertise the path with modified weight. For originating a path (for owned prefixes), the

pre-path weight is set, and the MED is set to that of the foreign neighbor. Such originated paths

are not sent to speakers of the same AS (as paths to IP addresses within the AS are established

using an intra-AS protocol). For relaying a BGP update message (for a prefix owned by a foreign

AS) to a speaker
aS ′ of the same AS, simply choose the path with the highest weight and send it

without changing the weight.

Policies and Preferences: The choice of BGP speakers for the AS, the prefixes for which a
speaker may originate BGP update messages (along with their pre-path weights), neighbors of

each speaker, along with their local preference and MED weights, etc., can be seen as policies and

preferences specified by the AS owner to influence the weights assigned to BGP paths.

 Aggregation: One of the major benefits of CIDR prefixes come from the fact that BGP speakers

may aggregate prefixes. If two consecutive prefixes A and B (say 126.5.4.0/25 and

126.5.4.128/25) and can be aggregated into a single prefix C (126.5.4.0/24) if the next hop for

prefixes A and B is the same. The speaker that performed the aggregation is the originator for

the aggregated prefix.

4. SECURITY KERNELS FOR BGP SUB-SYSTEMS

Thus far we have outlined generic security kernel functionality for issuing OMT certificates. In
this section we consider other sub-system specific security kernel functionality for various BGP

sub-systems like AS and IP registries, AS owners, and BGP speakers.

For simplicity, we shall assume a single registry for both AS numbers and IP addresses. All

security kernel modules have a unique identity. Let U be the identity of the module associated

with the registry. One module is associated with every AS owner. We shall assume the identities

of an AS owner modules to be the same as the AS number. Each BGP speaker is associated with

a module. We shall assume that the identity of BGP speaker modules to be the IP address of the

router/BGP speaker. We also assume the existence of module functionality for

authentication/verification of messages exchanged between modules. Specifically, we shall

represent such functionality as

andvvYXfa }),,{,,(= 21 Kµ)},,,{,,(={0,1} 21 µKvvYXfv (10)

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

11

the process of authentication (by module X , using ()af) and verification (by module Y , using

()vf) of a message conveying values },,{ 21 Kvv , from module X to module Y . Function ()af

outputs a authentication code µ . Function ()vf outputs a binary value (TRUE if authentication

µ is consistent, or FALSE).

The identity U of the registry module is known to all AS owner modules. The registry module

U delegates AS numbers and IP prefixes to AS owner modules. AS owner modules will only

accept delegations from U . AS owner modules in turn delegate IP address ranges they own to

one or more BGP speaker modules.

Some of the specific desired assurances regarding the operation of BGP are as follows:

1. AS number can not have more than one owner; an IP address can not be owned by one

or more ASes. Such assurances should be guaranteed even if the computers employed by

the registry have been compromised by an attacker.
2. AS owners can only delegate address ranges owned by the AS to BGP speakers.

3. Notwithstanding the possibility that a router/ BGP speaker may be under the control of an

attacker, the following assurances are desired
a) The BGP speaker will only be able to create BGP update messages for prefixes

delegated by the AS owner

b) No BGP update message can be created by violating any of the policies /

preferences specified by the AS owner (neighboring speakers, local preference

and MED, pre-path weights) or BGP rules (only the path with the best weight can

be advertised).

c) A speaker will not accept paths which already includes its own AS (to ensure that
routing loops can not be created).

d) All BGP speakers will increment the hop count exactly by one.

e) A speaker will be able to aggregate only prefixes for which the next hop is the
same speaker.

4.1. OMTs Used by BGP Subsystems

The registry and AS owners maintain an ROMT where each leaf indicates a range of IP

addresses, and the third value is the AS number (of the AS that owns the address range).

BGP speakers maintain one ROMT, multiple IOMTs, and a plain Merkle tree. A plain Merkle
tree is used to maintain a neighbour table with a static number of records. More specifically, for

scenarios involving dynamic databases where records can not be inserted or deleted (the

dynamics come only from modification of records) OMT is an over-kill; a plain Merkle tree is
adequate. The ROMT is used maintaining address ranges for which the speaker can originate

BGP updates (owned prefixes and aggregated prefixes).

An IOMT is used for maintaining the RIDB-IN database. More specifically a nested IOMT is

used where the root corresponds to a tree with leaves whose indexes are IP prefixes.

Corresponding to each prefix the value (third field) is the hash of two IOMT roots. The root of

the “path tree” has one leaf for every path for the prefix. The root of the “weight tree” represents

the weights of different paths, and enables the module to readily identify the path with the highest

weight. The index of leaves in path tree is a function of a quantity that is itself the root of an

IOMT. Specifically, the “path vector” IOMT with root has a leaf corresponding to every AS in

the AS path. Representing the AS path in this way makes it possible for the module to recognize

that it is already in the path, and thereby prohibit creation of routing loops.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

12

4.2. Registry Module U and AS Owner Modules

The registry module maintains an ROMT root
rξ , where each leaf indicates ranges of IP

addresses, and the AS number of the owner. Unassigned IP chunks have a leaf with value 0.

