
International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

DOI: 10.5121/ijcnc.2017.9103 23

FAULT TOLERANT ROUTING ALGORITHM IN

OCTAGON-CELL INTERCONNECTED NETWORK

FOR HORIZONTAL MOVING MESSAGES

Sanjukta Mohanty

1
and Prafulla Ku. Behera

2

1
North Orissa University, Sriram Chandra Vihar, Takatpur, Baripada, Odisha, India

2
Utkal University, Vani Vihar, Bhubaneswar, Odisha, India

ABSTRACT

Octagon-Cell interconnected network can be viewed as an undirected graph, in which vertices and edges

can be compared with processors and bidirectional communication links respectively between the

processing elements. It has attractive features like small diameter and better bisection width and constant

node degree. It is analyzed to arrive at fault-tolerant communication. A fault tolerant communication

scheme for this network is described in this paper. Here an efficient routing scheme has been described

which routes the horizontal moving messages from source node to the destination node in presence of faulty

nodes / link failure along the path. In this algorithm when a message is received by an intermediate node, it

will consider itself a new source node.

KEYWORDS

 Interconnected networks, Octagon-cell, Routing Algorithm, Network services

1. INTRODUCTION AND RELATED WORK

In an interconnection network, a fault tolerance scheme means the ability to continue operating in

presence of faulty nodes / link failures [3]-[14]. If the number of interconnected processors rises,

the probability of having faulty nodes increases and for successful transmission it is very much

essential to find another fault free path [15], [22]-[24].

In parallel processing systems it is very necessary to select optimal paths for efficient inter

process communication. In this system, if each and every processor has the status of all

processors then an optimal routing can be possible. In a system it may be possible for each

component suffers from hardware or software problem. If the system can’t handle the faulty

problem, that is unreliable, inefficient [15]-[21].

A fault tolerant scheme has been proposed in hexagonal arrays [25]. It has been described that the

routing scheme makes the reconstructed array transparent to the various algorithms utilizing the

hexagonal array.

A mesh embedded interconnected hypercube network has been analyzed to arrive at fault tolerant

communication. An efficient routing algorithm has been proposed that can route a message from

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

24

a source node to the destination in presence of fault free or single/multiple faulty nodes in mesh

embedded hypercube interconnection networks [3].

A fault tolerant routing algorithm has been described for star interconnection network in the

presence of faults [26]. A new fault tolerance algorithm has been described in hex-cell

interconnection network and the algorithm guarantees the delivery of messages even with the

presence of component failure [15].

In our paper a routing scheme has been introduced for interconnected processors, which

communicates messages in a faulty octagon-cell. We have described the optimal routing

algorithm for octagon-cell interconnected network along with its attractive features in [1]. Here

we have derived the fault tolerant algorithm for horizontal moving messages in the network. An

octagon-cell interconnected network has many attractive features such as constant node degree,

desirable diameter, bisection width [1].

2. OCTAGON-CELL NETWORK TOPOLOGY

An octagon-cell has eight nodes. It has d levels numbered from 1 to d with depth d. Level 1

represents one octagon-cell. Level 2 represents eight octagon-cells surrounding the octagon-cell at

level 1. Level 3 represents sixteen octagon-cells surrounding the eight octagon-cells at level 2 and

so on [1].

Figure 1: Addressing nodes in Octagon-Cell with level-1

(X, Y represents line no-X with node no-Y)

Figure 2: Addressing nodes in Octagon-Cell with level- 2

(X, Y represents line no-X with node no-Y)

1,1 1,2

 2,1 2,2

 3,1 3,2

 4,1 4,2

 1,1 1,2 1,3 1,4 1,5 1,6

2,1 2,2 2,3 2,4

 3,1 3,2 3,3 3,4

 4,1 4,2 4,3 4,4 4,5 4,6

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

25

We have described the optimal routing algorithm for octagon-cell network in [1]. Due to its

recursive structure routing can be done easily. The level numbering scheme is used in the above

algorithm. Each node in octagon-cell is identified by a pair (X, Y), Where X denotes the line

number in which the node exists and Y denotes serial number of the node in that line. A node

with the address (1, 1) is the first node in first line. A node with the address (1, 2) is the second

node in first line and so on.

There are four cases for optimal routing for horizontal moving messages. In this paper we have

derived the fault tolerant scheme for the following cases.

