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ABSTRACT 

The authors  discuss the importance of using the singular value decomposition (SVD) in computing  the 

capacity of multiple input multiple output (MIMO) and in estimation the channel gain from the transmitter 

to the receiver. Examples that show how the SVD simplifies computing the MIMO channel capacity are 

discussed. Numerical results that show what factors determine the performance of using SVD in channel 

estimation are also discussed. 

1. INTRODUCTION 
 

One of the pioneering works in communication system is the use of multiple input multiple output 

(MIMO) which provides a very large spectral efficiency [1], [2]. MIMO transmission based on 

singular value decomposition (SVD) is an effective mathematical technique to obtain the MIMO 

channel capacity [1], [3]. Consider a MIMO channel with Tn  transmit antenna and Rn  receive 

antenna, modeled as 

 

zxHy +=       (1) 

 

where 
1×

∈ Tn
Cx  is the transmitted vector, 

TR nn
CH

×
∈  is the channel matrix, 

1×
∈ Rn

Cy  is 

the received vector, and 
1×

∈ Rn
Cz is a spatially white zero mean circularly symmetric complex 

Gaussian noise vector normalized so that 
RnIzzE =∗ ][ . The channel matrix H  contains the 

complex path gains jiH  between every transmit and receive antenna pair. Let the rank of H is n  

then the MIMO channel can be decomposed by SVD into n  parallel spatial channels where we 

can decide how to use these channels and how much energy to be allocated to each eigen-channel 

[4], [5]. 
 

In more details, SVD was firstly used in [1] where it was shown that the SVD based MIMO 

transmission is capacity achieving. Ergodic capacity of MIMO-SVD systems have been 
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investigated in [3] and [2] in the case that channel may be  modeled as either Rayleigh or Rician 

fading, respectively. In [5], [6], the performance analysis of MIMO-SVD has been investigated in 

the context of un-coded transmission. Channel estimation for an MIMO-SVD system has been 

investigated in [7], [8]. In addition, the effect of channel estimation error on the performance of 

MIMO-SVD has been proposed in [9] and finally an iterative MIMO channel SVD estimation has 

been investigated in [10]. 

 

The channel capacity is the ultimate  data rate that a channel can support without any error. Let us 

consider the model of fast fading channel where the transmitted signal x  is multiplied by a 

random fading coefficient h  and an additive white Gaussian noise (AWGN) is added as follows 

 

zxhy +=       (2) 

 

 then the capacity of such a channel is given as 
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where )(⋅E  represents the expectation value, P  is the signal power and 
2σ  is the AWGN noise 

power and it will be normalized to 1 in the our discussion. 

 

In this paper, an introduction to SVD has been introduced in Section 2 where the basic definitions 

are discussed. The importance of using SVD in computing the capacity of MIMO systems has 

been addressed in Section 3. Examples that discuss how the SVD simplifies computing the 

MIMO channel capacity are also introduced. An iterative technique that is used to estimate the 

channel gain has been presented in Section 4. Further, many  numerical examples that show the 

performance of this iterative technique is discussed in Section 5. Finally, the paper is concluded 

in Section 6.  

 

2. SVD: PRINCIPLES AND PROPERTIES 

 

In this section, we present the principles of SVD, and its properties. One of the most powerful 

computational tools in numerical linear algebra is the SVD. In particular, SVD is commonly  used 

to solve i) the unconstrained linear least squares problems, ii)  matrix rank estimation and iii) 

canonical correlation analysis. Further, SVD tells that for any matrix A  with arbitrary 

dimensions nm × , there are orthogonal matrices U and V and a diagonal matrix Λ  such that 
∗Λ= VUA . In this setting, Λ  is a diagonal matrix and it has the same size of A , U and V  are 

square matrices of order m  and n , respectively. Λ can be represented as 
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where rΛ  is represented as 
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and rσσσ ≥≥≥ L21  are non-negative real values and r  determines the rank of a matrix. The 

columns of U  and V  are normalized singular vectors satisfying IUU =∗
 and IVV =∗

 In 

otherworld, U  and V are orthogonal if they are real or unitary if they are complex. There is a 

unique Λ  for each matrix but U  and V  are not. 
 

In fact, the diagonal entries of Λ are the non-negative square roots of the eigen values of 
∗

AA , 

the columns of U  are the eigenvectors of 
∗

AA  and the columns of V  are the eigenvectors of

AA∗
. 