}

});,{,,(=),,1,(=(

{),,,(

}

;),,,,1,(=(

;0)=),,,((

);,,(,0);,(

{),,,,(

}

;)),,,(=(

{),(

}

});{,,()),),,,(1,(=(

{),,,(

}

;),),,,(,,0),,(1,(=(

{),,,,(

}

;)),,,(=(

{),(

'

'

noaro

no

O

dp

rrpr

v

LL

rap

pr

ph

arL

R

dp

rrrLrL

r

R

as

rr

R

ph

SAfRETURNVhIF

SF

xxUhIF

RETURNxAUfIF

AIIHxIIHx

IIF

xxERhIF

xF

xAUfRETURNAIIHVhIF

AIIF

AIIIIHUhIF

AIIF

xxERhIF

xF

′′′

′′

′′

′

′′

′

→′

′

′←′′←

′

←

′

′

←′′

′

←

ξξµχξξρ

ξρξ

ξξχξξρ

µ

ξρµ

ξχξρ

ρ

χξρ

ρ

ξξχξξρ

ξρ

ξχξρ

ρ

 Figure 4. Security Kernel Functionality in Registry and AS Owner Modules.

The function ()R

phF can be utilized to insert/delete any place holders in the ROMT by providing a

memoranda of type ER . The registry employs the function ()R

asF to convert the third value of

any leaf from 0 to a non zero value. A leaf),,(AII ′ in the ROMT indicates that the IP addresses

in the range I and 1−′I have been assigned to AS A . The leaf),,(AII ′ can be conveyed to an

AS owner module A using interface ()R

dpF .

AS owner modules also maintain an ROMT with root
rξ . The leaves indicate IP addresses owned

by the AS. In the tree maintained by the owner of AS A who (for example) owns two non

consecutive chunks with addresses between),[aa ′ and),[bb ′ the ROMT leaves will be

),,(Aaa ′ , ,0),(ba′ ,),,(Abb ′ and ,0),(ab′ . The function ()o

phF can be used to insert/delete

place-holders in the tree. Once a place older ,0),(aa ′ exists, a delegation),,(Aaa ′ from the

registry module U can be used to update the place holder to a leaf),,(Aaa ′ . Any node in the

tree with root
rξ can now be sub-delegated to a BGP speaker. Depending on which prefixes need

to be delegated to which BGP speaker the owner can use ()O

phF to subdivide owned prefixes and

swap positions of prefix leaves, and choose the root of a subtree which includes all prefixes to be
delegated to the speaker. Apart from delegating IP prefixes, the AS owner also specifies various

preferences as leaves of a hash tree (with root n′ξ). The types of records in this tree include

1) Pre-path weight; a record of the form],[oP for each owned prefix P that can be

originated by the speaker, indicating the pre-path weight o .

2) Neighbor preferences record for each neighbor. A record for neighbor F is of the form

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

13

],,,0,=0,=,[= ffffffF MLAtsFN τ (11)

where fA is the AS number of the neighbor, fL and fM are the local preference and MED

weights, and fτ is the maximum permitted duration between HELLO messages from the

neighbor N . The values fs and ft are set to zero by the AS owner. Such fields can be modified

only by the module of a BGP speaker initialized using the value n′ξ . The value fs is the time at

which a link to F was established. Value ft is the time at which the F was last heard-from.

4.3. BGP Speakers

The security kernel of BGP speakers maintains 3 dynamic roots (see Figure 5): the root oξ of an

ROMT is initialized to a value o′ξ communicated by the AS owner module; the root nξ of a

Merkle tree (with a leaf corresponding to every neighbour, and a static leaf for every owned

prefix corresponding to which BGP speaker can originate BGP updates) is initialized to the value

n′ξ conveyed by the AS owner module; the root
dξ of an IOMT indexed by IP prefix – the RIDB

tree, which is initialized to zero. BGP speakers also maintain a static value A — initialized to

the AS number represented by the speaker. During regular operation of the BGP speaker the

RIDB root dξ is updated whenever a BGP update message is received, or if a path is removed

(for example) due to loss of link to neighbor.

The neighbor/preferences tree root nξ is updated whenever a neighbor state is updated.

Specifically, corresponding to each neighbor are two dynamic values: a connection identifier s

(which is the time at which the connection was initiated) and a time-stamp t (time of last activity

in the connection).

The leaves of the ROMT are IP address ranges for which the speaker can originate BGP updates.

Originated updates can be for owned IP address ranges or for aggregated prefixes. When

initialized, the ROMT root oξ is a commitment to leaves corresponding to owned IP ranges

(delegated by the AS owner module by conveying a root of a sub-tree from its tree of owned

prefixes). In all such leaves the third value a is the AS number. The ROMT root oξ may also be

updated for purposes of aggregating CIDR prefixes. Specifically, for any prefix in the RIDB tree

the address range and the next hop in the best path to the prefix can be added to the ROMT. Thus,

for leaves corresponding to foreign IP ranges the third value is the next hop. Two adjacent

prefixes with the same next hop can now be aggregated. More specifically, aggregation

corresponds to removing a place-holder. For example, two leaves),,(21 xII and),,(32 xII

where),[21 II and),[32 II are two ranges with the same next hop x , can be converted to a

single leaf),,(31 xII through an equivalence operation.