Case: 1 Fault tolerant routing algorithm for horizontal move for lines m mod 3 = 1

[Move from left to right, if (Xs = Xd && Ys < Yd)]

Case: 2 Fault tolerant routing algorithm for horizontal move for lines m mod 3 = 1
[Move from right to left, if (Xs = Xd && Ys > Yd)]

Case: 3 Fault tolerant routing algorithm for horizontal move for lines m mod 3 ≠ 1
[Move from left to right, if (Xs = Xd && Ys < Yd)]

Case: 4 Fault tolerant routing algorithm for horizontal move for lines m mod 3 ≠ 1
[Move from right to left, if (Xs = Xd && Ys > Yd)]

3. FAULT TOLERANT ROUTING ALGORITHM

3.1. Description of Model

We have derived the fault tolerance routing algorithm for octagon-cell interconnected network for

horizontal moving messages. Here it is assumed that each node has information about its three

consecutive nodes on the original optimal path in which it could have gone if there won’t be any

faulty nodes, link failures and dead end state. Each node say ‘A’ checks its three consecutive

nodes and links simultaneously along its original path. If any error occurs in one of three

consecutive links or nodes, then the algorithm will work with respect to the address of source

node at ‘A’.

When a signal passes from a source node to a destination, it is very much essential to find a path

of non-faulty nodes. For this purpose, each node can store the information about its three

consecutive nodes and links along the original path. There are three possible cases for a node in

an octagon-cell network. That is:

a) There are fault free nodes / links along the original path. This is called normal

state.

b) If any faulty node or link occurs in the original path, this situation is called faulty

state. This situation can be handled by the nodes along the path, because each

node in the path has the status of its three consecutive nodes and links. So the

original path will be changed by using the algorithm.

c) One link has two nodes. If two nodes of a link are faulty, then this situation is

called dead end state.

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

26

NOTE:

1. Since we have derived the fault tolerant scheme for the presence of faulty node or faulty

link along the optimal path, so in all cases the link failure conditions have not been

mentioned, because the algorithm for link failure case is equivalent to the node failure

along the optimal path. That is if the link (xs, ys) → (xs
*, ys

*) is failed along the optimal

path, then this situation is equivalent to the left node failure of this link. If the right node

is failed, then this is equivalent to the link failed connecting to (xs
*, ys

*) and (xs
**, ys

**).

2. The symbol “d” represents depth of the network and the word we have used in our

algorithm “w.r.t” represents “with respect to”.

3.2. Description of the Fault Tolerant Scheme

When a message is to be sent from a source node to a destination node, the algorithm first finds

the optimal path [1]. The message moves on that optimal path. In that path each and every node

has the status about three consecutive nodes / links. If ‘B’ be the faulty node and ‘A’ be another

fault free node on that path, then before reaching at ‘B’, the message first reaches at ‘A’. ‘A’ has

the status about next three consecutive nodes / links. ‘B’ is the node amongst the three

consecutive nodes. So at that situation, the message suddenly goes away from that original

optimum path [1] and finds another fault free path with respect to node ‘A’. Else dead end may

occur for which the message fails to reach at the destination. Let the optimal path be

A→B→C→D→E→F, where the source node is ‘A’ and the destination node is ‘F’. If ‘F’ is

faulty then dead end occurs. If ‘B’ or ‘C’ or ‘D’ is faulty, then the algorithm will work with

respect to the node ‘A’. If ‘E’ is faulty, then the algorithm will work with respect to the node ‘B’.

If the optimal path be A→B→C→D, where the source and destination nodes are ‘A’ and ‘D’

respectively and if faulty node is ‘B’ or ‘C’, then in this case the algorithm will work w.r.t the

source node ‘A’.

3.3. Fault Tolerant Algorithm

The fault tolerant algorithm is based on the optimal routing scheme in octagon-cell network [1].

Here four main cases have been derived for fault tolerant scheme.

Case-1 Fault tolerant routing algorithm for horizontal move for lines m,

 Where m mod 3 = 1 [move from left to right, if (Xs = Xd && Ys < Yd)]

If (Xs < [(d*5) + (d-2)])

 Sub case: 1-A1
 If [(the original source node ys is odd) && [faulty node at (xs, ys+1) || (faulty node occurs in

line xs+1) || at (xs, ys+2)) with respect to original source node || Failure of any of 3 consecutive

links]]

 Step-1 Move Vertical Top to Bottom till (xs = xs+3, ys)

 Step-2 If yd is even

 Move Horizontal Right till (ys = yd)
 Move Vertical Top till (xs = xd)

 Else if yd is odd

 Move Horizontal Right till (ys = yd – 1)

 Move (xs- 1, ys/2 + 1, xd, yd)

 Move (xs- 1, ys, xd, yd)

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

27

 Move (xs- 1, 2ys-1, xd, yd)

Sub case: 1-B1

 Else if (Original source node ys is even) && (faulty node is any of 3 consecutive

neighbors of original source node)

 Step-1 Move Horizontal Left till (ys = ys-1) && Go to Step-1 and Step-2 of Sub case

