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ABSTRACT 

Content-Centric Networking (CCN) is a new paradigm for the future Internet where content is addressed by 

hierarchically organized names with the goal to replace TCP/IP networks. Unlike IP addresses, names 

have arbitrary length and are larger than the four bytes of IPv4 addresses. One important data structure in 

CCN is the Forwarding Information Base (FIB) where prefixes of names are stored together with the for-

warding face. Long prefixes create problems for memory constrained Internet of Things (IoT) devices. In 

this work, we derive requirements for a FIB in the IoT and survey possible solutions. We investigate, design 

and compare memory-efficient solutions for the FIB based on hashes and Bloom-Filters. For large number 

of prefixes and an equal distribution of prefixes to faces we recommend a FIB implementation based on 

Bloom-Filters. In all other cases, we recommend an implementation of the FIB with hashes. 
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1. INTRODUCTION 

We observe a trend on the Internet where content and services are more important than individual 

servers or hosts. Consequently, a new paradigm is required to address this development. Content-

Centric Networking (CCN, cf. [1]) is one of these new paradigms where content is addressed by 

using hierarchically organized names with the goal on the long run to replace TCP/IP-based ad-

dressing. CCN, also known as named-data networking (NDN, cf. [2]) or information-centric net-

working (ICN, [3]) uses two important types of messages: interest and content object. In general, 

an interest message requests a content object. A major issue in CCNs is the forwarding of mes-

sages to the services that are mentioned/addressed by a certain interest message. Such services are 

addressed using names that are typically much longer than traditional addresses used in the Inter-

net (e.g., IPv4 or IPv6 addresses). Instead of routing tables, CCN nodes contain a data structure 

called Forwarding Information Base (FIB) that backs the message forwarding process. However, 

due to the length of names, the memory consumption of FIBs is much higher than that of routing 

tables. As a result, CCNs may not be as scalable as IP- based networks. While these memory re-

quirements are already an issue on standard PC hardware, it severely limits the applicability of 

CCN networking on highly resource-constraint devices in the Internet of Things (IoT). We ad-

dress this issue in this paper by presenting the following contributions: 

 We survey the requirements of Forwarding Information Bases in name and content-

centric networks for the IoT. 

 We define metrics for the requirements of the FIB. 
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 We develop and evaluate memory efficient solutions for a FIB based on hashes and 

counting and non-counting Bloom-Filters. 

 We compare the solutions with a standard reference implementation of a FIB. 

The remainder of the paper is organized as follows: Section 2 introduces some fundamentals on 

content-centric networks and introduces memory efficient data structures specific to this paper. 

Section 3 introduces related work; Section 4 presents the problem description. Section 5 intro-

duces our memory efficient FIB implementations. In Section 6, we evaluate our memory efficient 

FIB implementations. Section 7 summarizes the work and gives an outlook on future research. 

2. FUNDAMENTALS 

This section introduces some prerequisites that are required to understand our approach. First, we 

discuss details of CCNs and addressing in CCNs. Second, we introduce some memory-efficient 

data structures that support addressing and routing in CCNs. 

2.1. Content-Centric Networking 

Each CCN message contains a name that is comprised of components separated by slashes (/). 

Components are strings of ASCII characters and bytes. Bytes not representing valid ASCII char-

acters for a name are escaped (percent encoded) like in URLs. An example for a CCN name con-

sisting of four components is /de/fhluebeck/ac/%C1.getTemp. %C1 is a percent encoded byte and 

some CCN implementations use this byte followed by a dot (%C1.) to annotate components with 

a special meaning. For example, %C1.getTemp is a remote method call to get a temperature.  

Components starting from the beginning of a name are called prefixes of that name (just like net-

work prefixes in IP addressing). Prefixes of the name above are, e.g., /de or /de/fhluebeck/ac. 

The canonical ordering of names in CCNs is the shortlex order. A shortlex order is an alphabeti-

cal order on components, which additionally regards the length of the component. Shorter com-

ponents are ordered before longer ones. The longest prefix match is important for name compari-

son. For example, the name /a/b/c has the prefixes /a and /a/b. Prefix /a/b matches /a/b/c better 

than /a according to the longest prefix match because two components from the beginning are 

equal. 

Each CCN node has the following three data structures: forward-information base (FIB), content 

store (CS), and pending interest table (PIT). The FIB stores information about the interest for-

warding, the CS caches received content objects, and the PIT stores received interests. Further 

building blocks of a node are faces and a daemon. A face is a generalization of an interface where 

interests and content objects are sent to and received from. The daemon processes the CCN mes-

sages. 