From the perspective of the BGP speaker modules, corresponding to a BGP update message from

a speaker (with IP address) X to a speaker Y is an authenticated message from module X to

module Y computed as:

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

14

]}),,,,,{,,(= medlpppa wwwlPYXf αµ (12)

where P is the prefix for which the path is advertised, α is a one-way function of the AS path,

l is the path length, lppp ww , and medw are respectively the pre-path weight, local preference,

MED. The four weights are used to construct a weight represented as

].[= medlppp wlMAXwwW − (13)

Thus, for any prefix the path with the highest weight W is the best path.

Security kernel functions ()S

relF and ()S

origF are used to create such BGP update messages, and

()S

updF is used to process such messages from neighboring speakers and update the RIDB root.

More specifically, ()S

origF is used to originate BGP updates (for own prefixes and aggregated

prefixes). Specifically, a path for a prefix P (represented in the origin tree as a leaf with range

),[21 II and third value v) can be advertised only if a) the third value v is its own AS number,

and a leaf exists in the tree with root nξ for the prefix P , conveying the pre-path weight ppw for

prefix P ; or b) the third value v corresponds to a neighbor with a live link, and no leaf with

prefix P exists in the RIDB tree. ()S

relF is used to relay stored BGP paths in the RIDB to

neighbors. ()S

relF identifies the best path for a prefix, and only the best path may be advertised.

Alternately, information regarding the best path can also be added to the origination tree to

aggregate a prefix.

Figure 5: OMTs Used by BGP Speakers.

Neighbouring BGP speakers maintain a TCP connection over which BGP update messages are

exchanged. To keep the connection alive, and for testing the existence of the link, special HELLO

messages are exchanged periodically. From the perspective of the security kernel in a speaker S

the link to a neighbour F is associated with the link establishment time fs and a timestamp ft .

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

15

Once a link has been established, the module F in is expected to confirm their continued

presence by periodically sending authenticated time-stamped messages for updating the

timestamp ft .

In the RIDB-IN, multiple paths, each with possibly different weights, may exist for each prefix.

To enable the security kernel to readily determine the path with the highest weight, the plurality

of weights for each prefix are maintained as an ordered list. In the weight IOMT, the index of a

leaf is a weight, and the value (third field) is the number of occurrences of the weight in the list.

 For example, corresponding to a list with four weights 42)(21,21,34, , three leaves

(42,21,1)(34,42,1),(21,34,2), will exist in the weight tree (index 21 occurs twice as indicated

by the value field). As in any IOMT, insertion of a place-holder (say for index 5, which signifies

“zero occurrences of value 5 in the list)” does not modify the list.

Within the RIDB IOMT a special IOMT is also used to represent AS paths. In the AS path IOMT
the the index of leaves are ASes. A tree corresponding to a path of length 5 will have 5 leaves.

The value field (third field) is the position in the path. As an example, corresponding to a path

EBDA →→→ the leaves of the tree will be ,2),(,3),,(,1),,(EDDBBA and ,4),(AE

(note that the value for index D is 2 as D is the second AS in the path).nIn the RIDB IOMT the

index of leaves are IP prefixes. The value field in the IOMT is a one way function of two IOMT

roots 1) OMT root γ — is the root of a weight-IOMT; and 2)IOMT root θ — the root of an

IOMT whose leaves like),,(vββ ′ characterize each path to the prefix.In the IOMT with root θ

the index of leaves are functions of the path; more specifically, in the index)),(,(= αβ lhGh ,

G is the next hop, l is the path length, and α is the root of an AS-path IOMT root. The value v

corresponding to an index β is a function of two values — the weight W of the path, and the

connection identifier of the next hop that provided the path. If the connection identifier in a path
is not the same as the identifier in the neighbor record for that neighbor, then the path is

considered as stale (and the weight is set to 0).

4.4. Using Security Kernel Functions in BGP Speaker Module

BGP speaker modules expose a function ()S

initF which is invoked to initialize the module. In the

rest of this paper we shall investigate the functionality of a speaker S belonging to an AS A . An

authenticated message from AS module A (created by using function ()A

dpF in Figure 6) is

necessary for initializing the roots of the neighbor tree to n′ξ , and the origin tree to o′ξ .

Any place holder can be added to the IOMT with root
rξ or the ROMT with root pξ . Using

function ()S

phF . Any place holder can also be added to the path tree or weight tree corresponding

to any prefix. This can be accomplished using function ()2

S

phF which issues a equivalence

memoranda of type 2E identifying two roots corresponding to before and after insertion of a

place holder in a tree with root θ , or a tree with root γ , or both.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

16

Function ()hlo

SF can be invoked to create authenticated messages that can be sent to other

speakers. This function ensures that speaker S can only connect to speakers explicitly authorized

by the AS owner (by providing the initial root nξ). Such authenticated messages can be used to

create a connection (with a new value of s deemed sufficiently close to the current time t), and

for updating time stamps of neighbors.