1-A1

Sub case: 1-C1

 Else if (faulty node = xs+1 w.r.t the node (xs, ys), where (xs,ys) is any node on the path other

than the original source node) && (faulty node is not the neighbor of (xd, yd))

 Step-1 Move Vertical to Bottom till (xs = xs +1)

 Step-2 Move (xs+1, 2ys – 1, xd, yd)

 Step-3 Go to Step-2 of Sub case 1-A1

Sub case 1-D1

 Else if faulty node (xs = xd && ys is odd or even w.r.t their respective nodes)

 Step-1 Go to Sub case-1-A1

Sub case 1-E1

 Else if (yd is even) && (faulty node is neighbor of (xd, yd) i.e. at the line xd) && (faulty node

is w.r.t the node which is other than the original source node)

 Step-1 Move (xs+1, ys, xd, yd)

 Step-2 Move Vertical Bottom till (xs = xs+3)

 Step-3 Move Horizontal Right till (ys = yd)

 Step-4 Move Vertical Top till (xs = xs+3)

Sub case 1-F1

 Else if (yd is odd) && (faulty node is neighbor of yd i.e. at the line xd+1) && (faulty node is

w.r.t the node which is other than the original source node)

 Step-1 Move (xs+1, ys, xd, yd)

 Step-2 Move (xs+1, 2ys-1, xd, yd)

 Step-3 Move Horizontal Right till (ys = yd+1)

 Step-4 Move Vertical Top till (xs = xs-3)

 Step-5 Move Horizontal Left till (ys = ys-1)

 Else if (Xs = [(d*5) + (d-2)])

Sub case: 1-A2

 If (the original source node ys is odd) && [faulty node at (xs, ys+1) || faulty node occurs in line

(xs-1) || at (xs, ys+2) with respect to original source node) || Failure of any of 3 consecutive links]

 Step-1 Move Vertical Top till (xs = xs-3, ys)

 Step-2 If yd is even

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

28

 Move Horizontal Right till (ys = yd)
 Move Vertical Bottom till (xs = xd)

 Else if yd is odd

 Move Horizontal Right till (ys = yd – 1)

 Move (xs+ 1, ys/2 + 1, xd, yd)

 Move (xs+ 1, ys, xd, yd)

 Move (xs+ 1, 2ys-1, xd, yd)

Sub case 1-B2

 Else if (Original source node ys is even) && (faulty node is any of 3 consecutive neighbors of

original source node)

 Step-1 Move Horizontal Left till (ys = ys-1)

 Step-2 Go to Step -2 of Sub case 1-A2

Sub case: 1-C2

 Else if (faulty node = xd-1 w.r.t the node (xs, ys), where (xs, ys) is any node on the path other

than the original source node) && (faulty node is not the neighbor of (xd, yd))

 Step-1 Move (xs-1, ys, xd, yd)

 Step-2 Move (xs-1, 2ys-1, xd, yd)

 Step-3 Go to Step-2 of Sub case 1-A2

Sub case 1-D2

 Else if faulty node (xs = xd && ys is odd or even w.r.t their respective nodes)

 Step-1 Go to Sub case-1-A2

Sub case 1-E2

 Else if (yd is even) && (faulty node is neighbor of (xd, yd) i.e. at the line xd) && (faulty node

is w.r.t the node which is other than the original source node)

 Step-1 Move Vertical Top till (xs = xs-3)

 Step-2 Move Horizontal Right till (ys = yd)

 Step-3 Move Vertical Bottom till (xs= xs+3)

Sub case 1-F2

 Else if (yd is odd) && (faulty node is neighbor of yd i.e. at the line xd -1) && (faulty node is

w.r.t the node which is other than the original source node)

 Step-1 Move (xs+1, ys, xd, yd)

 Step-2 Move (xs+1, 2ys-1, xd, yd)

 Step-3 Move Horizontal Right till (ys = yd+1)

 Step-4 Move Vertical Bottom till (xs = xs+3)

 Step-5 Move Horizontal Left till (ys = ys-1)

NOTE: We have explained the optimal routing schemes in all directions in [1]. So the

Horizontal moves and Vertical moves follow the algorithms in [1].

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

29

Example: Let (Xs, Ys) = (1, 3), (Xd, Yd) = (1, 8) and the faulty node at (1,4).

Using the algorithm of Horizontal moves [1], We have the optimal path to reach the destination

is : (1,3) →(1,4) →(2,3) →(1,5) →(1,6) → (2,4) →(1,7) →(1,8). The shortest path length is 7.

Now using the above algorithm we have the following fault free path.