If a node receives an interest, the contents of the CS get searched. The CS stores content objects 

by the canonical order of their names. If a matching content object is found the content object is 

returned to the face the interest was received from. 

If the lookup in the CS was unsuccessful, the PIT is searched for a matching interest. The PIT 

stores an interest along with a list of faces the interest was received from. If the received interest 

matches an interest in the PIT the receiving faces for this entry are updated and the received inter-

est is discarded. 
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If lookup in the PIT failed the FIB is searched. The FIB maps prefixes to faces. A received inter-

est is compared to the prefixes in the FIB. The interest is forwarded to the faces with a longest 

prefix match. If an interest cannot be forwarded the interest is discarded finally. 

If a node receives a content object with a matching interest in the PIT, the content object is for-

warded to the faces where the interest was originally received from and stored in the CS. 

The matching interest is removed from the PIT. Unlike IP addresses names are not limited in size 

and are typically larger in size than IPv4 addresses or IPv6 addresses. 

Especially for the Internet of Things where severely resource constrained devices are integrated 

into the existing Internet an efficient representation of names and name prefixes is needed. 

2.2. Memory-Efficient Data Structures 

Unlike IP addresses, names have arbitrary length and are larger than e.g. four bytes of IPv4 ad-

dresses which increases the required memory. Well-known memory efficient representations for 

strings or names respectively, are hash values, Bloom Filters (BF) and Counting Bloom-Filters 

(CBF).  

Hashing is a technique to map arbitrary length byte arrays (strings, objects, etc.) to a fixed size 

integer value by a hash function. The result of hashing is a hash value. Hash values are fixed in 

size and often smaller than the byte arrays that serve as input of the hash function. A so called 

hash collision occurs if hash functions return the same hash value on different inputs. 

Wang and Kissel [4] explain the theory behind hashing and give recommendations to choose the 

hash value size to achieve a certain hash collision probability. Ahmad and Younis [5] present an 

evaluation of well-known hash functions. In our work, we assume uniformly distributed and effi-

ciently computable hash functions. We apply hash functions in the context of CCN with the goal 

to minimize memory consumption.  

A Bloom-Filter is a fixed size data structure to store a set of elements. By Bloom-Filters we can 

decide if an element is inside a set or not inside a set with a certain probability.  

Especially in networking applications Bloom-Filters received broad attention. Broder and 

Mitzenmacher [6] survey network applications of Bloom-Filters and introduce the theory of BF 

and CBF in detail.  

A Bloom-Filter is implemented as a bit array of size m. At insertion of an element,   hash func-

tions are applied to the element to be inserted. The hash functions compute index values in the 

range 1 to  . In the bit array, all bits with computed indices of the   hash functions are set to one. 

The procedure described above is applied to all elements to be inserted into the Bloom-Filter. At 

each insertion it is possible that a bit in the array is chosen, which is already set to one. The false 

positive probability increases with the number of bits set in the Bloom-Filter. Therefore, the size 

of the Bloom-Filter (and the number of hash functions) is chosen so that it is able to hold a certain 

amount of elements and simultaneously maintaining a certain false positive probability. Note that, 

as with hashing, the size of the elements inserted into the BF does not matter. 

It is not possible to remove an element from a Bloom-Filter. Trying to do so would probably re-

move other elements as well. So called counting Bloom-Filter (CBF) [7] allow removing ele-

ments. Counting Bloom-Filters are an extension of BF where the bits of the Bloom-Filter are re-

placed by counters. At each insertion, the counters are incremented accordingly in a counting 
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Bloom-Filter and decremented if an element is removed. Fan et al. [7] show that counters with 

four bits are sufficient for most applications.  

3. RELATED WORK 

In this section, we introduce relevant work and state of the art in hashing and Bloom-Filters and 

their usage in content-centric networking. In CCN there are plenty of applications for hashing and 

Bloom-Filter due to the names with variable lengths. 

Hashing is widely used in networking applications. Saino et al. [8] present an example for hash-

ing in information-centric networking (ICN). They propose a solution to the routing problem in 

information-centric networks e.g. the shortest path to the router which temporarily hosts the re-

quested information or content. Regarding the routing problem is not in the scope of our work but 

nevertheless, our solution with hashing is flexible and allows the manipulation of the FIB to en-

able a routing mechanism on top of it.  

Varvello et al. [9] develop a content router for high speed forwarding. They use Bloom-Filter for 

longest prefix matches. Unlike our solution, their aim is to decrease the time needed for forward-

ing messages on routers while decreasing memory usage is not in their focus. Furthermore, their 

longest prefix match algorithm is embedded in a complex, heavyweight architecture. 