3. SVD FOR MIMO SYSTEMS 
 

In this section, the channel model as described in (1) is considered. In this channel model, the 

sender has  Tn  transmit and the destination has Rn  receive. Now, the channel matrix, H , can be 

decomposed by using the SVD as follows 

 

∗Λ= VUH       (6) 

 

where 
RR nn

CU
×

∈  and 
TT nn

CV
×

∈  are unitary matrices and ∑
×

∈ TR nn
C is a non-negative 

diagonal matrix. 
 

Now, by using this kind of decomposition,(1) is reduced to 

 

zxVUy +Λ= ∗
     (7) 

 

Let yUy
∗=~ , xVx ∗=~ , and nUn ∗=~ . Thus,(7) reduces to 

 

zxy ~~~ +Λ=       (8) 

 

Note that since the distribution of z  is invariant under unitary transformation, z~  and z  have the 

same statistical properties. It was shown in [11] that the rank of H  is at most ),( TR nnmin  so 
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that at most ),( TR nnmin  of the singular values are nonzero. Let these values are represented by 

),(,,1,2/1

TRi nnmini K=λ . Based on this setting, the component-wise of (8) is written as 

 

iii zxy ~~~ 2/1 += λ      (9) 

 

and the rest of the components of y~  are equal to the corresponding components of n~ . From (9), 

the MIMO channel is understood as a parallel SISO SVD sub-channels (eigen-channels) with 

nonequal gains. 
 

Example 1: Channel Capacity of Tn  transmit antenna and 1=Rn  receive antenna. 

 

We start by decomposing H as described before. Now, 

[ ]
[ ]nvvvV

U

,,,

0,,0,

1

21

1

K

K

=

=Λ

=

λ      (10) 

 

where 
2

11 ∑ =
=

n

i jihλ  and 11 λ∗= Hv . One singular value is non-zero and that is due to 

rank 1)( =H . In this case, the energy is allocated to this eigen-channel and the resulting capacity 

is given by 
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Example 2: Channel Capacity of Tn  transmit antenna and Rn  receive antenna. In this example, 

let 1=jiH  for all ji, , then H  is decomposed to 

[ ][ ]TTRT

R

R

nnnn
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H 1,,1
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since the diagonal matrix has only one value ( )RT nn , so the capacity of such a channel is given 

as: 

( )PnnlogC RT+= 1      (13) 
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Note that each transmit antenna sends a power of TnP  so that the signal received at each 

antenna is TnP  due to that the signals are added coherently at the receiver. Since each receiver 

sees the same signal and the noises are uncorrelated and have equal variances, so, the overall 

signal to noise ratio is Pnn RT . 

In fact, the general formula of the capacity for a complex AWGN MIMO channel can be 

expressed as 
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The matrix product 
∗

HH  can be described by using the SVD of the channel matrix H  so that 

(14) can be reduced to 
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After diagonal-zing the product matrix 
*

HH , the capacity formula includes unitary and diagonal 

matrices only. Based on this formulation, it is clearly shown that the capacity of a MIMO channel 

reduced to  the sum of parallel AWGN SISO sub-channels. As shown before, the number of sub-

channels, that are parallel, is computed from the rank of the channel matrix H . Using the 

previous fact and since that the determinant of a unitary matrix is equal to 1 so that (15) can be 

expressed as 
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where 
2

iσ  are the squared singular values of the matrix Λ . 

4. ITERATIVE MIMO-SVD CHANNEL ESTIMATION  
 

The receiver is designed so that it can estimate the channel state information(CSI). The 

performance of the MIMO communication system depends highly on the accuracy of the CSI. 

Any error even if it is small in the estimation of the CSI deteriorates the channel performance. In 

this section, an iterative MIMO channel SVD estimation technique is introduced. 

We start from the channel model described in (1). The estimation procedure can be developed by 

minimizing the mean square error (MSE) criterion as follows 
 






 Λ−= ∗

2

xVUyEJ     (17) 

Due to unitary prosperity of U  and V  matrices, the minimization in (17) should be subject to 

nIUU =∗
 and 

nIVV =∗
 where n  is the rank of the matrix H as defined before[10]. The SVD 

of the channel matrix can be defined as follows 
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∗∗∗ ==Λ= 21 WUVWVUH     (18) 

 

 

Where 

Λ= UW1       (19) 