(1,3) →(2,2) →(3,2) →(4,3) →(4,4)→(5,3) →(4,5) →(4,6) → (5,4) →(4,7) →(4,8)→(3,5)

→(2,5) →(1,8). The path length is 13.

Figure 3: [we have drawn only first 7 lines of the Octagon-Cell network of depth 4, which shows the fault

free path]

Case: 2 Fault tolerant routing algorithm for horizontal move for lines m,
 Where m mod 3 = 1 [Move from right to left, if (Xs = Xd && Ys > Yd)]

If (Xs < [(d*5) + (d-2)])

Sub case 2-A1

 If [(the original source node ys is even) && ((faulty node at (xs,ys-1) || faulty node occurs in

 line xs+1|| at (xs, ys-2)) with respect to original source node || failure of any of 3

 consecutive links]

 Step-1 Move Vertical Bottom till (xs= xs +3)

 Step-2 If yd is even

 Move Horizontal Left till (ys = yd -1)

 Move (xs-1, ys/2 +1, xd, yd)

 Move (xs-1, ys, xd, yd)

 Move (xs-1, 2ys-1, xd, yd)

 Move (xs, ys + 1, xd, yd)

 Else if yd is odd

 Move Horizontal Left till (ys = yd)

 Move Vertical Top till (xs = xd)

Sub case: 2-B1

 Else if (Original source node ys is odd) && (faulty node is any of 3 consecutive neighbors of

original source node)

 Step-1 Move (xs, ys+1, xd, yd)

 Go to Sub case: 2-A1

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

30

Sub case: 2-C1

 Else if (faulty node = xs+1 w.r.t the node (xs, ys), where (xs, ys) is any node on the path other

than the original source node)

 Step-1 Move Vertical Bottom till (xs = xs +1)

 Step-2 Move (xs+1, 2ys – 2, xd, yd)

 Step-3 Go to step-2 of sub case: 2-A1

Sub case 2-D1

 Else if faulty node (xs = xd) && (ys is odd or even w.r.t their respective nodes)

 Step-1 Go to Sub case-2-A1

Sub case 2-E1

 Else if (yd is even) && (faulty node is neighbor of yd i.e. at the line xd +1) && (faulty node is

w.r.t the node which is other than the original source node)

 Step-1 Move (xs+1, ys, xd, yd)

 Step-2 Move (xs+1, 2ys-2, xd, yd)

 Step-3 Move Horizontal to Left till (ys = yd -1)

 Step-4 Move Vertical Top till (xs = xs – 3)

 Step-5 Move Horizontal right till (ys = ys +1)

Sub case 2-F1

 Else if (yd is odd) && (faulty node is neighbor of yd i.e. at the line xd) && (faulty node is w.r.t

the node which is other than the original source node) && (faulty node is w.r.t the node which is

other than the original source node)

 Step-1 Move Vertical Bottom till (xs = xs+3)

 Step-2 Move Horizontal Left till (ys = yd)

 Step-3 Move Vertical Top till (xs = xs- 3)

 Else if (Xs = [(d*5) + (d-2)])

Sub case 2-A2

 If [(the original source node ys is even) && (faulty node at (xs, ys-1) || faulty node occurs in

line (xs-1) || at (xs, ys-2) with respect to original source node)]

 Step-1 Move Vertical Top till (xs= xs-3, ys)

 Step-2 If yd is even

 Move Horizontal Left till (ys = yd - 1)

 Move (xs+1, ys/2 +1, xd, yd)

 Move (xs+1, ys, xd, yd)

 Move (xs+1, 2ys-1, xd, yd)

 Move Horizontal Left till (ys = yd)

 Else if (yd is odd)

 Move Horizontal Left till (ys = yd)

 Move Vertical Bottom till (xs = xd)

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

31

Sub case 2 –B2

 Else if (Original source node ys is odd) && (faulty node is any of 3 consecutive neighbors of

original source node)

 Step-1 Move Horizontal Right till (ys = ys+1)

 Step-2 Go to Sub case 2-A2

Sub case 2-C2

 Else if (faulty node = xs-1 w.r.t the node (xs, ys), where (xs, ys) is any node on the path other

than the original source node)

 Step-1 Move Vertical Top till (xs = xs-1)

 Step-2 Move (xs-1, 2ys – 2, xd, yd)

 Step-3 Move step 2 of Sub case 2-A2

Sub case 2-D2

Else if faulty node (xs = xd) && (ys is odd or even w.r.t their respective nodes)

 Step-1 Go to Sub case-2-A2

Sub case 2-E2

 Else if (yd is even) && (faulty node is neighbor of yd i.e. at the line xd-1) && (faulty node is

w.r.t the node which is other than the original source node)

 Step-1 Move (xs-1, ys, xd, yd)

 Step-2 Move (xs-1, 2ys-2, xd, yd)