Wei You et al. [10] propose Bloom-Filters to decrease memory usage of the PIT. In their ap-

proach, each face has a counting Bloom-Filter and therefore, they call it “distributed Bloom-

Filter”. The counters of the Bloom-Filters are incremented on interest reception and decremented 

on content object forwarding. Furthermore, they introduce a shared Bloom-Filter which is applied 

after the distributed Bloom-Filters to further reduce the false positive results. In contrast, we pro-

pose a simpler design and do not create a sequence of Bloom-Filters. In addition, we suggest us-

ing a single Bloom-Filter per face. 

Tsilopoulos et al. [11] also propose Bloom-Filters to reduce the space needed for content forward-

ing information in the PIT. In their approach the interests are tracked only at a subset of hops. 

Intermediate nodes not tracking the interests use a Bloom-Filter at each face to store the forward 

information. This application tolerates high false-positive rates of the Bloom-Filters because the 

falsely forwarded interests are stopped at nodes tracking the whole interest in their PIT. There-

fore, the Bloom-Filters require less memory in that application.  

Wei Quan et al. [12] propose a hybrid approach using Tree-Bitmaps and Bloom-Filters for a scal-

able name lookup in CCNs. They split names are split in two segments. The first segment is a 

fixed size part of a name and is processed by the Tree-Bitmap. The second part is of variable size 

and is processed by the Bloom-Filter. Wei Quan et al. compare name lookup speed and memory 

usage of their approach to an alternative “Name Prefix-Trie” implementation. 

An interesting approach for a longest prefix match on IP addresses with Bloom-Filters is de-

scribed by Dharmapurikar et al. [13]. Their strategy for longest prefix matching is to use one 

Bloom-Filter per prefix. We use one Bloom-Filter per face and store the prefixes as elements in 

the Bloom-Filter. 

The work of Muñoz et al. [14] is closest to our Bloom-Filter approach regarding aim and scope. 

They suggest so called iterated Bloom-Filters for use in resource constrained IoT devices in con-

tent-centric networks. Like in our solution they use one (iterated) Bloom-Filter per face.  
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The advantage of iterated Bloom-Filters it that they either allow the reduction of the Bloom-Filter 

size while maintaining a certain false positive probability or a reduction of the false positive 

probability by maintaining the size of the Bloom-Filter.  

Muñoz et al. discuss the properties of iterated Bloom-Filters comprehensively but the work lacks 

a detailed discussion of the removal of elements from the Bloom-Filters by using counting 

Bloom-Filters. Furthermore, it is questionable if their approach really fits the requirements of 

resource constrained devices because the iterated Bloom-Filters still become quite large (several 

kilo bytes up to several giga bytes in their evaluation).  

Compared with the solution of Muñoz et al. our approach with Bloom-Filters is simpler and 

probably less efficient but allows for better maintenance and error handling of Bloom-Filters in 

content-centric networking. Furthermore, we show that the mapping of prefixes to faces has an 

influence when each face has its own Bloom-Filter. We discuss and investigate counting Bloom-

Filters which are important for dynamic FIBs and compare the approach with a lightweight solu-

tion using hashing. Our implementation targets resource-constraint IoT devices. 

4. PROBLEM DESCRIPTION 

We survey the requirements for FIBs and introduce estimations for the FIB size. The estimated 

FIB size is one basic parameter for our evaluation presented in Section 6. 

From a data structure perspective, an FIB maps a prefix to multiple faces. The relation between 

prefixes and faces presented in Figure 1 shows that a prefix has at least one face it is assigned to. 

In general, a face is not required to have a prefix assigned to it. 

 

Figure 1. ER-diagram showing the relation between prefix and face. 

We have implemented a FIB for microcontroller-based IoT devices, which is already memory 

efficient by using a bit vector for the list of faces. This implementation serves as a reference for 

our alternative approaches. Figure 2 shows the structure of our FIB implementation. 

The FIB is a sorted list of   tuples of a prefix and a bit vector (             . The list is sorted 

according to the canonical order of the prefixes for a more efficient lookup. Prefix n consists of    components (        ) where          . Each component is a byte string and the com-

ponents are separated by a one byte sized type/length field (cf. our previous work in [15]). If a 

prefix is assigned to the  -th face, the  -th bit (bf) in the corresponding bit vector is set to one, 

where           and   is the number of faces of that node. 

In the following, we compare the size of this reference implementation of the FIB with hashing 

and Bloom-Filter solutions. The size of Bloom-Filters is usually given in bits. For a quantitative 

comparison, the size of our FIB implementation in bit is calculated as 

 

where               is the size in byte of the  -th component of the  -th prefix. 