}

});,{,,(;

)),),,,,,,,(,,1,(=(

:)))<()=(()<((

:0)=)},,{,,((

};=,={0)=(

}0;=0,={0)=(0)=(

0};=,={)|<(|0)=(

);,,,,,,(

){,,,,,,,,,,,,(

}

);,,2,()),,,,1,(=(

));,(,,());,(,,(

;0)=(

;0)=(

;)),,,((0)(

;)),,,((0)(

{),,,,,,,,,,(

}

;)),,2,(=(3)=(

;)),,,(=(2)=(

;)),,,(=(1)=(

{),,(

}

;0;;;

))},,{,,((

{),,,(

2

1

11

11

212

tsGSfRETURN

MLAtsGhvUhIF

RETURNttssssIF

RETURNtsSGfIFELSE

ttssIFELSE

tstIFELSE

ttsttIF

MLAtsGhv

ttsMLAtsGF

EhRETURNvvUhIF

hPPHvhPPHv

IF

IF

RETURNEIhIF

RETURNEIhIF

PPF

EhoIFELSE

EIhoIFELSE

ERhoIF

oF

AA

SAfIF

AF

gann

nggggggn

gggggg

ggv

gggg

gg

gg

gggggg

ggngggggg

S

hlo

pp

LpLp

S

ph

dr

dr

oo

S

ph

doonn

nov

no

S

init

′′

′′′

′′′

′′

′′

′′

′′

′′′

′

′

′′

′′

′′

→

∧∨

′∧

′′−∧

←

′

′′

′′′←′←

←′

←′

′≠∧≠

′≠∧≠

′′′′

′←′∧

′←′∧

′←′∧

′

′←←←←

′

′

ξξ

χξτξρ

µ

µ

µ

δµ

τ

µξρτ

χξξχξξρ

γθγθ

γγρ

θθρ

χγγρρ

χθθρρ

ξξρργγρθθ

ξξχξξρ

ξξχξξρ

ξξχξξρ

ρξ

ξξξξξ

µξξ

µξξ

Figure 6: Security Kernel Functions for BGP Speakers.

4.5. Processing BGP Updates

Function ()S

updF is invoked to update the RIDB-IN tree — either due to a BGP update message

received from a neighbor, or due to loss of link to the next hop. From the perspective of the

security kernel the link to the next hop is broken if the time-stamp in the neighbor record is stale.
If the current neighbor session identity is different from the session identity of the next hop in the

stored path, then the path is assumed to be invalid (as the path was provided during an earlier

session). If the neighbor is no longer active, or if the path is invalid, the path weight will be set to
0.

()S

updF is invoked to update a path for a prefix P . Recall that a prefix P is associated with a

path tree root θ and a weight tree root γ . A path in the path tree is uniquely identified as a

function of the AS-path α , path-length l , and next hop N : the index of the path is

)),(,(= αβ lhNh . The path is associated with a path weight cW and the session identity ns of

the next hop.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

17

}

;),,,,1,(=

));,(,,());,(,,(

;))),,,,1,((

1);,,();,,(0)>(

0;0))<(0)=((

1);,,();,,(

0))>(0)>(0)((

;)),,,,1,((

);,,();,,());,(,(=

);,(:1)?0=();,(:0)?0=(

];[

];[)(

1)=)},,,,{,,((

1;0)=(0)=(

0;))>()((0)=(

;)),),(1,((

{//),,

//,,,,,

//,,,),,(,

//],,,,,,,[=,

//,],,,,([

ddddd

LL

w

LL

c

cLcL

c

t

LL

nccc

medlppp

mednppn

medlpppnnv

c

nncn

nNn

rdd

w

tcc

nnnnnnNn

medlppp

S

upd

vvUhIF

hPPHvhPPHv

RETURNvvUhIF

mWWHvmWWHvWIFELSE

vvWWIFELSE

mWWHvmWWHv

WmWIF

RETURNvvUhIF

vHvvHvlhNh

sWhWvsWhsv

wlMAXwwWELSE

wlMAXLwWAAIF

wwwPsSNfIFELSE

WWIFELSE

WltssIF

RETURNNhVhIF

rootRIDBupdateandP

treeweightinweightandmW

treepathinpathinsertsW

NspeakergneighborinfromMLAtsNN

PprefixregardingUpdatewwwlPF

′′

′

←′

′′′→′′→

′′≠

+′←′′←

←′←∧

−′←′′←

∧∧≤

′′≠

′′←′′←

−←′←

−←

−←≠

−←∧

←+∨≠∧

≠

′

′′

′′

ξξχξξρ

γαγα

χγγρ

χθθρ

ββββαβ

µα

µ

τµ

χξρ

ξξρ

ργγ

ρθθβ

τρ

µα

||||||

||||||

||||

||||

Figure 7. BGP Speaker Security Kernel Functionality for Accepting BGP Updates

Updating the path implies modifying the current weight cW associated with the index β to a

weight W . In addition, modification of the weight requires the weight tree to be modified.