 Step-3 Move Horizontal Left till (ys = yd -1)

 Step-4 Move Vertical Bottom till (xs = xd)

 Step-5 Move Horizontal Right till (ys = yd)

Sub case 2-F2

 Else if (yd is odd) && (faulty node is neighbor of yd i.e. at the line xd) && (faulty node is w.r.t

the node which is other than the original source node)

 Step-1 Move Vertical Top till (xs = xs-3)

 Step-2 Move Horizontal Left till (ys = yd)

 Step-3 Move Vertical Bottom till (xs = xs+3)

Example: Let (Xs, Ys) = (4, 8), (Xd, Yd) = (4, 2) and the faulty node at (5,3) with depth 5.

Using the algorithm of Horizontal moves in [1], If all the nodes are fault free, then we have the

optimal path to reach the destination is : (4,8) →(4,7) →(5,4) →(4,6) →(4,5) → (5,3) →(4,4)

→(4,3) →(5,2) →(4,2). The shortest path length is 9.

Now using the above algorithm we have the following fault free path.

(4,8) →(4,7) →(5,4) →(6,4)→(7,6) →(7,5) →(8,3) →(7,4) →(7,3) →(8,2)→(7,2) →(7,1)

→(6,1) →(5,1) →(4,1) →(4,2). The path length is 15.

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

32

Figure 4: [we have drawn only first 10 lines of the Octagon-Cell network of depth 5, which shows the fault

free path]

Case: 3 Fault tolerant routing algorithm for horizontal move for lines m,

 Where m mod 3 ≠ 1 [Move from left to right, if (Xs = Xd && Ys < Yd)]

Sub case-3A1

If (faulty node is any two consecutive node of original source node)

If (xs mod 3 = 2) {

 Step-1 Move (xs + 1, ys, xd, yd)

 Step-2 Move Horizontal Right till (ys = yd)
 Step-3 Move Vertical Top till (xs = xd)}

Else If (xs = 3n) {

 Step-1 Move (xs - 1, ys, xd, yd)

 Step-2 Move Horizontal Right till (ys = yd)

 Step-3 Move Vertical Bottom till (xs = xd)}

Sub case-3B1

If (faulty node is along the original source node) || (faulty node is the 3rd consecutive w.r.t original

source node)

 If (xs mod 3=2) && (original source node xs =2)

 {

 Go to Subcase-3A1 (If case)

 Else If (xs > 2)

 Step-1 Move (xs - 1, 2ys-1, xd, yd)

 Step-2 Move (xs, ys+1, xd, yd)

 Step-3 Move (xs -1, ys/2 +1, xd, yd)

 Step-4 Move (xs + 1, 2ys-1, xd, yd)

 Step-5 Move (xs, ys+1, xd, yd)

 Step-6 Move (xs +1, ys/2 +1, xd, yd)

 Else If (xs = xd) && (ys = yd)

 Destination reached.

 Else Move Horizontal Right till destination reached

 }

 Else If (xs = 3n)

{

 If (xs< [(d*5) + (d-2)]-1)

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

33

 {

 Step-1 Move (xs+1, 2ys-1, xd, yd)

 Step-2 Move (xs. ys+1, xd, yd)

 Step-3 Move (xs+1, ys/2+1, xd, yd)

 Step-4 Move (xs-1, 2ys-1, xd, yd)

 Step-5 Move (xs, ys+1, xd, yd,)

 Step-6 Move (xs-1, ys/2+1, xd, yd)

 Else If (xs = xd) && (ys = yd)

 Destination reached

 Else Move Horizontal Move to Right till (ys = yd) && (xs = xd)

 }

 Else If (xs = [(d*5) + (d-2)]-1)

 {

 Step-1 Move (xs-1, ys, xd, yd)

 Step-2 Move Horizontal Right till (ys = yd)

 Step-3 Move Vertical Bottom till (xs = xd)

 }

}

Sub case-3C1

 If (xs mod 3 = 2) && (faulty node is at xs-1, where xs is original source node) && (faulty

node is w.r.t the node which is other than the original source node)

 {

 If (faulty node ys is even)

 Step-1 Move (xs+1, ys/2+1, xd, yd,)

 Go to Subcase-3A1 (If case)

 Else If (faulty node ys is odd)

 Step-1 Move (xs, ys+1, xd, yd)

 Go to Subcase-3C1 (If case)

 }

 Else If (xs = 3n) && (faulty node xs is on the line xs+1) && (faulty node is w.r.t the node

which is other than the original source node)

 {

 If (faulty node ys is even)

 Step-1 Move (xs-1, ys/2 +1, xd, yd)

 Go to Subcase-3A1 (Else case)

 Else If (faulty node ys is odd)

 Step-1 Move (xs, ys+1, xd, yd)

 Go to above case (for ys even)

 }

Sub case-3D1

If (faulty node is neighbor of (xd, yd) || neighbor of neighbor of (xd, yd)) && (faulty node is w.r.t

the node which is other than the original source node)

 If (xs mod 3=2)

 Go to Subcase-3C1 (for xs mod 3 = 2)

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

34

 Else If (xs = 3n)

 Go to Subcase-3C1 (for xs = 3n)

Example: Let (Xs, Ys) = (2, 3), (Xd, Yd) = (2, 8) and the faulty node at (1, 10) with depth 4.