Prefix Face
(1, N) 

(0, F) 

       
   

 
                       (1) 
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Regarding individual components of a prefix is not necessary for our comparison in Section 6 

because we regard the prefix as a whole. We denote the whole prefix as         (including sepa-

rators) for a FIB entry. Table 1 summarizes the symbol definitions used throughout this work. 

Table 1. Symbol definitions. 

Symbol Description                                    or         

Number of faces per node 

Number of prefixes in the FIB 

Number of components of the  -th FIB prefix  -th component of the  -th FIB prefix 

The  -th FIB prefix                      

Size in bit or byte of   
In practice, relations between prefixes and faces may show different characteristics depending on 

the number of prefixes   and the number of faces  . These characteristics define the requirements 

for FIBs and are important for choosing the best optimization strategy. Our reference implementa-

tion for the FIB (cf. Figure 2) for example grows faster in size with increasing   than with in-

creasing  . The length of each prefix |Prefix n | also has a significant influence on the size of our 

reference implementation (cf. Figure 2) but not for our suggested optimization approaches. There-

fore, we further simplify our considerations by assuming that every prefix in the FIB has a fixed 

size, denoted by              or               , respectively. According to this assumption, equa-

tion (1) simplifies to equation (2).                    (2) 

Regarding the parameters N and F, we identify three cases: 1.    , 2.    , and 3.    . 

According to these three cases, relations as illustrated in Figure 1 lead to three solutions for the 

mapping as given in Figure 3. 

For a 1-1-mapping one prefix maps to one face, 1-n one prefix maps to many faces, and n-1 many 

prefixes map to one face. Our mapping characteristics shown in Figure 3 represent “extreme” 
cases. In practice the “1” in our mapping characteristics is not required to be exactly one, mostly 

one suffices. For example, the 1-1-mapping maps mostly one prefix to mainly one face, and so 

on. 

It is hard to answer which mapping characteristic usually applies to FIBs in CCNs as real-world 

implementations are rare. CCN and applications on top of it are still developing and surveys are—
to the best of our knowledge—not available. 

 

Figure 2. Structure of our reference FIB implementation or the IoT. 
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(a) 1-1-mapping     

 

(b) 1-n-mapping     

 

(c) n-1-mapping     

Figure 3. FIB mapping characteristics. 

 

Therefore, we surveyed FIBs of existing testbeds to get an impression of the characteristics and to 

fixing values for our evaluation in Section 6. We conducted measurements using the NDN testbed 

(https://named-data.net/ndn-testbed/) with 28 nodes (cf. Figure 4) and we also conducted meas-

urements of our content-centric networking implementation for the IoT.  

Figure 4a presents survey results for the NDN testbed. Each column in Figure 4a represents an 

NDN node. Labels of the nodes (x axis) are shown on Figure 4b. The height of a column is the 

number of faces   of the node. Different segments of the columns in Figure 4a show the number 

of faces with a certain number of prefixes assigned to it. E.g., where 0, between 1 and 4, between 

5 and 7, between 10 and 11, and between 56 and 62 prefixes, are assigned to a face. For example, 

the first node (/ndn/br/ufpa) has 5 faces where no prefix is assigned and 2 faces where between 56 

and 62 prefixes are assigned to. The upper x-axis shows the number of prefixes   in the FIB of 

that node. 

Figure 4b is similar to Figure 4a but the y-axis shows the number of prefixes   and the upper x-

axis the number of faces  . The different segments of the columns in Figure 4b show the number 

of prefixes assigned to 1 and 2, 3 and 4, 5 and 6, 7 and 8, and 9 and 10 faces, respectively. The 

first node in Figure 4b has more than 70 prefixes which are assigned to 1 or 2 faces only. 

If     and the values in the columns are small (near to one), then it is a 1-1-mapping. If     and the values in the columns in the first graph (Figure 4a) are small and in the second 

graph (Figure 4b) are large, then it is a 1-n-mapping. If     and the values in the columns of 

the first graph are large and in the second are small, then it is an n-1-mapping. 

A classification in one of the mapping types shown in Figure 3 is difficult in Figure 4. One sub-

set of prefix to face mappings in Figure 4 indicates a 1-1-mapping, whereas another subset indi-

cates an n-1-mapping. 

Figure 5 shows the FIB characteristics for our content-centric networking IoT implementation in 

a plot similar to Figure 4. We have several IoT nodes with an identical FIB configuration and 

therefore, one column (IoT-Nodes) represents all nodes. The second column represents the FIB 

characteristics for the IoT gateway (IoT-GW). Our content-centric IoT gateway is responsible for 

the wired/wireless transition and has more resources than IoT nodes. 
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Figure 5a and Figure 5b show that the FIB in our CCN testbed setup for the IoT follows a 1-1-

mapping characteristic. 