Λ= VW2       (20) 

while the diagonal elements of ( )ndiag σσσ K,, 21=Λ  matrix are positive values. Defining iu  

and iv as the ith columns of U and V , respectively. We have 

iiii uvHw σ==1      (21) 

∗∗ == iiii vHuw σ2      (22) 

where 
iw1  and 

iw2  are the ith columns of 1W and 2W , respectively. Now, based on (21) and (22), 

we may write 

111 ZVxxWVxyS +== ∗∗
    (23) 

222 ZVxxWxyUS +== ∗∗∗∗
   (24) 

where VxnZ
∗=1  and 

∗∗= xnUZ 2 . Assuming the training sequence is an independent and 

identically distributed (iid) signal such that 0)( =xE , 
kxx IxxER 2)( σ== ∗
 and 0)( =∗

nxE  

then it is easy to see that 0)( 1 =ZE , 0)( 2 =ZE , knxR InZZE
22

11 )( σσ=∗
 and 

knxT InZZE
22

22 )( σσ=∗
. Without loss of generality, we assume that  1

2 =xσ . Thus from (23) 

and (24), the following results can be easily obtained 

)( 21 SEW =       (25) 

)( 22 SEW =       (26) 

 

So, in estimating the channel matrix, H , we have two steps SVD iterative manner based on (25) 

and (26). In the first step, from (25) the columns of 1W  are estimated by the assumption that the 

V  estimation is available and then in the second step, the columns of 2W  are estimated from (26) 

based on the previous estimation ofU [10]. 
 

We refer the reader to [10] for the derivation . We state below the Algorithm procedure as 

described in [10]. At first, an initial value ofV , 
)0(V  is chosen then the iterative algorithm is 

implemented by employing step I and step II for ni ,,1 K=  in order to estimate iu and iv  at 

each iteration. Finally, the algorithm can be characterized by the following iterative steps   

1) Determine )(
∗= xyER xy  for ni ,,1 K=  for K,2,1=l  
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This iterative procedure maybe  terminated after satisfying the following condition: 

i
F

l

i

l

i HH ε≤−
′−′ 2

)1(
     (32) 

where iε  is a small positive value and 
l

iH
′
 is defined as[10] 
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5. RESULTS AND DISCUSSIONS 
 

We consider a MIMO communication system with Tn  transmitters and Rn receivers with a 

channel matrix H  for simulation in order to evaluate the performance of the iterative SVD 

estimation algorithm. The channel matrix has been modeled for 4,2== RT nn . At each model, 

we randomly generate four hundred channel matrices in which  the elements of each H are 

uncorrelated  complex Gaussian random variables with zero-mean and variance one. A sequence 

of independent and identically distributed (iid) 4QAM training signal vector, x , is sent from 

transmitter antennas such that Tnx IR = . 

In this numerical analysis, we use the  normalized mean-square error (NMSE) as an  estimator 

performance criterion. In particular, the NMSE  is defined as 

 

( )2

2
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)ˆ(
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where Ĥ  is the estimation of H . We Note that the MIMO channel H is approximated based on 

its SVD estimation from 
H

VUH ˆˆˆˆ Λ= [10]. 
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First, in figure 1, we study the performance of the iterative MIMO channel SVD estimation 

algorithm based on the NMSE criterio. Specifically, this figure  shows the performance  in the 

case that two different training sequence are used and  when the number of iterations are 

4,2,1=i . As shown, the performance of the estimator improves significantly when the number 

of iterations increases. Also, the NMSE and the number of training sequences are inversely 

proportional. In other words,  the NMSE of the channel estimation decreases as the number of  

the training sequence increases. 

 

Figure 1. The NMSE of the channel matrix estimation Vs. the signal-to-noise ratio (SNR).  

 

Figure 2. The NMSE of estimating the  channel matrix Vs. the number of iterations .  
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Figure 2 shows the performance of the estimation algorithm as a function of  the number of 

iterations and the number of receive antennas . This figure clearly shows that the performance 

improvement is insignificant after the 4th iteration. 

6. CONCLUSIONS 

An introduction to the SVD has been introduced. The effect of using SVD in MIMO 

communication system has been discussed. It converts the MIMO system into parallel channel 

equal to the rank of the channel matrix, H . An iterative SVD technique is presented which is 

used to estimate the channel matrix from the transmit antennas to the receive antennas. 

Simulation results that show the effect of the number of transmit/receive antennas, the length of 

the training sequence and number of iterations on the performance of the presented iterative 

technique have been drawn. 
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