Using the algorithm of Horizontal moves [1], We have the optimal path to reach the destination

is : (2,3) →(1,5) →(1,6) →(2,4) →(1,7) → (1,8) →(2,5) →(1,9) →(1,10) →(2,6) →(1,11)

→(1,12) →(2,7) → (1,13) →(1,14) →(2,8) The shortest path length is 15.

Now using the above algorithm we have the following fault free paths.

(2,3) →(1,5) →(1,6) →(2,4) →(1,7) → (1,8) →(2,5) →(3,5) →(4,9) →(4,10) →(3,6) →(4,11)

→(4,12) → (3,7) →(4,13) →(4,14) →(3,8) →(2,8). The path length is 17.

Figure 5: [we have drawn only first 7 lines of the Octagon-Cell network of depth 4, which shows the fault

free path]

Case: 4 Fault tolerant routing algorithm for horizontal move for lines m,
 Where m mod 3 ≠ 1 [Move from right to left, if (Xs = Xd && Ys > Yd)]

Sub case-4A1

If (faulty node is any of two consecutive nodes of original source node)

If (xs mod 3 = 2) {

 Step-1 Move (xs + 1, ys, xd, yd)

 Step-2 Move Horizontal Left till (ys = yd)

 Step-3 Move Vertical Top till (xs = xd) }

Else {

 If (xs = 3n)

 Step-1 Move (xs - 1, ys, xd, yd)

 Step-2 Move Horizontal Left till (ys = yd)

 Step-3 Move Vertical Bottom till (xs = xd)}

Subcase-4B1

If (faulty node is along the line on original source node) || (faulty node is 3
rd

 consecutive

node w.r.t original source node)

If (xs mod 3=2) && (original source node xs =2) {

 Go to Subcase-4A1 (If case)

 Else

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

35

 If (xs > 2)

 Step-1 Move (xs - 1, 2ys-2, xd, yd)

 Step-2 Move (xs, ys-1, xd, yd)

 Step-3 Move (xs -1, ys/2 +1, xd, yd)

 Step-4 Move (xs + 1, 2ys-2, xd, yd)

 Step-5 Move (xs, ys-1, xd, yd)

 Step-6 Move (xs +1, ys/2 +1, xd, yd)

 Else If (xs = xd) && (ys = yd)

 Destination reached.

 Else Move Horizontal Left till destination reached}

 Else If (xs = 3n)

{ If (xs< [(d*5) + (d-2)]-1)

 {

 Step-1 Move (xs+1, 2ys-2, xd, yd)

 Step-2 Move (xs, ys-1, xd, yd)

 Step-3 Move (xs+1, ys/2+1, xd, yd)

 Step-4 Move (xs-1, 2ys-2, xd, yd)

 Step-5 Move (xs, ys-1, xd, yd)

 Step-6 Move (xs-1, ys/2+1, xd, yd)

 Else If (xs = xd) && (ys = yd)

 Destination reached

 Else Move Horizontal Left till (ys = yd)

 }

 Else If (xs = [(d*5) + (d-2)]-1)

 {

 Step-1 Move (xs - 1, ys, xd, yd)

 Move Horizontal Left till (ys = yd)

 Move Vertical Bottom till (xs = xd)

 }

}

Sub case-4C1

 If (xs mod 3 = 2) && (Faulty node is at xs-1, xs is original source node) && (faulty node is

w.r.t the node which is other than the original source node)

 {

 If (faulty node ys is odd) {

 Step-1 Move (xs+1, ys/2+1, xd, yd)

 Go to Sub case - 4A1 (If case)}

 Else If (faulty node ys is even) {

 Step-1 Move (xs, ys-1, xd, yd)

 Go to Subcase-4C1 (If case i.e. odd condition)}

 }

 Else If (xs =3n) && (Faulty node xs is on the line xs+1) && (faulty node is w.r.t the node

which is other than the original source node)

 {

 If (faulty node ys is odd) {

 Step-1 Move (xs-1, ys/2 +1, xd, yd)