Figure 4. FIB characteristics of the NDN testbed. 

 

(a) Assignment of prefixes to faces 

 

(b) Assignment of faces to prefixes 

Figure 5. FIB characteristics of the IoT nodes and the IoT gateway in our testbed. 

 
(a) Assignment of prefixes to faces 

 
(b) Assignment of faces to prefixes 
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In summary, our survey gives an indication how FIB characteristics develop. In our opinion, FIB 

in future content-centric networking will show 1-1 or n-1-mappings. Mapping characteristics are 

important for choosing the correct optimization strategy. For example, in Section 5 and Section 6 
we show, that Bloom-Filters work efficiently for the n-1-mapping characteristic. 

5. MEMORY EFFICIENT FIB IMPLEMENTATIONS 

In this section, we present alternative solutions for the FIB with the aim to reduce memory con-

sumption. The solutions presented here rely on hashing and Bloom-Filters. In the following, our 

reference FIB implementation (cf. Figure 2) is named FIB, the FIB with hashing is named FIB-

Hash, and the FIB solution using Bloom-Filters is called FIB-BF or FIB-CBF with counting 

Bloom-Filters, respectively. 

5.1. FIB Implementation with Hashes 

Compared to the reference implementation of the FIB, the FIB-Hash implementation prefixes are 

replaced by hash values as shown in Figure 6. As a consequence, the longest prefix matching 

algorithm in FIB-Hash is different from the reference FIB. 

On reception of an interest, a hash value is computed from the name of the interest and compared 

to hash values 1 to   in FIB-Hash. If the hash value of the interest is equal to a FIB-Hash hash 

value, the interest is forwarded to the faces defined in the bit vector and the FIB processing stops. 

If no matching hash value in FIB-Hash is found, the hash value of the name excluding the last 

name component is computed and the comparison starts from the beginning. With the first match-

ing hash entry the processing stops. A successful comparison is always a longest prefix match 

because the remainder of the interest name is the longest prefix of the interest name in the current 

round. Figure 7 shows the interest name processing in FIB-Hash by an example. 

In the example, the interest name has four components and the FIB-Hash manages three prefixes 

(   ). The first step (1.) depicts the name processing in FIB-Hash. In the first round, a hash 

value is computed from the whole name, in the second of the first three components, and in the 

third round of the first two components. The hash value 9c4e matches a forwarding entry in FIB-

Hash and the interest is forwarded to the corresponding faces of that forwarding entry in the sec-

ond step (2.). 

 

Figure 6. Structure of our FIB-Hash implementation. 

We denote the probability that a prefix is erroneously identified as a member in FIB-Hash as 

false-positive probability (   ). According to a simplified approach by Mitzenmacher and Broder 

[6] the maximum false-positive probability is approximately      for       and a four byte 

hash value. The false-positive probability of      is a large-scale upper bound for the real false-

positive probability, which is smaller by magnitudes because we assume   between 50 and 100. 

According to equation (2) the size in bit for our FIB-Hash is           when using four byte 

hash values. 
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Figure 7. FIB-Hash interest processing. 

For efficiency reasons, an implementation may compute the hash iteratively component by com-

ponent starting from the first component. The intermediate results will be stored. The comparison 

against the FIB entries will also start with the hash of the whole name and continued with the 

intermediate results to apply the hashes like in Figure 7 until a match is found.   

5.2. FIB Implementation with Bloom-Filters 

Figure 8 shows the structure of FIB-BF. In contrast to the FIB-Hash implementation (where a 

hash value is assigned for each prefix), FIB-BF assigns a Bloom-Filter to each face. Each Bloom-

Filter contains the prefixes assigned to that face. The interest processing is similar to the interest 

processing of FIB-Hash. Each prefix (from long to short) is checked if it is contained in one of the 

F Bloom-Filters. Unlike to FIB-Hash where the processing stops at first match the prefix is 

checked against all Bloom-Filters because other faces might have this prefix assigned, too. 

 

Figure 8. Structure of our FIB-BF implementation. 

All Bloom-Filters shown in Figure 8 have the same size. In general, the size of a Bloom-Filter 

depends on the desired false-positive probability     and the maximum capacity of the Bloom-

Filter     for which     holds. It is possible to add more elements than a Bloom-Filters capacity, 

but then the desired     does not hold anymore. 

Let                 the size of a Bloom-Filter in bit (depending on     and    ). The size in 

bit of FIB-BF is then given by equation (3). 