Specifically, a) if 0=cW and 0≠W (inserting a path), then the value W has to be added to

the IOMT with root γ ; b) if 0=W and 0≠cW (setting path weight to 0) then the value cW has

to be removed from the tree with root γ . c) if 0== cWW , then ()S

updF is invoked to delete a

path with zero weight. In this case no change is necessary to the weight tree root γ .

For inserting a path ()S

updF is invoked by submitting a received BGP update from a neighbor N

specifying path vector α , path length l , and weights medlppp www || || . The weight for the

inserted path is then

medpp wlMAXxwW || || || −= (14)

where nLx = or lpwx = . Specifically, if the neighbor N providing the update belongs to from a

foreign AS, the nLx = (the local preference of X); if N belongs to the same AS, the local

preference lpw advertised by N is retained.

For setting weight to zero ()S

updF may be invoked without a BGP message, or a BGP message

that withdraws a previously advertised path. A withdraw message from a neighbor indicates

0=== medlppp www .

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

18

In general, updating a path with index β (for prefix P) will require modification to the path tree

root θ and weight tree root γ (in the leaf for prefix P). For incorporating the change in values

α and γ associated with leaf index P , the RIDB root dξ will need to be modified.

The inputs to ()S

updF include a) a neighbor record NN for N and a 1V memoranda nρ to

verify the integrity of the record against the root nξ b) 1U memoranda tρ , necessary to update a

leaf with index β in a tree with root θ , c) 1U memoranda wρ , necessary to increment the

counter in leaf with index W (when a path with weight W is inserted), or decrement the counter

in a leaf with index cW (when the current weight cW of the path is reset to 0), in the weight tree

with root γ , d) 1U memoranda dρ , necessary to update the RIDB-IN root dξ due to the

changes to values γ and θ associated with index P ; and e) a received authenticated BGP

update message],,,[µα medlppp wwwl || || from neighbor N .

4.6. Advertising BGP Paths

Function ()S

advF is invoked to identify the best path for a prefix and a) advertise the best path

(create BGP update) to a neighbor, or b) add the prefix for the path (along with the next hop and

session identity of the next hop) to the origination (This is to enable aggregation of prefixes, i.e.

two adjacent prefixes with the same next hop and session identity can be aggregated by removing

a place-holder in the ROMT) tree. ()
S

advF can also be invoked to create a BGP update to

withdraw a path with weight 0.

}

})0,,,,{,,(

}),,,,,,{,,()=(

;],,,[

))<()<((

0});0,0,,{,,(0)=(

);(

;),,,1,((

);,,(,0);,(1;

;)),,,((

)(

;;)),,,,1,(=(

);,,(,0);,();,[

),[//0)=(

;)),)),,(,,(1,((

;)>(1)<(

;)),),,,(1,((

;)),,1,((

)),(,,());,(,(

;)),),(),(2,((

;))),),(1,((0)=((

){,,,,,,,,,

,,,,,,,,,,,,,(

fppfa

medlpppfaf

medlenlppp

ggff

fa

ias

LL

ii

f

ooooo

g

dLd

Lw

t

gL

nGFn

nGn

ooFfasiiGn

dwt

S

snd

MwlPsFSfRETURNELSE

wwwlPsFSfRETURNAAIF

Wwwww

ttttIFELSE

lsFSfRETURNWIF

ELSE

RETURNvvUhIF

lAAHvAAHvll

RETURNEIhIF

AAIF

RETURNvvUIF

sGyxvyxvyxP

PprefixofrangeaddresstheisyxletFIF

RETURNhPPHVhIF

RETURNWWmIF

RETURNmWWHVhIF

RETURNvVhIF

sWhHvlhGh

RETURNNhNhVhIFELSE

RETURNNhVhFIF

NN

PPmWWlF

||||

||||

||

α

α

ττ

α

αα

ααρ

χααρ

ξξχξξρ

χξγθρ

χγρ

χθρ

ββαβ

χξρ

χξρ

ξρρραραρ

ρργρθβα

′

←

+∧+

′

←′

′′≠

′←′′←+←

≠

≠

←′

←′←→

′≠

′∨

′≠

≠

′←←

≠

≠∧

′

′′′

′′

′

Figure 8. BGP Speaker Security Kernel Functionality for Relaying BGP Updates.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

19

If W is the best weight for prefix P then a leaf),,(mWW ′ with WW <′ and 0≠m should

exist in the tree with root γ . This is demonstrated using a memorandum of type 1V . There

should also exist a leaf for an index)),(,(= αβ lhGh in the tree with root θ associated with

values gs and W . For this purpose a 1V memoranda is necessary to demonstrate the integrity of

a neighbor record for G against nξ , and another 1V memoranda is required to demonstrate the

integrity of the leaf with index β against root θ . Finally, another 1V memoranda is required to

demonstrate the integrity of values θ and γ associated with index P against the RIDB root dξ .

Now that the best path (described by next hop G , AS vector α , path length l and weight W)

has been identified,

1. a leaf with range),[yx corresponding to prefix P can be added to the origination tree

indicating next hop and session identity gsG || , or

2. a BGP update for prefix P can be created and sent to a neighbor F .