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

36

 Go to Sub case - 4A1 (Else case)}

 Else If (faulty node ys is even) {

 Step-1 Move (xs, ys-1, xd, yd)

 Go to Sub case - 4C1 (for xs =3n, ys is odd)

 }

Sub case-4D1

If (faulty node is neighbor of (xd, yd)) || (neighbor of neighbor of (xd, yd))

 {
 If (xs mod 3=2)

 Go to Subcase-4C1 (for xs mod 3 = 2)

 Else If (Xs = 3n)

 Go to Subcase-4C1 (for xs = 3n)

 }

Example: Let (Xs, Ys) = (5, 9), (Xd, Yd) = (5, 6) and with link failure at (5, 7) → (4,12) with depth

4. This case is same with when the faulty node is (5, 7). The algorithm will work w.r.t the node

(5, 8).

Using the algorithm of Horizontal moves [1], We have the optimal path to reach the destination

is : (5,9) →(4,16) →(4,15) →(5,8) →(4,14) → (4,13) →(5,7) →(4,12) →(4,11) →(5,6). The

shortest path length is 9.

Now using the above algorithm w.r.t the node (5, 8) we have the following fault free paths.

(5,9) →(4,16) →(4,15) →(5,8) →(4,14) → (4,13) →(3,7) →(4,12) →(4,11) →(5,6). The path

length is 9.

Figure 6: [we have drawn only first 7 lines of the Octagon-Cell network of depth 5, which shows the fault

free path]

4. CONCLUSION

Octagon-Cell interconnected network has attractive features like small network diameter, better

bisection width and constant node degree etc. This paper introduces a fault tolerant routing

algorithm for horizontal moving messages in the Octagon-Cell interconnected network topology.

If any system can’t solve the faulty problem, it is considered as unreliable and inefficient. We

have already described the algorithm in [1], to find optimal path in any direction from source

node to destination node in Octagon-Cell network. In our fault tolerant scheme, the optimal path

is calculated from source to destination node for horizontal moving messages. If any fault occurs

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

37

along the path, the algorithm will find the alternative fault free path. This can be utilized in

mobile networks and different wide range networks.

REFERENCES

[1] Sanjukta Mohanty and Prafulla Ku. Behera, (2011) “Optimal Routing Algorithm in a Octagon-Cell

Network” International Journal of Advanced Research in Computer Science, Vol. 2, No.5 pp.625-

637.

[2] Ahmad Sharieh, Mohammad Qatawneh, Wesam Almobaideen, Azzam Sleit, (2008) “Hex-Cell:

Modeling, Topological Properties and Routing Algorithm”, European Journal of Scientific Research,

Vol.22, No.2, pp. 457-468.

[3] N. Gopalakrishna Kini, M. sathish Kumar and Mruthyunjaya H.S.,(2009) “An Optimal Data Routing

Scheme for Mesh Embedded Hypercube Interconnection network with Multiple Faulty Nodes”,

International Journal of Computer Science and Engineering , 3:1 , pp.26-30.

[4] Ahmed Louri and Hongki Sung, (April 1994) “An Optical Multi-Mesh Hypercube: A Scalable

Optical interconnection Network for Massively Parallel Computing”, Journal of Lightwave

Technology, Vol.12, No.4, pp. 704-716.

[5] Tze Chiang Lee and John P.Hayes, (Oct 1992) “A Fault-Tolerant Communication Scheme for

Hypercube Computers”, IEEE Transactions on Computers, Vol.41, No.10, pp. 1242-1256.

[6] Sandeep Sharma, P.K.Bansal,(2002) “ A New Fault Tolerant Multistage Interconnection Networks”,

IEEE TENCON’ 02, Vol.1, pp.347-350.

[7] Shih-Chang Wang and Sy-Yen Kuo, (Dec. 1994) “Fault Tolerance in Hyperbus and Hypercube

Multiprocessors Using Partitioning Scheme”, IEEE International Conference on Parallel and

Distributed Systems, pp. 340-347.

[8] D. Nassimi and S. Sahni, Jan. (1980) “ An Optimal Routing Algorithm for Mesh Connected Parallel

Computers”, Journal of the ACM, Vol.27, pp.6-29.

[9] Shen. J.P.,(1982) ” Fault Tolerance Analysis of Several Interconnection Networks”, Proceedings of

International Conference on Parallel Processing, pp.102-112.

[10] Jehoshua Bruck, Member, IEEE, Robert Cypher, and Danny Soroker, (May 1992) “Tolerating Faults

in Hypercubes Using Subcube Partitioning”, IEEE Trasactions on Computers, Vol.41, No.5, pp.599-

605.