Interest: /a/b/c/d

FIB-Hash

/a/b/c/d

9573

/a/b/c/d

ae22

/a/b/c/d

9c4e

Hash Function

1. Round 2. Round 3. Round

No match in FIB-Hash forwarding 

entries in the first two rounds

"9c4e" matches first 

FIB-Hash entry

Forwarding Entries

9c4e
Forwarding 

Faces

fe39
Forwarding 

Faces

Forwarding 

Faces

1. 2.

a263
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                  (3) 

We require          and a nearly equal distribution of prefixes among faces, hence,         . If the latter requirement is not met FIB-BF may end up with Bloom-Filters containing fewer 

elements than its capacity which is inefficient memory usage.  

The design of our FIB-Bloom in Figure 8 suggests an n-1-mapping because the Bloom-Filters in 

FIB-Bloom include multiple prefixes assigned to one face. If we regard a FIB-BF with fixed     or   respectively, the memory consumption of FIB-BF increases faster with increasing   than with increasing    . Therefore, FIB-BF requires an n-1-mapping with a few faces in total. 

5.3. FIB Implementation with Counting Bloom-Filters 

The FIB implementation with counting Bloom-Filter FIB-CBF is similar to FIB-BF discussed in 

Section 5.2. Counting Bloom-Filters replace the single bits with fixed size counters. Therefore, 

the size of the FIB-CBF compared to FIB-BF increases by a fixed amount. Counting Bloom-

Filters allow—in contrast to Bloom-Filters—the removal of elements. Removal of prefixes is 

necessary when forwarding information needs to be adapted at runtime. 

For our FIB-CBF we use counters with a size of four bits according to recommendation of Fan et 

al. [7]. With FIB-Hash and FIB-BF/CBF we introduce new symbols summarized in Table 2 

which completes Table 1. 

Table 2 Symbol Definitions for FIB-HASH and FIB-BF/CBF. 

Symbol Description                              

False-positive probability 

Bloom-Filter capacity 

Bloom-Filter size in bit 

6. EVALUATION 

In this section, we compare the memory consumption of our FIB implementation and our alterna-

tive solutions FIB-Hash and FIB-BF/CBF. We determine the memory consumption by conducting 

a theoretical analysis under assumption of reasonable values for  ,  ,    ,              , and    . In the following, we first introduce our evaluation setup. Second, we evaluate the influence 

of  , and  . Third, we evaluate the influence of the prefix length              . 

6.1. Evaluation Setup and Assumptions 

In the NDN testbed (cf. Figure 4) the number of prefixes   is around 80 per FIB. For our future 

content-centric IoT setup we expect about 30 prefixes per FIB. Therefore, we assume   around 

50 to 60 in our evaluation setup because it is in the middle of the range from 30 to 80. Assuming a 

higher value for   provides advantages to FIB-Hash and FIB-BF/CBF memory consumption 

because memory consumption of our standard FIB implementation performs worse with increas-

ing number of prefixes  .  

In the NDN testbed (cf. Figure 4) each node has 15 to 24 faces and at least 5 faces per node have 

no prefix assigned. For our future content-centric IoT setup we expect a node to have 5 to 20 

faces. Therefore, it seems reasonable to assume a number of faces   between 10 and 15 in our 

evaluation setup. 
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For the prefix length              , we assume 15 byte. In the NDN testbed we observe two ac-

cumulations of prefix lengths shown in Figure 9. 

 

Figure 9 Histogram of the prefix lengths in the NDN testbed. 

One cluster is at around 15 byte and the other cluster is at around 30 byte. A prefix length of 15 

byte also is reasonable for our future content-centric IoT setup. Therefore, we choose                 . Larger prefixes provide advantages for FIB-Hash and FIB-BF/CBF memory 

consumption because with FIB-Hash and FIB-BF/CBF the prefix length has no influence (cf. 

equation (3)) but for our standard FIB implementation (cf. equation (2)). In our evaluation setup 

we assume a false-positive probability for FIB-BF/CBF of     . This false-positive probability 

provides a reasonable trade-off between the Bloom-Filter size and precision. It is quite obvious 

that FIB-Hash performs better than the standard FIB implementation regarding the memory con-

sumption and therefore, we focus on FIB and FIB-BF/CBF in the following.  

Table 3 summarizes our evaluation setup. We define     depending on   and   according to the 

observations in Section 5.2 and we apply the ceiling function to ensure that     is an integer al-

lowing FIB-BF/CBF to store all   prefixes. Unless stated otherwise, the values in Table 3 hold 

for the evaluation setup in this section. 