In the former case, updating the origination tree will require a leaf ,0),(yx to be modified to

)||,,(gsGyx P where),[yxP ≡ . For updating the leaf of the origination tree, a 1U memoranda

is required as input to ()
S

advF .

Before a BGP message for a path can be advertised to a foreign neighbor F , the path vector and

path length have to be modified (to insert own AS number). If the path vector root is currently α ,

and the length is currently l , the value l should be incremented, and a new leaf needs to be

inserted into the IOMT with root α . Specifically, the new leaf will have index A (AS number of

the speaker) and value 1+l . More specifically, a place holder for A needs to be inserted in a tree

with root α , following which the place holder can be updated to modify the third field from 0 to

1+l . Thus, a memoranda of type EI (for inserting a place holder) and a memoranda of type 1U

(for updating the place-holder) are required as inputs.

4.7. Originating BGP Updates

}

})0,1),1,0,(,,{,,(

)<(

;)),,0),,(1,((

;))),),(),(2,((

})0,1),1,,(,,{,,(

)),),(),,(2,(=(0)=(

;),,1,((

;)>(

;;),,0),,(,,1,(=(

;))),),(1,((

//))(0)=((

);,,();,[

;;0)=(

;)=(

){,,,,,,,,,,(

fLfa

gg

rLr

nGFn

fpLfa

nFpn

oo

ff

oooLoo

nGn

gg

L

g

f

ogGfFnrop

S

orig

MAAHPsFSfRETURN

ttIF

RETURNPPHVhIF

RETURNNhNhVhIF

MWAAHPsFSfRETURN

NhWPhVhGIF

RETURNvVhIF

RETURNttIF

RETURNyxHvUhIF

RETURNNhVhIF

prefixaggregatedRemovessFIF

vyxHvyxP

sGvELSEAvGIF

RETURNAAIF

sNNWPPF

PP

PP

P

τ

χξρ

χξρ

χξρ

χξρ

τ

ξξχξξρ

χξρ

ξρρρρ

+

′≠

≠

∧

≠

+

←

≠

≠∧

←→

←←

′

′′

′

′

′′

Figure 9. BGP Speaker Security Kernel Functionality for Originating BGP Updates.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

20

()S

origF is used to advertise path information for two categories of prefixes 1) prefixes owned by

the AS; and 2) aggregated prefixes. Specifically, in leaves corresponding to owned prefixes in the

origination tree, the third value will be its own AS number A . Corresponding to other leaves the

third value will be a neighboring speaker G (next hop for the prefix) and a session identity gs ′

of G (at the time the prefix was added to the origination tree.) An owned range),[yx can be

converted into a prefix P and advertised to a neighbor F only if a record),(ppwP exists in the

neighbor/policies tree with root
nξ . A certificate of type 2V is provided as input to

simultaneously verify the integrity of the neighbor record
FN and record),(ppwP in the

neighbor tree. To advertise an aggregated prefix P a 1V memoranda attesting the integrity of the

next hop neighbor record
GN is required. In addition, a 1V certificate is required to demonstrate

that prefix P does not exist in the RIDB-IN tree. If the next hop F (to whom the origination

message is to be sent) is set to 0=F , then ()S

origF interprets this as a request to delete an

aggregated leaf for prefix P with third value gsG ′|| . To remove the aggregated prefix the third

value gsG ′|| is set to 0. For this purpose a certificate oρ of type 1U is required as input.

When a BGP message is originated for an owned prefix or an aggregated prefix the MED weight

is set to to value fM (for the intended receiver F) provided by the AS owner; the local

preference is set to 0; for owned prefixes the pre-path weight is set to the value pW prescribed by

the AS owner, and for aggregated prefixes the pre-path-weight is set to 0.

5. RELATED WORK AND CONCLUSIONS

In a large majority of security-kernel based approaches in the literature, the purpose of the
security kernel is to ensure that verified software is executed unmolested on an untrusted

platform. In the trusted computing group (TCG) approach based on the trusted platform modules

(TPM) only the security kernel is trusted to realize the assurance that that “only pre-verified

software can take control of the platform.”

The security kernel, or the TCB for the TCG-TPM approach, can be seen as composed of three

roots of trust — the root of trust for storage (RTS), reporting (RTR) and measurement (RTM).

The RTS and RTR are offered by a hardware TPM bound to an untrusted platform. The RTM

includes “all essential hardware required to run software.” Most often, the “essential hardware”

includes the CPU, RAM, CPU-RAM bridge and BIOS.

The purpose of the RTM is to measure every unit of software that takes control of the CPU. The

unit of software is typically a file, and the measure is the file hash. The trusted BIOS includes
software that measures itself, reports the measurement to the TPM, load the next level of software

(usually the boot-loader), measure the boot-loader, and report the measurement to the TPM.

If the boot loader can be verified to be free of malicious code then the boot loader loads the next

level of code (the operating system kernel), measures the kernel and reports the measurement to

the TPM. Similarly the operating system can load other higher level components and report

measurements to the TPM.