[11] K.V. Arya, R.K. Ghosh. (2005) “Designing a New Class of Fault Tolerant Multistage

Interconneconnection Networks”, Journal of Interconneconnection Network, Vol.6, No.4, pp.361-

382.

[12] Kuo-Hsuan Chen and Ge-Ming Chiu, (1998) “Fault-Tolerant Routing Algorithm for Meshes”,

Journal of Information Science and Engineering, Vol.14, pp.765-783.

[13] Jianer Chen, Iyad A. Kanj and Guojun Wang, (2002) “ Hypercube Network Fault Tolerance: A

Probabilistic Approach”, Proceedings of the IEEE International Conference on Parallel Processing.

[14] M.J. Serrano and B. Parhami, (Oct. 1993) “Optimal Architectures and Algorithms for Mesh-

Connected Parallel Computers with Separable Row/Column Buses”, IEEE Trasactions on Parallel

and Distributed Systems, Vol.4, No.10, pp.1073-1080.

[15] Mohammad Qatawneh, Bdour Hamed, Wesam AlMobaideen, Azzam Sleit, Amal Qudat, Wala’a

Qutechat, Roba Al-Soub, (Dec. 2009) “ FTRH: Fault Tolerance Routing Algorithm for Hex-Cell

Networks”, International Journal of Computer Science and Network Security, Vol.9, No.12, pp. 268-

274.

[16] K. Day, K.S. Harous, A. Al-Ayyoub, (2000) “A Fault Tolerant Routing Scheme for Hypercubes”,

Telecommunication Systems, Vol-13, No.1, pp. 29-44.

[17] Catherine Decayeux, David Seme, (2005) “3D Hexagonal Network: Modeling, Topological

Properties, Addressing Scheme and Optimal Routing Algorithm”, IEEE Trasactions on parallel and

systems, Vol-16, No.9, pp.875-884.

[18] Qatawneh Mohammad (2006) “Adaptive Fault Tolerant Routing Algorithm for Tree-Hypercube

Multicomputer”, Journal of Computer Science, Vol.2, No.2, pp. 124-126.

[19] Suresh Chalasani, Rajendra V. Boppana, (1994) “Fault-Tolerant Wormhole Routing in Tori”,

International Conference on Supercompuing, , pp.146-155.

International Journal of Computer Networks & Communications (IJCNC) Vol.9, No.1, January 2017

38

[20] Mahmoud Al-Omari, Mohammed Mahafzah, (1999) “Fault-Tolerant Routing in hypercubes using

masked interval Routing Scheme”, Proceedings of the 1999 ACM symposium on Applied Computing,

pp.481-485.

[21] Jipeng Zhou and Francis C.M. Lau, (2004) “Multi-Phase Minimal Fault-Tolerant Wormwhole

Routing in Meshes”, Parallel Computing, Vol.30, No.3, pp. 423-442.

[22] Jong-Hoon Youn, Bella Bose, Seungjin Park, (2006) “Fault-Tolerant Routing Algorithm in Meshes

with solid faults”, Journal of Supercomputing, 37, pp. 161-177.

[23] Flaviu Cristian, Bob Dancey, Jon Dehn, (1996) “Fault-Tolerance in Air Traffic Control Systems”,

Trasaction on Computer Systems (TOCS), Vol.14, No.3, pp. 256-286.

[24] Dajin Wang, (2001) “A Low Cost Fault-Tolerant Structure for Hypercube”, Journal of

Supercomputing, 20, pp. 203-216.

[25] Dan Gordon, Israel Koren, Gabriel M. Silberman, (1987) “Reconstructing Hexagonal Arrays of

Processors in the Presence of Faults”, Journal of VLSI and Computer Systems, Vol.2, pp. 23-35.

[26] Mostafa Rezazad, Hamid Sarbazi-Azad, (2003) “A Routing Algorithm for Star Interconnection

Network in the Presence of Faults”, The CSI Journal on Computer Science and Engineering, Vol.1,

No. 4(b), pp. 11-18

Authors

Sanjukta Mohanty has received her Master in Computer Application from North

Orissa University of Odisha, India, M.Sc in Mathematics from Fakir Mohan

University of Odisha, India, M.Tech (Comp.Sc & Engg) from North Orissa University

of Odisha, India in 2013 and Continuing Ph.D in Computer Science & IT in North

Orissa University Sriram Chandra Vihar, Baripada of Odisha, India. Her research

interests include on the study of routing algorithms in interconnected networks.

Dr. Prafulla Ku. Behera has received his Ph.D in Computer Science from Utkal

University of Odisha, India in 2007. His research interests include on the study of

Mobile Ad-hoc Networks. He is the faculty member of Department of Computer

Science & Application, Utkal University, Vani Vihar, Bhubaneswar of Odisha, India.