Table 3 Evaluation setup. 

Symbol Value(s)       or          to                                              
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6.2. Influence of   and   

Figure 10 shows how the size of FIB and FIB-BF/CBF changes with increasing number of faces. 

The x-axis shows the number of faces   and the y-axis the size of the corresponding data struc-

ture in kbits.  

 

Figure 10. Size comparison of FIB and FIB-BF/CBF. 

Table 4 shows the detailed results of Figure 10. Under the assumption that all prefixes are distrib-

uted equally among the faces FIB-BF consumes considerably less memory than FIB. In contrary 

to FIB, FIB-BF size is always in bounds with increasing  . However, if we increase   so that     we end up with a 1-1-mapping which suits better for FIB-Hash. We omit results for FIB-

CBF      in Figure 10 as memory size is too large.  

Table 4 Detailed results of Figure 10. 

FIB Type   
Memory Consumption [kbit]                               

FIB 
60 7.8 7.86 7.92 7.98 8.04 8.10 

50 6.5 6.55 6.6 6.65 6.7 6.75 

FIB-CBF 50 5.76 6.336 6.912 6.032 6.496 6.96 

FIB-BF 
60 1.73 1.903 1.728 1.872 2.016 1.74 

50 1.44 1.584 1.728 1.508 1.624 1.74 

Also, the distance between FIB-BF      and      is lower than for FIB      and     . Table 5 shows the distance (difference between      and     ) the curves (e.g. in 

Table 4:            ). For FIB the difference is about 1.3 kbit and for FIB-BF between 0 and 

0.39 kbit. In summary, FIB-BF scales better with increasing   compared to FIB.  
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Table 5 Distance (difference) between curves      and      for FIB and FIB-BF. 

FIB Type 
Difference [kbit]                               

FIB 1.3 1.31 1.32 1.33 1.34 1.35 

FIB-BF 0.29 0.319 0 0.364 0.392 0 

The assumption that prefixes are equally distributed among the faces and         is important 

for FIB-BF/CBF. Figure 11 shows the result if the requirement is not met. In the setup in Figure 

11   is 50 and     is 5, 10, and 25, respectively.       correlates to         in the range 

of 10 to 15 faces. With increasing     the memory consumption of FIB-BF increases.  

 

Figure 11. Size of FIB and FIB-BF/CBF and different values of the Bloom-Filter capacity    . 

Table 6 shows the detailed results of Figure 11. Note that the second column of Table 6 shows the 

capacity of the Bloom-Filter     and not the number of prefixes  . In the whole range of 10 to 

15 faces there are no memory savings of FIB-BF with        compared to FIB. 

Table 6 Detailed results of Figure 11. 

FIB Type     
Memory Consumption [kbit]                               

FIB N/A 6.5 6.55 6.6 6.65 6.7 6.75 

FIB-BF 

25 7.19 7.909 8.628 9.347 10.066 10.785 

10 2.88 3.168 3.456 3.744 4,032 4,32 

5 1.44 1.584 1.728 1.872 2.016 2.16 

6.3. Influence of prefix length 

In the last part of the evaluation we investigate the influence of the prefix length on the memory 

consumption. With increasing prefix length FIB-BF and FIB-CBF outperform our reference FIB. 

Figure 12 shows the minimum prefix length (on the y-axis) where FIB-BF/CBF outperforms FIB 
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regarding memory consumption for varying F (on the x-axis).   is 50 in the setup shown in Fig-

ure 12. 

 

Figure 12. Minimum prefix length for different Bloom-Filter capacity     with number of pre-

fixes      where FIB-BF/CBF outperforms FIB regarding memory consumption. 

Table 7 shows detailed results of Figure 12. Even for short prefixes FIB-BF saves memory com-

pared to FIB. If     increases from 5 to 10, the prefix length for which FIB-BF saves memory 

also increases by approximately the factor of two. For FIB-CBF the prefix has to be approxi-

mately 4 to 6 times longer so that FIB-CBF saves memory compared to FIB. In our opinion, pre-

fix lengths for forwarding entries exceeding 30 byte seem unrealistic for us, even for future appli-

cations. 

Table 7 Detailed results of Figure 12. 

FIB Type     
                                            

FIB-CBF 
10 28 30 33 36 39 41 

5 13 14 16 17 18 20 

FIB-BF 
10 6 7 7 8 8 9 

5 2 3 3 3 3 4 

Figure 13 summarizes the behaviour of FIB, FIB-Hash, and FIB-BF/CBF. The y-axis in Figure 13 

shows the quotient of the sizes of FIB-CBF, FIB-Hash, and FIB-BF to the FIB size on the y-axis 

against the prefix length on the x-axis. We call this quotient size ratio in the following. If the size 

ratio is below 1 (dashed horizontal line) FIB-Hash, FIB-BF, and FIB-CBF memory consumption 

is lower than for our reference FIB implementation. The cases for FIB-BF,     ,     ,            and            (Figure 13a), respectively, show the behaviour of FIB-

BF if prefixes are not distributed equally among faces.  