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

21

The RTS is trusted to securely store measurements; the RTR is trusted to report measurements.
Any entity interacting with the untrusted platform can now request the TPM to report the

measurements, and may choose to abandon the interaction if the reported measurements differ

from expected measurements. This strategy of building a chain of trust starting with the BIOS is

the AEGIS model [11] adopted in the TCG approach.

The main issues with the TCG-TPM approach are three fold:

1. Ensuring that software can run unmolested is very little comfort when the software itself

becomes too complex to be thoroughly verified. Furthermore, hidden malicious

functionality in complex software may actually load other software without reporting
their measurements (or reporting arbitrary measurements) to TPM.

2. Lack of a secure binding between the RTM (trusted components of the untrusted

platform) and the TPM (which houses RTS and RTR). The implication of this is that the

TPM can uncoupled from the RTM, and supplied expected measurements (while the

platform runs arbitrary software).

3. The “minimal hardware trusted to run software” may also include peripherals with direct
access to RAM. This results in the well known TOCTOU problem [12] in the TCG

approach.

In the proposed approach the goal of the security kernel is not to ensure the integrity of the all

software related to a system/ sub-system. Rather, the goal is to ensure only some very specific

sub-system specific properties. For example, if the TCG approach is used to secure the AS/IP
Registry, every computer used by the Registry should be TPM enabled, and every piece of

software that can take control of any computer should be carefully examined to be free of

malicious code. However, in the proposed approach, only the simple security kernel functionality

outlined in Figure 4 needs to be assured to be clear of undesired functionality.

Most commonly used hash tree based ADSs include the well-known merkle tree [8], skip-lists

[7], red-black trees [5], and B-trees [3, 13]. All such ADSs (except the plain Merkle tree)

essentially provide the capability to order values in a set (based on some index). The main

difference between OMTs and other ADSes like skip-list, red-black trees and B-trees are:

1. In the OMT, the ordering is virtual (the first two fields in an OMT can be seen as a

circular link list). In other trees the ordering is physical.
2. An OMT without the third field is functionally equivalent to other trees. The third value

in an OMT binds the first value to a record (in an IOMT) or a range to some “owner” (in

an ROMT).

Alternately, a skip-list and a merkle tree are together functionally equivalent to an OMT. From

this perspective, the main advantage of the OMT is that with a simple tweak to the merkle tree,

the OMT realizes the advantages of ordering values (viz., ability to readily determine existence

and non-existence of records, maximum/minimum values, etc.) without using an additional tree.

While there is very little algorithmic difference between an ROMT and an IOMT, there is a

substantial difference in their functional utility. In this paper we illustrated the utility of an

ROMT for registry and AS owner security kernels to maintain database of IP address ranges and

the ownership of the range. In a BGP speaker the ROMT additionally enables the speaker to

aggregate IP prefixes. The IOMT is used for a wide range of purposes like maintaining the RIDB,

AS path trees (one for every path), and weight trees (one for every prefix).

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

22

The current approach to secure BGP is based on the Secure BGP [14] protocol proposed by Kent
et.al. This approach employs public key certificates to authenticate communication between ASes

(BGP updates) and delegation of AS numbers/IP prefixes. More specifically, a dual certificate

system (supported in the back-end by a public key infrastructure (PKI)) is used where the one

certificate binds the public key of the AS owner to the operating address space (IP prefix) and AS

number, and a second certificate binds routers to an AS. Apart from such static certificates,

dynamic certificates are also created by BGP speakers along with every update message.

Specifically, such certificates created by every AS in the path seeks to assure the integrity of the

AS path vector. Whenever a router receives an update message, it verifies the dual certificates to

ascertain the validity of the message. In order to advertise the received message it extends the

path by adding itself to the path and signing it (along with the nested signatures of the previous
hops) with its own public key. To prevent deletion attacks a speaker in AS A sending an update

message to a speaker in AS B also includes the next hop in the signature.

While S-BGP approach is successful in its claims for identity verification (AS owner, routers) and

update message integrity, it fails to provide any assurances for the overall operation of a sub-

system in the protocol. For example, there are no assurances provided by the protocol
guaranteeing that a router will indeed select the best path and that it will strictly abide by the

policies and preferences prescribed by the AS owner. The security features of S-BGP protocol

does not extend to aggregated prefixes as it is impractical to create static certificates to validate
“ownership” of aggregated prefixes. This is a severe disadvantage of S-BGP as much of the

advantages of CIDR stem from the ability to aggregate prefixes.

In the proposed approach the simple security kernel associated with BGP speakers ensure that the

speakers can only advertise the best path, that all preferences and policies of the As owner will be

strictly adhered to. More importantly, the assurances also extend to aggregated prefixes.

REFERENCES

[1] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in distributed systems: Theory

and practice,” ACM Transactions on Computer Systems, vol. 10, pp. 265–310, 1992.

[2] E. R. Sparks, “A Security Assessment of Trusted Platform Modules Computer Science Technical

Report,” Power, pp. 1–29, 2007

[3] P. T. Devanbu, M. Gertz, C. U. Martel, and S. G. Stubblebine, “Authentic Third-party Data

Publication,” in Proceedings of the IFIP TC11/ WG11.3 Fourteenth Annual Working Conference on

Database Security: Data and Application Security, Development and Directions. Deventer, The

Netherlands, The Netherlands: Kluwer, B.V., 2001, pp. 101–112. [Online]. Available:

http://dl.acm.org/citation.cfm?id=646118.758638.

[4] A. Buldas, P. Laud, and H. Lipmaa, “Accountable Certificate Management Using Undeniable

Attestations,” in Proceedings of the 7th ACM conference on Computer and communications security,

ser. CCS ’00. New York, NY, USA: ACM, 2000, pp. 9–17. [Online]. Available:

http://doi.acm.org/10.1145/352600.352604

[5] A. Anagnostopoulos, M. T. Goodrich, and R. Tamassia, “Persistent Authenticated Dictionaries and

Their Applications,” in Proceedings of the 4th International Conference on Information Security, ser.

ISC ’01. London, UK, UK: Springer-Verlag, 2001, pp. 379–393. [Online]. Available:

http://dl.acm.org/citation.cfm?id=648025.744371

[6] C. Martel, G. Nuckolls, M. Gertz, P. Devanbu, A. Kwong, and S. G. Stubblebine, “A General Model

for Authentic Data Publication,” Algorithmica, 2004

[7] M. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an Authenticated Dictionary with

Skip Lists and Commutative Hashing. In DARPA Information Survivability Conference Exposition

II, 2001. DISCEX ’01. Proceedings, volume 2, pages 68 –82 vol.2, 2001.

[8] R. C. Merkle, “Protocols for Public Key Cryptosystems,” Security and Privacy, IEEE Symposium on,

p. 122, 1980. [Online]. Available:

http://www.computer.org/portal/web/csdl/doi/10.1109/SP.1980.10006

International Journal of Computer Networks & Communications (IJCNC) Vol.8, No.4, July 2016

23

[9] Y. Rekhter and T. Li, “A border gateway protocol 4 (bgp-4),” 1995.

[10] Y. Rekhter and P. Gross, “Application of the border gateway protocol in the internet,” 1995.

[11] W. A. Arbaugh, D. J. Farbert, and J. M. Smith, “A Secure and Reliable Bootstrap Architecture,” in IN

PROCEEDINGS OF THE 1997 IEEE SYMPOSIUM ON SECURITY AND PRIVACY. IEEE

Computer Society, 1997, pp. 65–71

[12] S. Bratus, E. Sparks, and S. W. Smith, “TOCTOU, Traps, and Trusted Computing,” in In Trust 08:

Proceedings of the 1st International Conference on Trusted Computing and Trust in Information

Technologies, 2008, pp. 14–32.

[13] M.T. Goodrich, R.Tamassia, N. Triandopoulous, and R. Cohen, “Authenticated Data Structures for

Graph and Geometric Searching,” in Proceedings of the 2003 RSA conference on The

cryptographers’ track, ser. CT-RSA’03. Berlin, Heidelberg: Springer-Verlag, 2004, pp. 295-313.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1767011.1767042

[14] S. Kent, C. Lynn, and K. Seo, “Secure border gateway protocol (s-bgp),” Selected Areas in

Communications, IEEE Journal on, vol. 18, no. 4, pp. 582–592, 2000

AUTHORS

Dr. Somya D. Mohanty is an Assistant Professor at the Department of Computer

Science at University of North Carolina – Greensboro. He received his Master‘s

degree in Computer Science from Florida State University and his doctorate from

the department of Computer Science and Engineering at Mississippi State

University. His doctoral research focuses on designing security kernels for

distributed applications. Somya has worked as the Data Scientist/Systems Architect

on the Social Media Tracking and Analysis System (SMTAS) project with the

Innovative Data Laboratory at the Social Science Research Center. In the research effort, he designed

system architectures capable of handling Big Data and develops algorithms to gain insights from the data in

real-time. He also contributed to the server architecture design with the use of dynamic scalable

components capable of handling large data influx (Big Data). Somya’s other research interests include

information/network security, cryptographic protocols, content analysis, machine learning and distributed

storage architectures.

Dr. Mahalingam Ramkumar is an Associate Professor of Computer Science and

Engineering at MSU. He received his Bachelors degree in Electrical Engineering from

University of Madras, India, MS in Electrical Engineering from Indian Institute of

Science, Bangalore, India, and PhD in Electrical Engineering from New Jersey

Institute of Technology, Newark, NJ, in Jan 2000. He served as the Chief Technology

Officer for a technology start-up in Newark between Feb 2000 to Sep 2002, and as a

Research Assistant Professor in Polytechnic University, Brooklyn, NY from Oct 2002 to July 2003. His

current research interests include trustworthy computing, applied cryptography, and network security. His

has authored 2 books, 20 Journal articles/book chapters, and over 70 refereed conference publications.

Mr. Naresh Adhikari is a graduate research assistant in Computer Science and

Engineering at MSU. He received his Bachelors degree in Software Engineering from

Pokhara University, Nepal and is pursuing PhD in computer science in MSU under

advisorship of Dr. Ramkumar. His current research interests include event detection in

high speed network and machine learning.