With increasing   the FIB-BF size increases more than with increasing  . Table 8 shows this 

behavior on selected values from Figure 13. In Table 8 prefix lengths with different N are more 

similar than with different F.  
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FIB-Hash prefixes longer than 4 byte save memory because we suggest 4 byte hash values. FIB-

CBF with      and      saves memory if prefixes are longer than 14 byte. FIB-CBF size is 

always larger than FIB-Hash. 

 

(a)       ,        

 

(b)      

Figure 13. Prefix length against size ratio (FIB-Hash, FIB-BF/CBF size divided by FIB size). 

Table 8 Selected values from Figure 13. 

Label 
              

4 6 8 10 

X=FIB-BF,     ,       (cf. Figure 13a) 0.69 0.5 0.392 0.322 

X=FIB-BF,     ,      
(cf. Figure 13b) 

0.74 0.552 0.44 0.366 

X=FIB-BF,     ,      0.686 0.497 0.389 0.32 
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In summary, FIB-BF saves more memory compared to FIB and FIB-Hash if the prefixes are dis-

tributed equally among the faces. However, FIB-Hash is more flexible because FIB-Hash also 

saves memory if prefixes are not distributed equally among the faces. Furthermore, FIB-Hash 

allows removal of prefixes in contrary to FIB-BF. FIB-Hash and FIB-BF/CBF always save mem-

ory compared to FIB if the prefixes are long. This is obvious because FIB-Hash and FIB-BF/CBF 

are independent of the prefix length. In Table 9 gives a comprehensive comparison of our pro-

posed solutions.  

Table 9 Comprehensive comparison of the proposed solutions. 

FIB Type 
Mapping 

characteristic 

Element  

removal 

Deterministic 

(no false-positives) 

Compression ratio 

(typical cases ) 

FIB-Hash no limitations yes yes      

FIB-BF n-1 no no      

FIB-CBF n-1 yes no    

In Section 4 we suggested a 1-1-mapping for our IoT solution which means one prefix per face. 

When using a Bloom-Filter solution for the FIB this means that a Bloom-Filter contains only one 

element. Bloom-Filters reach their full potential if they store multiple elements and therefore, we 

suggest a hash based solution for the FIB in our IoT setup like FIB-Hash to save memory. 

7. CONCLUSION AND OUTLOOK 

In this work, we present memory efficient solutions for the forwarding information base for con-

tent-centric networking. We also identify requirements (for prefix to face mappings) under which 

our proposed solutions work best. Under the assumption, that our FIB follows an n-1-mapping, 

which means that we have many prefixes and few faces and prefixes are equally distributed 

among faces, the Bloom-Filter solution named FIB-BF works best. 

Unfortunately, Bloom-Filters do not allow the removal of elements, which is a severe drawback 

in dynamic content-centric networking scenarios where FIB entries are modified at runtime. To 

circumvent this issue, counting Bloom-Filters are used (FIB-CBF). FIB-CBF only saves signifi-

cant memory compared to our standard FIB solution with less than 11 faces or if prefixes become 

considerable long (more than 15 byte). FIB-CBF is always worse regarding the memory con-

sumption than FIB-BF and our FIB solution with hashing, named FIB-Hash. The memory con-

sumption of FIB-BF and FIB-CBF increases with increasing number of faces. 

The size of FIB-Hash increases logarithmic with increasing number of prefixes and increasing 

number of faces and therefore, reduces memory consumption independent of the mapping be-

tween prefixes and faces. FIB-Hash compresses the FIB by about     and FIB-BF by about     

in typical cases. 

In future work, we will implement our proposed solutions on a wireless sensor node platform for 

the IoT. With real IoT applications we will provide a comparative evaluation of the computation 

time for our suggested approaches. We will also investigate how we can apply hashing and 

Bloom-Filter in reducing the size of other CCN data structures like the PIT and the CS. Another 

issue when working with wireless resource constrained IoT devices is the limited radio band-

width. In future, we will investigate how hashing and Bloom-Filter approaches can be applied to 

save bandwidth without altering the concepts of CCN. For example, it is an open question if there 
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are hashing or Bloom-Filter approaches which reduce the message size while preserving the 

original CCN name comparison. 
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